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Abstract of the Dissertation

GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance,
Energy, and Endurance

by
Zhichao Li
for the Degree of
Doctor of Philosophy
in
Computer Science
Stony Brook University
2014

There are trade-offs among performance, energy, and dewderance for storage systems.
These trade-offs become more complex in storage systemrngpdifferent storage technolo-
gies. Designs optimized for one dimension or workload ofteffer in another. Therefore, it is
important to study the trade-offs so as to be able to adapsybeem to workloads. As differ-
ent types of drives have different traits, tiering hybridvds are studied more closely. However,
previous tiering hybrids are often designed for high thiqug, efficient energy consumption, or
improving endurance—Ileaving empirical study on the traffebeing unexplored. Past endurance
studies also lack a concrete model and metric to help stuirélde-offs. Lastly, previous designs
are often based on inflexible policies that cannot adaplye@sthanging conditions.

We designed and develop&iteenDM a versatile tiering hybrid drive that combines Flash-
based SSDs with traditional HDDs; we present our enduraragefrio study the aforementioned
trade-offs. GreenDM presents a block interface and reguicemodifications to existing appli-
cation software. GreenDM migrates hot data to the faster &8Dcold data to the slower HDD.
GreenDM offers tunable parameters useful in adapting teeesyto many workloads. We have de-
signed, developed, and carefully evaluated GreenDM withriety of workloads using commodity
SSD and HDD drives. We demonstrated the importance of \vis&d be able to adapt to various
workloads.

Our thesis is that one must study the trade-offs among pedoce, energy, and endurance,
especially in the ever more popular tiered storage systémnenable adaptation to workloads.
Our system is versatile so that it can adapt to different Voads to achieve certain trade-offs by
adjusting the important system parameters. We also preéderal interesting observations along
the cost dimension. We developed a cost model for GreenDMeantliated it under realistic
cost metrics. Future storage system designs have to comsidgple optimizations dimensions:
performance, energy, endurance, and dollar cost.



We close with several interesting long-term future redeakarst, it will be interesting to pro-
vide automated control knobs for users to trade-off peréoroe, energy efficiency, and endurance.
Second, one could extend the two-tier system to three tnetexplore more tiering policies. Third,
it would be useful to add security as an additional dimensiofurther explore these trade-offs.
Forth, one could experiment with different storage deviaed policies in the future, and help
build more efficient storage systems to achieve high peoca at minimum cost. Fifth and last,
it would be interesting to provide control support at the Cletel as well to further justify the
trade-offs among performance, energy, and endurance.



To my family that supports me from a far.
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Chapter 1

Introduction

The total amount of electronic data stored world-wide img®exponentially. By 2020, that figure is
expected to reach 35 Zetta Bytes [41]. It challenges howtli@sttorage systems can be to store and
fetch the data. Studies show that power consumption in theftdstructure is critical [22,71, 77],
up to 40% power consumption of which comes from storage [1IBgrefore, power consumption
has become an important factor influencing storage systesig[5, 79,91, 119, 122, 132, 139,
153]. Modern computer components such as CPU, RAM, and digkgdtend to have multiple
power states with different operational modes [29,50,A8}ong them, traditional magnetic HDDs
achieve the worspower-proportionality[10], which states that systems should consume power
proportional to the amount of work performed. Moreover, @kifes in storage systems become
a serious concern [7,21, 32,54, 63,90, 102,114, 148], tdarance of storage devices matters as
well.

Different storage devices differ in speed, capacity, asiurance, and power consumption [104].
There are trade-offs among these dimensions in storagensgstombining different types of de-
vices. Designs optimized for one dimension or workload rofeffer in other dimensions and
workloads. Moreover, in prior work, we analyzed the enenggt performance profiles of server
workloads, such as Web servers, email servers, databasessemnd file compression [72,79,119].
We discovered large deviations for both performance andggneonsumption—as much as 10
times—suggesting that there are significant opporturtitiesive energy and improve performance.
Therefore, it is important to study the trade-offs amongéh@imensions, and develop highly ver-
satile solution to enable adaptation to different workkad

With the advent of Flash-based Solid State Drives (SSD¢ ptleemore power and performance
efficient than HDDs, many considered SSDs as the front ii@age cache (e.g., EMC’s FAST [73],
VMware’s vFlash [133], IBM’s Tiering system [4], etc). WARiIit is beneficial to explore SSDs as
cache, there is a trend in industry to come up with hybridedexploring SSDs as the primary
storage to achieve better trade-offs among performancs, anod capacity. Examples are: (1)
Apple’s Fusion Drive [141]; (2) Microsoft's Ready Drive [@]) (3) Western Digital’s Solid State
Hybrid Drive (SSHD) [138]; (4) Nimble’'s CASL [94]; (5) Tints VMstore [134]; and (6) Dell
even sells a Compellent Flash Array [30] that combine twe$ypf SSDs together—Single-Level
Cell (SLC) and Multi-Level Cell (MLC)—to achieve the abovade-offs.

Many such approaches often aimed for high performance %8l 123, 129, 147], efficient
energy consumption [49, 147], or improved endurance [68].1Fherefore, study on the trade-
offs among performance, energy, and endurance is largelyplored. Studying the trade-offs can



help understand the relationship among performance, gnangl endurance, and can also help
build storage systems that can adapt to different workl@aks dimensions. Moreover, current
endurance studies are missing a concrete endurance matiatetric to help explore the above
trade-offs. In addition, past studies often had designk fisked or inflexible policies that made
it difficult to adapt to different workloads. Moreover, mapgevious approaches usually rely on
simulations and refer to manufacturer’s energy and pedoca specifications for benchmarks,
instead of using empirical, real-world experiments.

We designed and implemented a Linux Device Mapper [140] (Ev§et name&GreenDM and
came up with a concrete endurance model and metric to stedyrabe-offs. GreenDM receives
data requests from the tiering hybrid virtual device, arghttransparently redirects the resulting
requests to the underlying block devices. The DM framewdidre additional benefits: it can be
used with any target device (e.g., replication, multi-paticryption, redundancy, and snapshots).
The DM framework is also highly scalable: one can easily gumé the virtual device to use
multiple physical devices transparently.

GreenDM separates hot data from cold data based on theissapegterns: hot data is stored
on the SSD and cold data is stored on the HDD. When cold datanechot, GreenDM migrates
it from the HDD to the SSD; conversely, when hot data becom&bar more space is needed for
hotter data, GreenDM migrates colder data from the SSD télde.

By utilizing the SSD for hot data before using the HDD, Gredhbnproves performance
and reduces energy use—as SSDs are typically faster androenigss energy than HDDs. To
improve concurrency, GreenDM decouples the migrationsvéen the SSD and the HDD. By
keeping mostly cold data on the HDD, GreenDM can spin dowrHb® at times and help reduce
whole-system energy consumption. By counting the numbphgsical SSD reads and writes [84,
97] and the HDD start-stop cycles [47], GreenDM tracks \paiameters that impact the endurance
of the underlying storage devices.

To enable adaptation to different workloads, GreenDM suseveral versatile configuration
parameters to determine the migration thresholds betvwee®3D and the HDD. These parameters
can be tuned in accordance with the workloads.

We have evaluated GreenDM with several workloads. We exyaaried with several config-
urable GreenDM parameters, analyzed the results, and dgtrated their impact on the trade-offs
among performance, energy, and endurance. We also showedpbrtance of matching configu-
ration parameters to specific workloads to tune the abodetoéfs. In the FIU online trace work-
load, for example, we showed that various GreenDM configunatachieved a higher throughput
(58-142%) than Mylinear (a simple hybrid without any aduhifil data management), but con-
sumed more power (4—8%) and further reduced the SSD’s emcieifzy 11-15% . A larger extent
size (ES) lead to higher throughput and larger energy sayiogt reduced the SSD’s endurance
further.

Our thesis is that one must study the trade-offs among peédoce, energy, and endurance,
especially in the ever more popular tiered storage systenenable adaptation to workloads and
dimensions since there is no one-to-all solution. Our systeversatile so that it can adapt to
different workloads to achieve certain trade-offs by atijigsthe important system parameters. We
also provide several interesting observations along teedimension. We developed a cost model
for GreenDM and evaluated it under realistic cost metriagufe storage system designs have to
consider multiple optimizations dimensions: performameergy, endurance, and dollar cost.

We further bring up several interesting long-term futureegech directions. First, it will be

2



interesting to provide automated control knobs for the wsdrade-off performance, energy ef-
ficiency, and endurance. Second, one could extend the evgytstem to three tiers and explore
more tiering policies. Third, it would be useful to add sétyuas a forth dimension to further
explore the trade-offs. Forth, GreenDM is transparent aexidle so that we can easily experi-
ment with different storage devices and policies in thereitand help build more efficient storage
systems ready for the emerging trend and trade-offs of wargtorage devices — Flash, Phase
Change Memories (PCMs), and Shingled Magnetic RecordiMR)Sdrives to achieve the high
performance efficiency with the minimum cost. Last but naste it would be interesting to pro-
vide control support at the CPU level as well to further jiystine trade-offs among performance,
energy, and endurance.

The rest of the thesis is organized as follows: Chapter 2stsome of the background knowl-
edge that can help the reader better understand the rest tifdkis. Chapter 3 shows the lessons
we learned along the way toward this thesis. Chapter 4 predtlem work on power consumption
in enterprise-scale backup storage systems. Chapter énpsethe work on the energy consump-
tion and performance of systems software. Chapter 6 inteslthe work on a versatile hybrid
drive for the trade-offs evaluation among performancergnend endurance. Chapter 7 presents
interesting observations regarding the associated costrdiion of GreenDM. Chapter 8 presents
follow-up work on our caching system based on the currertvaare and software setup. Chapter 9
presents follow-up work on evaluating both the tiering aadhing systems with a different capac-
ity ratio of SSD over total. Chapter 10 lists several futurerkvthat go beyond this dissertation.
Chapter 11 concludes this thesis.



Chapter 2

Background

In this chapter, we share some background knowledge onhé¢liyade-offs among performance,
energy, power, and endurance in storage systems; (2) thécptson of choosing tiering over
caching; and (3) the endurance study. The knowledge isuidtpbetter illustrate the work in the
thesis.

2.1 Trade-Offs

Trade-offs are everywhere in systems. There are tradeaaffsng performance, energy, power,
endurance, cost, and capacity in storage systems. We show examples to help illustrate the
topics.

In terms of the trade-offs between performance and cap#eitys take the personal computer
for example. Suppose the budget to buy a personal compudiegds If one wants to have high 1/0O
throughput, then the SSD is a good option. However, the géocapacity is going to be smaller
compared with buying an HDD. The reason is that SSD is moreresipe per gigabyte.

In terms of the trade-offs between performance and powerirdaresting example is DVFS [156].
In a CPU-bound system, if the CPU frequency is higher, the @Etfbrmance will be higher. A
better CPU performance can largely lead to higher storage¢fnput. However, since the CPU is
now running at a faster frequency, it consumes more poweniteen it runs at a lower frequency.

In terms of the trade-offs between the energy saving and iderance concern [47], let us
take the HDD for example. Spinning down the HDD reduces tlreggnconsumption, but it can
wear-out the HDD more since the HDD can only endure a limitethiner of start-stop cycles.

In terms of the trade-offs between endurance and perforejdetcus take ECC for example.
Once a bit corrupts, the lost data can be corrected by Eawecting Code. It makes the system
more durable. However, it takes time to check the ECC andswlve the bit error. Therefore, the
overall performance of storage systems may be decreasertiaqyly.

Therefore, data management techniques have to considabjeasade-offs to fully explore the
multi-dimensions of storage systems.
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Figure 2.1: Tiering v.s. Caching hybrid justificatio®uppose we are to build 1TB drive. The
normalized capacity cost of devices are based on Freitas#yg104]. Lower purchase cost over
capacity is better. The x-axis is the total capacity over $8pacity ratio. The “Cost/Capacity”
y-axis is for the absolute caching and tiering results. TBeff” y-axis is for the difference results
of caching minus tiering.

2.2 Tiering v.s. Caching Hybrid Justification

Hybrid drive storage systems can be either based on cachtiegiag. Their ideas are very similar:
frequently accessed data goes to faster device and lessefby accessed data goes to slower
device. A tiering-based hybrid has the benefit of buildingrgér device capacity as there are no
duplicate data copies across the devices. In the thesisha@se tiering over caching because
tiering can achieve much better trade-offs among througleapacity, and purchase cost when the
device capacities in different tiers are similar and whentttal device capacity is not too large.

To further illustrate that, we came up with a hybrid justifioa as shown in Figure 2.1. As we
can see from the figure, the tiering-based architectureesaehibetter purchase cost over capacity
metrics compared with caching based approach. The lowenthkecapacity over SSD capacity
ratio is, the larger the purchase cost over capacity difieegs. More specifically, when the SSD
capacity is half the total capacity, tiering based architecreduces the purchase cost over capacity
by as much as 51.2 dollars per TB (i.e., 5%). Since our de\apadities in different tiers are not
largely different, tiering based architecture is a betfgram for us.

In fact, the research scope of tiering v.s. caching systemkigo beyond our above discus-
sion. To provide even more interesting results, we presendesign and implementation of our
caching system, together with the evaluation results inp@ha8. For the sake of this dissertation,
we provide the hybrid justification in this section to illtetie why we choose a versatile tiering
hybrid system over a caching system under our experimeanp getstudy the trade-offs among
performance, energy, and endurance.



2.3 Endurance Study

We learned about the endurance topic in storage systemsgthitbe survey of many published
papers (i.e., up to 40). We summarize them below. Note thatwvauk is focusing on device
(hardware) endurance, instead of data reliability thatedép not only on the hardware endurance,
but also depends on software techniques (e.g., data copgrasdre coding).

2.3.1 Summary

Endurance is one fundamental issue of the IT infrastructditeere are several types of system
failures: software failures, hardware failures, netwaikufres, failures due to operator error, and
failures due to environmental problems (e.g., power o§@g]). Failure happens in almost any
subcomponent of the computing and storage systems, antlyusappens more often than what
the hardware manufacturer specified. For example, theraiwees in processors [26,113,116],
memory and drives [7, 21, 32,45,54,61, 63, 66,82, 90, 102,115, 117, 125, 148], and even the
physical interconnects and protocol stacks [63].

The endurance issue will become even more significant whersyhtem scales. When the
system scales, the system becomes more complex and moegahiinto failures. Therefore, it is
interesting to gain more knowledge on the endurance issue.

2.3.2 Hardware Failure Factors

One of the main reasons for the hardware failures is the agffiegt. Once the device is getting
old, it is more likely that an failure will happen.

For CPUs, temperature is one factor that greatly influenoe<hip lifetime [26]. Therefore,
CPU power management techniques is explored to control Big¢ @perating temperature to in-
crease the chip’s lifetime. For DRAMSs, the utilization, tead of the temperature, affects the
DRAM errors more [117]. Thus, ECC is used to correct the sofire, and hardware replacement
is adopted once there are hard errors. For HDDs, several$aaffect their lifetime, including sec-
tor error, reallocation count, off-line reallocation coue count of suspected “on-probation” bad
sectors, number of power up-down cycles, vibration, et@[1&CC and recovery techniques are
generally utilized to cope with the errors. For Flash-baS8®s, they suffer from the endurance
problem because Flash device requires one block erasuratiomebefore the block can be written.
There are different levels of failure modes [66, 84, 97].diure mode |, the ECC can successfully
correct the device bit errors. It happens when the deviceti€rased beyond the specified maxi-
mum value. In failure mode I, the bit errors rate goes beybiedECC'’s correction capability, but
the device is still within the retention period. This can pap when the device is erased beyond the
specified maximum value. In failure mode lll, even the degoes beyond the retention period.
In our thesis, we examine the SSD endurance to be withinréaiuode I. There are three levels
of techniques explored to overcome the chip endurancess#uaehe circuit board level, solutions
such as ECC have been widely implemented. At the system dlevginoduct level, additional en-
durance features are being incorporated, including waaatihg, DRAM cache regimes and RAID
scrubbing techniques. At the data center level, there aMzae and software utilities to allow
Flash to function reliably with remote data replicas.



Studies [113,115] also show that the time between failuresiadividual node, as well as at
an entire system, is fit well by a gamma [142] or Weibull [14B&}tdbution with decreasing hazard
rate, instead of previously assumed exponential distabhutMoreover, mean repair times vary
widely across systems, ranging from 1 hour to more than ogedigending on the size of the
system.

2.3.3 Models

Endurance and reliability models of different computer poments are worth exploring for several
reasons. First, it can take a long time to observe devicar&sl Therefore, with such models,
researchers can estimate the devices’ health status. g¢hermodels can be further used to eval-
uate the trade-offs between performance and cost efficiehlogre are many such models being
explored. For example, several models [54, 90, 125] reggrthie disk endurance have been dis-
cussed over the years. They look into the disk Self-MomprAnalysis and Reporting Technology
(S.M.A.R.T.), and explore with either Bayesian based aggmoor machine learning based algo-
rithm, or combination of Bayesian and Markov models. Theaesis that the estimation accuracy
is not very high. There is also one work [45] arguing that MTTB not a good reliability metric
for storage system reliability, and proposing a new metaited NOrmalized Magnitude of Data
Loss (NOMDL) to better evaluate the storage system reltgbNetapp recently released an online
tool [106] to calculate the reliability of RAID6. Regardirige SSD endurance model, study on
SSD endurance normally refers to the amount of data thateavritten to an SSD during its life-
time [74]. There is one study [131] exploring hardware-#ipeendurance model for SSD. While
it is useful in some cases, it requires hardware paramegags {oltage, density, etc.) to estimate
the endurance through simulation, and can be inconveroenisier-level endurance estimation in
reality.

Although it is true that the models can be useful, it is als® tthat the model validation is
a difficult process. On one hand, it takes a long time to algtwarify the devices’ status. On
the other hand, there can be other factors that affect thieelemdurance, other than the factors
explored in the models. Therefore, research exploring snctels needs to be expanded and
examined carefully.



Chapter 3

Lessons Learned

We now provide a brief overview of our past work that led udi®topics introduced in Chapter 1.

Having them all together, we touched the surface of the essamout power, performance, energy,
and endurance, and eventually came up with the work to shalyrade-offs among performance,
energy, and endurance of hybrid drive storage system. Wtadaling these past efforts can also
help understand the evaluation analysis in Chapters 6, an,9.

3.1 Elements of Past Study

3.1.1 Power: Power Consumption in Enterprise-Scale Backu@torage Sys-
tems

Power consumption has become an important factor in moderage system design. Power
efficiency is particularly beneficial in disk-based backygtems that store mostly cold data, have
significant idle periods, and must compete with the openatioosts of tape-based backup. There
are no prior published studies on power consumption in tlsgstems, leaving researchers and
practitioners to rely on existing assumptions. In this wawk present the first analysis of power
consumption in real-world, enterprise, disk-based backtopge systems. We uncovered several
important observations, including some that challengeveotional wisdom. We discuss their
impact on future power-efficient designs. We present thaildetf this study in Chapter 4.

3.1.2 Energy and Performance: On the Energy Consumption andPerfor-
mance of Systems Software

Models of energy consumption and performance are necessarnderstand and identify system
behavior, prior to designing advanced controls that caartza out performance and energy use.
This work considers the energy consumption and performafservers running a relatively simple
file-compression workload. We found that standard techesdor system identification do not
produce acceptable models of energy consumption and peafare, due to the intricate interplay
between the discrete nature of software and the continuatusanof energy and performance. This
motivated us to perform a detailed empirical study of thergmeonsumption and performance
of this system with varying compression algorithms and casgion levels, file types, persistent



storage media, CPU DVFS levels, and disk I/O schedulers. r@sults identify and illustrate
factors that complicate the system’s energy consumptidrpanformance, including nonlinearity,
instability, and multi-dimensionality. Our results prdei a basis for future work on modeling
energy consumption and performance to support principésiga of controllable energy-aware
systems. We present the details of this study in Chapter 5.

3.2 Put Together

3.2.1 GreenDM: A Versatile Tiering Hybrid Drive for the Trad e-Off Evalu-
ation of Performance, Energy, and Endurance

Putting all the lessons we learned together—not only thikdraond knowledge but also the previ-
ous work, we now present our core thesis work.

There are trade-offs among performance, energy, and dewderance for storage systems.
Designs optimized for one dimension or workload often suff@nother. Therefore, it is important
to study the trade-offs and adapt the system to workloadsliffesent types of drives have different
traits, hybrid drives are studied more closely. Howevesyjmus hybrids are often designed for high
throughput, efficient energy consumption, or improvingwatdce—Ileaving empirical study on the
trade-offs being unexplored. Past endurance studiesad&al concrete model and metric to help
study the trade-offs. Lastly, previous designs are oftaetan inflexible policies that cannot adapt
easily to changing conditions.

We build GreenDM a versatile hybrid drive that combines Flash-based SSBstvaditional
HDDs, and present our endurance model, to study the abale tffs. GreenDM presents a block
interface and requires no modifications to existing sofewaBreenDM migrates hot data to the
faster SSD and cold data to the slower HDD. GreenDM offersiilen parameters to adapt the
system to many workloads. We have designed, developed,aatulty evaluated GreenDM with
a variety of workloads using commodity SSD and HDD drives. d€enonstrated the importance
of versatility to adapt to various workloads. We presentdétils of this study in Chapter 6.

3.2.2 Cost Evaluation

Modern storage systems are becoming more complex, edgdoiaombining different storage
technologies with vastly different behaviors. Performeanc throughput alone is not enough to
characterize storage systems: energy efficiency, dumglsihd more are becoming equally impor-
tant. We posit that one must evaluate storage systems froatlar dost perspective as well as
performance. We also believe that the cost should condiderndrkloads in use over the expected
lifetime of the storage systems. We designed and developerbatile hybrid storage system under
Linux that combines HDD and SSD. Our system includes manglilenparameters to be able to
trade-off performance, energy use, and durability. Wetlautost model and evaluated our system
under a variety of workloads and parameters, to illustdageitnportance of cost evaluations of
storage systems. We provide the details of this study in @hap



3.2.3 Caching Follow-Up

Our environment setup is not optimal for a caching systernfdota tiering system, since caching
is often deployed in fairly large storage systems. Howewerchose to develop and evaluate such
a caching system as well-and compare it with the tiering utide same hardware and software
setup—so we can provide fair evaluations of both technigueler identical conditions.

Tiering and caching based hybrid approaches share seesigindtraits with each other (e.qg.,
similar data management policies). But, they are not theesapproaches. There are existing
studies [24,52] exploring the pros and cons of the tierimy@aching based approaches. However,
there is no current work that builds the two realistic systevith similar strategies, and empirically
evaluates the two systems from the cost perspective undesatime environment, when SSDs are
deployed. We present the details of this study in Chapter 8.

3.2.4 Capacity Ratio Follow-Up

The capacity ratio of SSD over total capacity matters fortoebrid drive in terms of throughput,
energy and power, device endurance reduction, and dolir ¢oitially, we explored using /4

as the capacity ratio of SSD over total capacity. We then elgdored1 /8 as the capacity ratio
of SSD over total capacity. We reran all experiments andyaedl the results. We present these
results in Chapter 9.

3.3 Conclusion

We discussed important lessons learned from past studgesciion 3 and showed how we came up
with the trade-offs study, the cost study, the caching f@lligp work, and the capacity ratio impact

work. Next, we are going to explore the details of the powesconption study in enterprise-scale
backup storage systems in Chapter 4.

10



Chapter 4

Power Consumption in Enterprise-Scale
Backup Storage Systems

Power has become an important design consideration for matderage systems as data centers
now account for close to 1.5% of the world’s total energy eongtion [71], with studies showing
that up to 40% of that power comes from storage [118]. Poweswmption is particularly impor-
tant for disk-based backup systems because: (1) they cdatge amounts of data, often storing
several copies of data in higher storage tiers; (2) mostetitita is cold, as backups are generally
only accessed when there is a failure in a higher storage(8gbackup workloads are periodic,
often leaving long idle periods that lend themselves to lower modes [135, 152]; and (4) they
must compete with the operational costs of low power, tegmed backup systems.

Even though there has been a significant amount of work toawgopower consumption in
backup or archival storage systems [24,101,122], as wall@smary storage systems [5,139,153],
there are no previously published studies of how these mgst®nsume power in the real world.
As a result, power management in backup storage systemseis lbdsed on assumptions and
commonly held beliefs that may not hold true in practice. Erample, prior power calcula-
tions have assumed that the only power needed for a driveodun the vendor’s specification
sheet [24,122,144]. However, an infrastructure, inclgdfBAs, enclosures, and fans, is required
to support these drives; these draw a non-trivial amounbwfgp, which grows proportionally with
the number of drives in the system.

In this chapter, we present the first study of power conswmpti real-world, large-scale, en-
terprise, disk-based backup storage systems. We measistetns representing several different
generations of production hardware using various backuglaads and power management tech-
niques. Some of our key observations include consideraiepconsumption variations across
seemingly similar platforms, disk enclosures that reqmuoge power than the drives they house,
and the need for many disks to be in a low-power mode beforefignt power can be saved. We
discuss the impact of our observations and hope they caro#diiee storage industry and research
communities in future development of power managementigolgies.

The remainder of the chapter is structured as follows. 8ectil discusses related power
management and analysis work. Section 4.2 describes ttensyseasured and our experimental
setup. Section 4.3 presents the results of our analysis disg@ssion of our key observations. We
then conclude in Section 4.4.
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4.1 Related Work

Empirical power consumption studies have guided the designany systems outside of stor-
age. Mobile phones and laptop power designs, which are leotitere to battery lifetime, were
influenced by several studies [19, 81, 108, 110]. In dataecenstudies have focused on measur-
ing CPU [89, 109], OS [12, 13, 46], and infrastructure powarsumption [9] to give an overview
of where power is going and the impact various techniqueg,hsarch as dynamic voltage and
frequency scaling (DVFS). Recently, Sehgal et al. [119]snead how various file system config-
urations impact power consumption.

Existing storage system power management has largelyddaus managing disk power con-
sumption. Much of this existing work assumes that as stosygéems scale their capacity—
particularly backup and archival systems—the number déstigill increase to the point where
disks are the dominant power consumers. As a result, mastiaus try to keep as many drives
powered-off as possible, spun-down, or spun at a lower RRiviekample, archival systems like
MAID [24] and Pergamum [122] use data placement, scrublang,recovery techniques that en-
able many of the drives in the system to be in a low-power m8dwilarly, PARAID [139] allows
transitioning between several different RAID layouts tad-off energy, performance, and relia-
bility. Hibernator [153] allows drives in a RAID array to oge at various RPMs, reducing power
consumption while limiting the impact to performance. Wrdff-Loading [91] redirects writes
from low-power disks to available storage elsewhere, atigwlisks to stay in a low-power mode
longer.

Our goal is to provide power consumption measurements freahrworld, enterprise-scale
backup systems, to help guide designs of power-manageabstsystems.

4.2 Methodology

We measured several real-world, enterprise-class badkugge systems. Each used a Network-
Attached-Storage (NAS) architecture with a storage cdietroonnected to multiple, external disk
drive enclosures. Figure 4.1 shows the basic system actlniee Each storage controller exports to
file-based interfaces to clients, such as NFS and CIFS—arldipebased interfaces, such as VTL
and those of backup software (e.g., Symantec’s OST [96p)h Etorage controller performs inline
data deduplication; typically these systems contain mdP&/<and memory than other storage
systems to perform chunking and to maintain a chunk index.

Client 1 \

Client 2 Backup Streams>

/

Figure 4.1: Backup system architecture

Disk Enclosure
Storage

Backup Controller

Client N
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DD880| DD670| DD860| DD990
Ship Year| 2009 | 2010 | 2011 | 2012
Intel CPU| X7350| E5504| E5504 | E7-4870
# CPUs 2 1 2 4
RAM 64GB | 16GB | 72GB | 256GB
NVRAM | 2GB | 1GB | 1GB 4GB

# Disks 4 7 4 4
#Pow Sup 2 2 2 4
# Fans 8 8 8 8
# NICs 1 1 1 2
# HBAsS 3 1 3 4

Table 4.1: Controller hardware summary

Table 4.1 details the four different EMC controllers that measured. Each controller was
shipped or will be shipped in a different year and represkatdware upgrades over time. Each
controller, except for DD670, stores all backup data onsliskexternal enclosures, and the four
disks (three active plus a spare) in the controller storg sydtem and configuration data. DD670
is a low-end, low-cost system that stores both user andreydéta in its seven disks (six active
plus one spare). Each controller ran the same softwareoveo$ithe DDOS operating system.

Table 4.2 shows the two different enclosures that we medsutach enclosure can support
various capacity SATA drives. Based on vendor specificatithre drives we used have power usage
of about 6-8W idle, 8—12W active, and less than 1W when smwnd Controllers communicate
with the enclosures via Serial Attached SCSI (SAS). Largtesy configurations can support more
than fifty enclosures attached to a single controller, whenrmhost more than a petabyte of physical
capacity and tens of petabytes of logical, deduplicated@ap

ES20{ ES30
Ship Year 2006| 2011
# Disks 16 | 15

# SAS Controllers 2 2
# Power Supplies 2 2
# Fans 2 4

Table 4.2: Enclosure hardware summary

Experimental setup We measured controller power consumption using a Fluke 8d&PQual-
ity Clamp Meter [39], an in-line meter that measures the posaw of a device. The meter
provides readings with an error @f2.5%. We measured enclosure power consumption using a
WattsUP Pro ES [136], another in-line meter, with an acouddct-1.5% for measured value plus
a constant error of0.3 watt-hours. All measurements were done within a data cem&ronment
with room temperature held betwe@&n°F and72 °F.

We connected the controllers and enclosures to the meteasagely, to measure their power.
Thus we present component’s measurement separatelyy thtre as an entire system (e.g., a
controller attached to several enclosures). The metersse@ allowed us to measure only entire
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device power consumption, not individual components (egch CPU or HBA) or data-center
factors (e.g., cooling or network infrastructure). We prasall measurements in watts and all
results are an average of several readings with standaratides less than 5%.

Benchmarks For each controller and enclosure, we measured the powsungtion when idle
and when under several backup workloads. Each workload tasr@ard, reproducible workload
used internally to test system performance and functigndlhe workloads consist of two clients
connecting over a 10 GigE network to a controller writing 3@&kup streams. Each backup stream
is periodic in nature, where a full backup image is copiedhi® ¢ontroller, followed by several
incremental backups, followed by another full backup, ama@s. For each workload we rar2

full backup generations. The workloads are designed to omihuse seen in the field for various
backup protocols.

WL-A |WL-B | WL-C
Protocol| NFS | OST [BOOST
Chunking| Server| Server| Client

Table 4.3: Backup workloads used

We used the three backup protocols shown in Table 4.3. Glsarid backup streams over NFS
in WL-A, and over Symantec’s OST in WL-B. In both cases, alllggication is performed on
the server. WL-C uses, BOOST [28], an EMC backup client tleaftgoms stream chunking on
the client side and sends only unique chunks to the senaducieg network and server load. To
measure the power consumption of a fully utilized disk ssb=y, we used an internal tool that
saturates each disk.

4.3 Discussion

We present our analysis for a variety of configurations ieehparts: isolated controller measure-
ments, isolated enclosure measurements, and whole-sgstEgsis using controller and enclosure
measurements.

4.3.1 Controller Measurements

We measured storage controller power consumption undee ttifferent scenarios: idle, loaded,
and power managed using processor-specific power-saatesst

Controller idle power A storage controller is considered idle when it is fully poae on, but
is not handling a backup or restore workload. In our expenisieeach controller was running
a full, freshly installed, DDOS software stack, which inbbd several small background daemon
processes. However, as no user data was placed on the syBtakground jobs such as garbage
collection, were not run. Idle power consumption indicatessminimum amount of power a non-
power-managed controller would consume when sitting irdtta center.

It is commonly assumed that disks are the main contribut@oteer in a storage system. As
shown in Table 4.4, the controllers can also consume a largmiat of power. In the case of
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DD880| DD670| DD860| DD990
Idle Power (W) 555 225 261 778

Table 4.4: Idle power consumptions for storage controllers

DD990, the power consumption is almost equal to that of 10B @flives [58]. This is signif-
icant because even a controller with no usable disk storageconsume a lot of power. Yet,
the performance of the controller is critical to maintaighhideduplication ratios, and necessary
to support petabytes of storage—requiring multiple fasty€Rnd lots of RAM. These high idle
power-consumption levels are well known [72]. Although gurter component vendors have been
reducing power consumption in newer systems, there is al@ygo go to support true power pro-
portionality in computing systems; therefore, currenéidbntroller power levels must be factored
into future designs.

| @ Observation 1: The idle controller power consumption is still significant. \

Table 4.4 shows a large difference in power consumption é&twcontrollers. DD990 con-
sumes almost 3:6 more power than DD670. Here, difference is largely due tddifferent hard-
ware profiles. DD990 is a more powerful, high-end controlléh significantly more CPU and
memory, whereas DD670 is a low-end model. However, this ighmcase for the power differ-
ences between DD880 and DD860. DD880 consumes more tham tinegower as DD860, yet
Table 4.1 shows that their hardware profiles are fairly imilfhe amount of CPU and memory
plays a major role in power consumption; however, othermifacsuch as the power efficiency of
individual components also contribute. Unfortunatelyy measurement methodology prevented
us from identifying the internal components that contrébtd this difference. However, part of
this difference can be attributed to DD860 being a newer maite hardware components that
consume less power than older models.

To better compare controller power consumption, we noedlithe power consumption num-
bers in Table 4.4 to the maximum usable physical storagectgpdhe maximum capacities for
the DD880, DD670, DD860, and DD990 are 192TB, 76TB, 192TR] ah52TB, respectively.
This gives normalized power consumption values of 2.89WGrE> D880, 2.96W/TB for DD670,
1.35W/TB for DD860, and 0.675W/TB for DD990. Although thermalized values are roughly
the same for DD880 and DD670, the watts consumed per raw teytdd down with newer gener-
ation platforms.

W Observation 2: Whereas idle controller power consumption varies betweedats, normal
ized watts per byte goes down with newer generations.

Controller under load We measured the power consumption of each controller winileing the
aforementioned workloads. Each controller ran the DDFSudkchting file system [152] and all
required software services. Services such as replicateya disabled. The power consumed under
load approximates the power typically seen for controliergase in a data center. The workloads
used are performance-qualification tests that are designedmic real customer workloads, but
do not guarantee that the controllers are stressed mayimall

Figure 4.2(a) shows the power consumed by DD990 while rgnthie WL-A workload. The
maximum power consumed during the run was 937W, which is 2@ffeein than the idle power
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Figure 4.2: Power consumption and I/O statistics for WL-ARID990. There are 5 ES30 enclo-
sures attached to it.

consumption. Since the power only increased 20% when upnddr It may be more beneficial to
improve idle consumption before trying to improve activadar load) consumption.

DD880| DD670| DD860| DD990
WL-A| 44% | 24% | 58% | 20%
WL-B| 58% | 29% | 61% | 36%
WL-C| 56% | 28% | 57% | 23%

Table 4.5: Power increase ratios from idle to loaded system

Table 4.5 shows the power increase percents from idle tetbadross controller and workload
combinations. Several combinations have an increase ®ttes 30%, while others exceed 50%.
Unfortunately, our methodology did not allow us to identifiaich internal components caused the
increase. One noticeable trend is that the increase in peweostly due to the controller model
rather than the workload, as DD880 and DD860 always incteas®ae than DD670 and DD990.

Bl Observation 3: The increase in controller power consumption under loadesamuch across
models.

I/O statistics from the disk sub-system help explain thedases in controller power consump-
tion. Figure 4.2(b) shows the number of blocks per second esal written to the enclosures
attached to DD990 during WL-A. We see that a higher rate df iS activity generally corre-
sponds to higher power consumption in both the controller disk enclosures. Whereas 1/0s
require the controller to wait on the disk sub-system, tHeg ancrease memory copying activity,
communication with the sub-system, and deduplication fimget hashing.
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Power-managed controller Our backup systems perform in-line, chunk-based dedupita
requiring significant CPU and RAM amounts to compute and mearwshes. As the data path
is highly CPU-intensive, applying DVFS techniques duriragkup—a common way to manage
CPU power consumption—can degrade performance. Althaughdifficult to throttle CPU dur-
ing a backup, the backup processes are usually separatadgeyidle periods, which provide an
opportunity to exploit DVFS an other power-saving techeisju

Intel has introduced a small set of CPU power-saving statbgh represent a range of CPU
states from fully active to mostly powered-off. For examme the Corei7, C1 uses clock-gating
to reduce processor activity, C3 powers down L2 caches, @&&hGts off the core’s power supply
entirely [124]. To evaluate the efficacy of the Intel C staiasan idle controller, we measured the
power savings of the deepest C state. Unfortunately, DD%0the only model that supported the
Intel C states. We used a modified versiorceUIDLE to place DD990 into the C6 state [75]. In
this state, DD990 saved just 60W, a mere 8% of total contrplbever consumption. This finding
suggests that DVFS alone is insufficient for saving powernintllers with today’s CPUs and a
great deal of RAM. Moreover, deeper C states incur highenat penalties and slow controller
performance. We found that the latencies made the contraftaally unusable when in the deepest
C state.
W Observation 4: Placing today’s Intel CPUs into deep C state saves only a lsambunt of
power and significantly harms controller performance.

4.3.2 Enclosure Measurements

We now analyze the power consumption of two generations sk enclosures. Similar to Sec-
tion 4.3.1, we analyzed the power consumption of the encésswhen idle, under load, and using
power-saving techniques.

Enclosure idle power An enclosure is idle when it is powered on and has no workloading.
The idle power consumption of an enclosure represents Weskcamount of power a single enclo-
sure and the housed disks consume without power-managsopgmrt. Figure 4.3 shows that an
idle ES20 consumes 278W. The number of active enclosurebighacapacity system can exceed
50, so the total power consumption of the disk enclosureseatan exceed 13kW.

We found that the enclosures have very different power g®filThe idle ES20 consumes
278W, which is 55% higher than the idle ES30, at 179W. We beltbat newer hardware largely
accounts for this difference. For example, it is well knowattpower supplies are not 100%
efficient. Modern power supplies often place guaranteedfaiemcy. One standard [1] provides
an 80% efficiency guarantee, which means the efficiency witen go below 80% (e.g., for every
10W drawn from the wall, at least 8W is usable by componern&ched to the power supply).
The ES30 has newly designed power supplies, temperatgestban speeds, and a newer internal
controller, which contribute to this difference.

W Observation 5: The idle power consumption varies greatly across enclaswiéh new ones
being more power efficient.
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Figure 4.3: Disk power down vs. spin down. ES20 and ES30 aeifsgd as in Table 4.2.

Enclosure under load We also measured the power consumption of each enclosues threl
workloads discussed in Section 4.2. We considered an amelesder load when it was actively
handling an I/O workload.

As shown in Figure 4.2(a), the total power consumption offileeES30 enclosures connected
to DD990, processing WL-A, increased by 10% from 900W whéa id about 1kW. Not surpris-
ingly, Figure 4.2(b) shows that an increase in enclosuregp@arrelates with an increase in 1/O
traffic. Percentages for the other enclosure and workloathamations ranged from 6—22%.

Our deduplicating file system greatly reduces the amount@traffic seen by the disk sub-
system. As described in Section 4.2, we used an internaldeokasure the power consumption of
a fully utilized disk sub-system. Table 4.6 shows that ES#fsamption grew by 22% from 278W
when idle to 340W. ES30 increased 15% from 179W idle to 205\éréstingly, these increases
are much smaller than those observed for the controllererdndd in Section 4.3.1.

W Observation 6: The consumption of the enclosures increases between 15%2&adinder
heavy load.

Power managed enclosure We compared the power consumption of ES20 and ES30 using two
disk power-saving techniques: power-down and spin-dowith ¥pin-down, the disk is powered
on, but the head is parked and the motor is stopped. With pdesen, the enclosure’s disk slot is
powered off, cutting off all drive power.

As shown in Figure 4.3, the relative power savings of the EBRDES30 are quite different. For
ES30, spin-down reduced power consumption by 55% from 17®B0W. For ES20, the power
dropped by 37% from 278W to 176W. Although the absolute sjawn savings was roughly 100W
for both enclosures, power-down was much more effectivéeE®B0 than ES20. Power-down for
ES30 reduced power consumption by 78%, but only 44% for EB20nentioned in Section 4.2,
each disk consumes less than 1W when spun-down. HowevdrptbrES20 and ES30, power-
down saved more than 1W per disk compared to spin-down.

18



ES20| ES30
Idle Power (W)| 278 | 179
Max Power (W) 340 | 205

Table 4.6: Max power for enclosures ES20 and ES30

B Observation 7: Disk power-down may be more effective than disk spin-dowhdth ES2(
and ES30.

Looking closer at the ES20 power savings, the enclosuraligitonsumes more power than
the disks it is housing (an improvement opportunity for esare manufactures). With all disks
powered down, ES20 consumes 155W, which is more than the E28¥@d by powering down the
disks (consistent with disk vendor specs).

W Observation 8: Disk enclosures may consume more power than the drives theseh As a

result, effective power management of the storage sulmsysigy require more than just disk-
based power-management.

We observed that an idle ES30 enclosure consumes 64% of efe®20, while a ES30 in
power-down mode consumes only 25% of the power of an ES20viepdown mode. This sug-
gests that newer hardware’s idle and especially power-geahenodes are getting better.

4.3.3 System-Level Measurements

A common metric for evaluating a power management technigjilee percentage of total sys-
tem power that is saved. We measured the amount of powergsafon different controller and
enclosure combinations using spin-down and power-dowmigaes. We considered system con-
figurations with an idle controller and 32 idle enclosurebi@h totals 512 disks for ES20 and 480
disks for ES30) and we varied the number of enclosures thet dlatheir disks power managed.
We excluded DD670 because it supports only up to 4 extermdvas.

Figure 4.4 shows the percentage of total system power saviéie anumber of enclosures with
power-managed disks was increased. In Figure 4.4(a) disks spun down, while in Figure 4.4(b)
disks were powered down. We found that it took a considenabieber of power-managed disks
to yield a significant system power savings. In the best cage®MD860 and ES30, 13 of the 32
enclosures must have their disks spun down to achieve a 208 @avings. In other words, over
40% of the disks must be spun down to save 20% of the total pdwtre worse case with DD990
and ES20, 19 of the 32 enclosures must have their disks spumtdcachieve a 20% savings. This
scenario required almost 60% of the disks to be spun downve2a6 of the power. Only two of
our six configurations were able to achieve more than 50%gaweven when all disks were spun
down. These numbers were improved when power down is useéd, latge number of disks was
still needed to achieve significant savings.

B Observation 9: To save a significant amount of power, many drives must be aavgobwer
mode.

The limited power savings is due in part to the controllensstoning a large amount of power.
As seen in Section 4.3.1, a single controller may consumeuah mower as 100 disks. Addition-
ally, as shown in Section 4.3.2, disk enclosures can consoione power than all of the drives they
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house, and the number of enclosures must scale with the murhbleives in the system. These

observations indicate that for some systems, even aggeatisk power management may be insuf-
ficient to save enough power and that power must be savedresew the system (e.g., reducing
controller and enclosure power consumption, new eleatsym®itc.).

4.4 Conclusions

We presented the first study of power consumption in realdytarge-scale, enterprise, disk-based
backup storage systems. Although we investigated only dfbbof systems, we already uncovered
a three interesting observations that may impact the desifyiure power-efficient backup storage
systems.

(1) We found that components other than disks consume disigmtiamount of power, even at
large scales. We observed that both storage controllers@eidsures can consume large amounts
of power. For example, DD990 consumes more power than 100d2ivBs and ES20 consumes
more power than the drives it houses. As a result, future pefiieient designs should look beyond
disks to target controllers and enclosures as well.

(2) We found a large difference between idle and active pa@eesumption across models. For
some models, active power consumption is only 20% higher itila, while it is up to 60% higher
for others. This observation indicates that existing systare not achieving energy proportional-
ity [3,9,48,128, 132], which states that systems shouldgore power proportional to the amount
of work performed. For some systems, we found a dispropmtesamount of power used while
idle. As backups often run on particular schedules, theseesys may spend a lot of time idle,
opening up opportunities to further reduce power consumpti

(3) We discovered large power consumption differences éetwsimilar hardware. Despite
having similar hardware specifications, we observed treabttler DD880 model consumed twice
as much idle power as the newer DD860 model. We also saw thateaiES20 consumed 55%
more power than an idle ES30. This suggests that the powélepob an existing system can be
improved by retiring old hardware with newer, more efficieatdware. We hope to see continuing
improvements from manufacturers of electronics and coerparts.

We have discussed the power consumption in enterprise-ba@kup storage systems. Next,
we explore in details the performance and energy consumpfieystems software in Chapter 5.
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Chapter 5

On the Energy Consumption and
Performance of Systems Software

The carbon footprint of the IT industry, though 2% of the wlogconomy, is estimated to be equal
to that of the entire aviation industry [22]. Energy constiopis emerging as a critical issue in
the design of computing systems [15, 33,51, 60, 64, 91, 154k goals of energy-aware system
design include saving energy without sacrificing perforoggrand supporting flexible, dynamic
trade-offs between energy consumption and performanceurAte models of energy consumption
and performance provide a foundation for the design of gnavgare systems.

A large portion of the energy consumed by IT infrastructsrelue to desktop machines and
commercial servers [24]. Moreover, the total amount ofteteic data stored world-wide is rising
exponentially. Thus, it is desirable to develop highly ab# solutions that are significantly better
than today'’s solutions.

In prior work, we analyzed the energy and performance psobifeserver workloads, such as
Web servers, email servers, database servers, and file essium [72, 119]. We discovered large
deviations for both performance and energy consumptionmtash as 10 times—suggesting that
there are significant opportunities to save energy and imgpperformance. Our past work con-
sidered those systems only as black-boxes and reporteg#drrmance and energy consumption
without a deeper understanding of the exact reasons foe tth@gations.

Seeking a better understanding of the system internalsesktlworkloads, we tried to iden-
tify their internal behavior, so we could build advancedtcolters to better manage both energy
and performance. Unfortunately, our initial attempts tentfy these systems using traditional
linear-systems identification techniques resulted in poodels with low prediction accuracy (un-
der 50%).

In this chapter, we shed considerable light on the compéexitnderlying systems-software en-
ergy consumption and performance. In particular, we pteseim-depth experimental evaluation
of the energy consumption and performance of a relativehpk yet familiar file-compression
workload as a representative workload involving both saisal CPU usage and disk 1/0. We
also analyze the effects of several input parameters, dimduchoice of compression algorithm,
compression level, file type, persistent storage media, (BATA, SAS, and SSD), CPU Dynamic
Voltage and Frequency Scaling (DVFS) level, and disk I/Ceslciter—all under the Linux operat-
ing system.

Our experimental results show that energy consumption antbgonance are unexpectedly
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complex and cannot be easily modeled using standard sydttification techniques. We iden-
tify several factors that contribute to this complexityténms of nonlinearity, instability, and multi-

dimensionality. Our results suggest that hybrid discoetetinuous models [2, 56] may provide a
suitable foundation for modeling and control of energy econgtion and performance in energy-
aware systems software.

The rest of the chapter is organized as follows. Section@&nsiders related work. Section 5.2
provides the requisite background. Section 5.3 providesnhtivation for this work. Section 5.4
presents our experimental setup and benchmarks. SecBarobtains our experimental results.
We conclude in Section 5.6.

5.1 Related Work

This section places our work in the context of past work.

5.1.1 Energy Efficiency

Many energy-saving techniques have been developed athmtiatdware and software levels. For
example, virtualization allows multiple Operating Syst{@Ss) to run on one server, sharing most
of the resources, thereby reducing energy consumptioneder, there are energy-aware cache re-
placement algorithms [150], energy-aware task and inpémanagement techniques [121], online
learning-based power management [31], predictive datapgng and replication [33], and energy-
aware file systems configuration pruning techniques [118mhé&modeling based approaches have
been proposed by Isci, Sarikaya, and others [62,111]. Sdroeramwn past studies show signifi-
cant energy savings possible in commodity Linux serveraingicommon workloads such as Web,
email, database, compression, etc. [72,119]. Genergtynal use of energy-saving techniques
requires accurate models of system energy consumptioneggect to appropriate parameters; the
work described in Chapter 5 is a step towards the developaieunich models.

5.1.2 Energy Consumption of Data Compression

Our prior work, conducted by Kothiyal et al., evaluated ggeronsumption and performance of
data compression on servers [72] and demonstrated thatressipn reduces energy consumption
in some situations but not all. A careful application of caegsion can save energy in some cases
by a factor of 1, but a careless application of compression can easily veastegy and slow
performance by 209. In contrast to the work described in Chapter 5, our pastystiiginot focus

on accurate modeling of energy consumption and hence didisotiss system identification or
analyze the behavioral characteristics of energy consomphd performance that make accurate
modeling difficult.

5.2 Background

In this section, we describe background work in terms of ca@sgion algorithms (Section 5.2.1),
I/O schedulers (Section 5.2.2), and power and energy caosom(Section 5.2.3).
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5.2.1 Compression Algorithms

In Linux, there are three main compression utilitigzip , bzip2 , andlzop , each of which
has compression levels ranging from level 1 to level 9. A &riglevel tries to achieve a better
compression ratio at the expense of additional CPU cycles.

Gzip [40] is based on theeFLATE algorithm, which is a combination of LZ77 and Huffman
coding. Bzip2 uses the Burrows-Wheeler transform to cdrivequently recurring character se-
guences into strings of identical letters and then appliesae-to-front transform and Huffman
coding [18]. Lzop [95] uses the LZO algorithm instead anddpices files a bit larger than Gzip’s
but with a lower CPU use. Fdzop , compression levels 1 to 6 are identical.

5.2.2 1/0O Schedulers

I/O scheduling has been studied aggressively [6, 8, 5948, dspecially since the speed of disk
lags far behind the speed of CPU and RAM.

Normally, a disk scheduler tries to maintain a balance betwairness, performance, and la-
tency (or real time guarantees). Fairness guaranteesvéat grocess has fair share of the access
to disk on a multi-user system. Performance requires thedsdar to serve requests predictably to
save both time and energy. Latency means that any requesbensisrved within a given time limit.
There are four main 1/0 schedulers in Linux systemsofQ (the default), which emphasizes fair-
ness; (2)ANTICIPATORY, which emphasizes performance; (BADLINE, which is designed for
low latency and real time access; and®)opr, which is a simple first-come-first-served scheduler.

5.2.3 Power and Energy Consumption

In this subsection, we introduce the power and energy copsampatterns for both CPU and disk,
since our workload is both CPU-intensive and disk-integsiv

The power consumed in a processor consists of three portignsimic Powerr,,,mq., Static
power P,;.:., and short-circuit power [88]. For Complementary Metal @xE5emiconductor (CM-
OS) chips, dynamic power refers to the energy consumpti@witching transistors, while static
power refers to the flowing leakage current when a transsstidf. Short-circuit power is consumed
only during signal transitions and is insignificant. The d@ymc power is calculated as follows:

denamic =(C x V2 X f (51)

whereC' is the capacitance per cyclé,is the supply voltage anflis the processor clock frequency.
Although dynamic power is the primary source of power digggn in CMOS chips [88], static
power is becoming an important issue. Static power is coatpas follows:

Pstatic =V x Ith + ‘/bs X (Ijn + Ibn) (52)

24



wherely, is the sub-threshold leakage curref, is the body bias voltage, and, and/,; are the
drain and source to body junction leakage current, respyti

Processors with Dynamic Voltage and Frequency Scaling @\ére capable of operating at
multiple frequency and voltage levels. Dynamic power issidered to be the dominant portion
of the processor’s energy consumption. As seen from Equétib, Py,,....c depends linearly on
frequency and quadratically on voltage. However, opegadira lower voltage and frequency does
not necessarily result in overall energy savings, as weadeeih Section 5.5.3. The main reason is
that when running at a lower frequency, it usually takes &g accomplish the same work, which
can increase the total energy consumption.

The power consumed by a Hard Disk Drive (HDD) follows theduling equation:

Pdisk - Pspin + Phead (53)

whereFP;,;,, refers to the energy consumed by the spinning platter,/apg refers to the energy
consumption incurred by the movement of the disk head.

5.3 Motivation

Section 5.3.1 gives some background on system identifitats@ction 5.3.2 describes the prob-
lems we encountered when we tried to apply system identdicéchniques to model the energy
consumption of our workload.

5.3.1 System ldentification

CPU Frequency

Y

Energy
Compression Algorithm

Y

Y

Plant

Compression Level Performance

(Compressor)

Y
\j

File Type

Y

Figure 5.1: Plant: Compressor

System identification is the first step of control enginegthmat uses statistical methods to build
models from observed behavior.

As shown in Figure 5.1, our system has four inputs: compoesdgorithm, compression level,
file type, and CPU frequency. Our system has two outputs:ggreand performance. Applying
off-the-shelf technology for system identification, sushMATLAB’s system identification tool-
box [80] has considerable appeal, since one needs to kngviteinputs and outputs. It does not
require a detailed understanding of the system’s beha@ijoapplying statistical techniques to data
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collected from the target system, system identificatiognaftts to construct a mathematical model
of the relationships between inputs and outputs.

A typical workflow for system identification follows theseuiosteps: (1) Specify the model
in the form of inputs and outputs, and design experimentoliea data; (2) Apply the system
identification algorithm to estimate the values of the cogffits of the model; (3) Verify the accu-
racy of the resulting model by evaluating it against addéioneasured data; (4) Decide whether
the model is acceptable. If the prediction accuracy is uggptably low, one or more steps in the
workflow need to be revisited.

In our experiments, we used a traditional linear state-spaadel of the following form:

z(n+1) = Az(n) + Bu(n) + Kw(n) (5.4a)
y(n) = Cx(n) + Du(n) + w(n) (5.4b)

wherew(n) are the inputsy(n) are the outputsg(n) the internal states of the plant, andn)

is a white Gaussian noise representing uncontrollabletgngod output measurement errors (e.g.,
errors introduced by the default system daemons) at timéhe parameter(n + 1) denotes the
next internal states of the plant. MatricésB, C', D, andK denote the significance or weight that
each element in the input, output, and Gaussian noise haletenmining the next state and output
of the system.

5.3.2 Problems Encountered

Our system is a simple file compressor. System inputan be file typeZERO, TEXT, BINARY,
or RANDOM), compression level (1 to 9), compression algoritrealf, BzIP2, LZOP, or NONE
for no compression), and CPU frequency/voltage (eightiavis choices). We considered energy
consumption and performance as the outputs

The system inputs and outputs must be quantified in orderply @&ystem identification. En-
ergy is measured in Watt-hours. Performance is measurdteasumber of files compressed per
second. The CPU frequency is measured in Hertz. However difficult to choose appropriate
numerical values to represent file types, compressiondeaadd compression algorithms.

The compression level is numerical, but the level numbectisadly just a label (in other words,
a name); the numerical value has no direct significance aliaer ordering. Similarly, file types
and compression algorithms are naturally identified byrdigec non-numerical labels but must be
represented numerically to apply the system identificasitgorithm. The numbers chosen are
significant, because they must be related to the next stateswputs by Equation 5.4 for system
identification to succeed and should not impose arbitragntjtative relationships. However, we
have no a-priori way of deciding what values to use.

We tried a simple linear approach using consecutive inge¢eeg., 0 forNONE, 1 for GzIP,
2 for BzIP2 and 3 forLzoP), as well as other numbers and ordering. We also tried a inea
approach, assigning each compression algorithm a numb@sponding to its compression ratio;
but the compression ratio varies with file type and hencetsrixed value associated solely with
the compression algorithm.
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Figure 5.2: A typical example for poor accuracy. The two itg@re File Type and CPU Frequency.
Compression algorithm is fixed to be gzip along with its d&feompression level. The two outputs
are energy and performance which are normalized to be zessrm

In conclusion, labels are similar to the discrete statediofte automaton. In our case, they rep-
resent different modes of system behavior; that is, thesessmt the modes of a hybrid automaton.
Any attempt to give them a numerical meaning is doomed to fail

We prepared two data sets of the same size to identify thersysOne data set is used to
estimate the parameters of the model using least-squaresiqees; the other is used to evaluate
the quality of the model fit. Accuracy is the percentage of etdidk We applied the MATLAB'’s
system identification tool-box to learn Single-Input-Se@utput (SISO) and other system mod-
els. However, we achieved only limited accuracy, less tha & overall. A typical error graph
appears in Figure 5.2.

This was clearly insufficient as a basis to design a contrditeorder to better understand the
causes of the problem, and to find ways of splitting the nealiroehavior into segments that can be
more accurately modeled as linear systems, we decideddy #ta system’s energy consumption
and performance in more detalil.
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5.4 Methodology

This section details our experimental setup and benchmarks

5.4.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge R710 seoresisting of one quad-core
Intel® Xeon™ Nehalem CPU with a maximum frequency of 2.395GHz with dyrafriquency
and voltage scaling (DVFS) support: 7 different frequeseiea difference of 133MHz each with-
out the Turbo Mode, and 8 different frequencies at a diffeessf 1LMHZ for the top 2 frequencies
(as Linux reports) and a difference of 133MHZ for the remainv frequencies with the Turbo
Mode on. The machine has 24GB RAM, out of which we used only 2GBrce 1/O to take
place. The server has two 146GB Seagate SAS disks with 1BRNQotation speed and a 16 MB
cache, two 250GB internal Fujitsu SATA disks with 7,200 RRdhation speed and 16MB cache,
and one 80GB Intel SSD disk model SSDSA2MHO080G1C5. We raofaur benchmarks on all
of these three different kinds of disk drives. The server masing the Linux 2.6.18 kernel with
theacpi _cpufreq module installed to enable software control of the CPU fezupy.

We connected the server to a WattsUP Pro ES in-line powerrtfi6], which measures the
energy drawn by a device plugged into the meter’s receptdd¢ie power meter uses non-volatile
memory to store measurements every second. Its resolstind Watt-hours (1 Watt-hour = 3,600
Joules). The accuracy is1.5% of the measured value plus a constant errat0f3 Watt-hours. Its
resolution for power measurements is 0.1 Watts. We used/atisup Linux utility to download
the recorded data from the meter over a USB interface to Htertachine.

We conducted 216 combinations of experiments (repeatetrfies each), and collected a large
data set: 4,810,320 data points in total for a single run.nitynone complete set of benchmarks
took about 15 calendar days to complete.

To automate the measurements, we developed a tool calleeebanhch, written in Perl and
Bash, that helped us benchmark the energy and power consmuptder different scenarios while
launchingvmstat to record the number of block reads and block writes. We nredsihe total
number of block reads and writes at the whole-system lewd; daved us significant time and
effort.

5.4.2 Benchmarks

The workload for each test is to compress 20 identical filék 20 threads concurrently, and write
the compressed files to disk. Each file is 65MB. Several fadtdluence energy consumption for
data compression, as we will discuss in Section 5.5.3. lerawl fully explore these factors and
their interactions, we conducted experiments for each awatibn. Specifically, we consider the
following factors: persistent storage media (SAS disk, SAIsk, and SSD disk), I/O scheduler
(anticipatory, CFQ, deadline and NOOP), compression dlguar(gzip, bzip2, and Izop) and com-
pression level (1-9), and file type (text, binary, and randdie ran the above workload for each
combination of these factors. Between each compressieh lgg inserted some sleeping intervals,
so that each experiment for each compression level startbd same exact time. The elapsed time
for compression plus the sleeping interval was the same &ed fiuring each compression level,
in order to align the graphs for each compression level. Algench is responsible for repeatedly
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launching the experiments and recording the results nialtimes and under multiple scenarios.
Our experiments follow this pattern unless otherwise noted

We ran all the tests five times and computed the 95% confidenervals using the Student-t
distribution. The error bars shown in our graphs are theviaiths of the 95% confidence intervals.
We used version 1.3.5 gizip , version 1.0.3 obzip2 , and version v1.02rcl dzop .

The I/0 scheduler can be set per device and is easy to configuoeder to set the I/O scheduler,
we write the desired scheduler namésgs/block/ $dev/queue/scheduler and launch
the experiments after that.

We ran the tests on the specified disk drive, formatted witt3 Eile system and mounted using
the default options. To avoid caching effects, we unmoutitedile system after each test iteration
to flush the data in memory to disk. Our measurements inchiddltshing time.

5.5 Evaluation

In this section, we provide evaluation and deep analysig®energy consumption pattern of our
file-compression workload. Sections 5.5.1, 5.5.2, and5dcus on non-linearity, instability, and
multi-dimensionality, respectively.

5.5.1 Nonlinearity

For compression algorithms, a higher compression levallysmeans a better compression ratio
(CR). Table 5.1 shows the CR for all algorithms and levels.

Although it is true that a higher compression level gengratimmits fewer blocks to disk for
the same workload and hence might save energy due to redi@exttivity, the overall energy
consumption might not follow the same pattern. One possédason is that the CPU may have to
perform a lot more work in order to achieve a better CR, whadtes longer time and consumes
more energy. The actual energy consumed under certain @aatklis in fact a trade-off between
these factors. Therefore, as we can see from Figure 5.3hvgn@sents measurements faip
bzip2 , andlzop , the energy consumption is not a linear function of the casgion level.
Moreover, it is also not monotonically increasing with tr@mpression level. For example, in
Figure 5.3(b), energy consumption peaks at level 7, therpeetedly drops at levels 8 and 9.

Comparing the graphs in the left and right columns of Figuf® e also observe that the
energy consumption for the whole system depends heaviljhendtal elapsed time during the
compression period [27, 105].

As we can see from Figure 5.3(a), in the casgap , the energy consumption goes up non-
linearly and then goes down slightly as the compressiorl legesases. Figure 5.3(b) shows that
the elapsed time follows the same trend. In the caslezgi2 as shown in Figure 5.3(c), the
energy consumption is relatively stable, increasing ofighfly across all 9 compression levels,
which suggests that a balance between the CPU energy cotisarapd disk energy consumption
has been achieved. The elapsed time, shown in Figure 58(ws the same pattern. With
lzop , as shown in Figure 5.3(e), the energy consumption is thee damthe first six identical
compression levels and then increases monotonically udlinearly. This reflects that for the
last three compression levels, due to the longer elapsey tima entire system (including the disk
drive, even when it is just spinning, not reading or writing)}consuming more power at higher
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Figure 5.3: An example combined graph for illustrating mogdrity. Experiments compressing
text files using the highest CPU frequency, SAS disks, an€#@ 1/0O scheduler. In 5.3(a), the x
axis denotes the compression level and the y axis denotdshdats (equals to 3,600 Joules). In
5.3(b), the unit for Elapsed Time is seconds. This representis kept the same for 5.3(c), 5.3(d),

5.3(e), and 5.3(f).
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the elapsed time strictly follows the same pattern.

In summary, it is clear that the energy consumption and ethfime relate non-linearly and in
some cases non-monotonically with the compression lev@is€quently, controlling the system’s
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energy usage by adjusting the compression level is complex.
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File Type
Text | Binary | Rand
gz-1 |3.61 2.14 | 1.00
gz-2 |3.77| 2.18 | 1.00
gz-3 |3.90] 2.21 | 1.00
gz-4 |4.18| 2.26 | 1.00
gz-5 |4.35/ 2.30 | 1.00
gz-6 |4.43| 2.32 | 1.00
gz-7 |4.45 2.33 | 1.00
gz-8 |4.46| 2.33 | 1.00
gz-9 |4.46| 2.33 | 1.00
bz-1 [4.72] 2.38 | 0.99
bz-2 [5.02] 2.45 | 0.99
bz-3 |5.18] 2.53 | 0.99
bz-4 |5.28] 2.57 | 0.99
bz-5 |5.36] 2.60 | 0.99
bz-6 |5.40| 2.64 | 0.99
bz-7 |5.44] 2.65 | 1.00
bz-8 [5.49| 2.67 | 1.00
bz-9 [5.50] 2.69 | 1.00
lzo-(1~6) | 2.82| 1.77 | 1.00
lzo-7 |3.80| 2.15 | 1.00
lzo-8 |3.84| 2.16 | 1.00
lzo-9 |3.84| 2.17 | 1.00

Tool

Table 5.1: Compression ratios achieved by various comioressilities and levels

5.5.2 Instability

This section examines how the power consumption variesidwach run. We found that in some
cases, the power consumption response is unstable andatiegignificantly, as we can see from
Figures 5.4, 5.6, and 5.7. This should be taken into coreider when designing power-aware
systems.

Our experiments revealed that the cause of those fluctisiemin the interleavings between
disk reads and writes when the CPU frequency is maintaindteatame level. We discuss this in
more detail below.

Forgzip (Figure 5.4(a)), the power consumption response is relgtstable from level 1 to
level 7. However, it becomes unstable in levels 8 and 9. Euntre, Figure 5.4(b) reveals that the
rate at which blocks are read exhibits the same pattern loiflisgan levels 1 to 7 and fluctuation at
levels 8 and 9. Looking at Figure 5.4(b) in detail, espegiallevels 8 and level 9, it also reveals
more frequent interleavings between block reads and writeslevels 1 through 4, there are just
small fluctuations in power consumption towards the end @ttimpression job. A similar pattern
appears in the interleavings between block reads and vioitdsvels 1 to 4. Moreover, the stable
response in levels 5, 6, and 7 suggests equally distribatedeavings between the rates of block
reads and writes. We believe that when block reads and vare#terleaved beyond a certain
level, I/O scheduler algorithms (and possibly algorithmside the disk) begin to break down and
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Figure 5.4: Relationship between the rates of block reattesvand power consumption of gzip.
The y axis is in units of thousands of reads/writes. The CRIduency is set to the highest fre-
qguency in the above experiments. One can see that there elxeations in levels 8 and 9.

their efficiency goes down considerably as a result.

For bzip2 (Figure 5.5(a)), the power consumption response is relgtigtable. In Fig-
ure 5.5(b), we can see clearly that the rate of disk blockgéadhaintained at a stable level, and
the rate at which disk blocks are written is equally distrd@althroughout the compression period.
This leads the power consumption response to be stable.

Forlzop (Figure 5.6(a)), the power consumption response follows#fardnt pattern com-
pared with the previous two scenarios. We can see from Fig@@®) that for the first six levels,
the 1/O rate is much higher than in the remaining levels. Harethe run is shorter in terms of
elapsed time, as we can see from the width of the active aigrand the interleavings between
the rates of block reads and writes are in some degree nolyedistributed across the compres-
sion level, resulting in a few fluctuations towards the enéath compression level. For levels 8
and 9, since the interleavings are equally distributedptiweer response is relatively stable. The
fluctuations in level 7 suggest there exists unequallyibisted interleavings between the rates of
disk reads and writes.

An even more complicated example appears in Figure 5.7(ajhi$ scenario, random files
are being compressed and SATA is the persistent storageamBEaue power response is extremely
unstable in each compression level. The interleavingsdmtvthe rates of block reads and writes
are ill regulated, as we can see from Figure 5.7(b). This esiggthat the harder the file is to
compress (e.g., high entropy), the less predictable thiemeance and energy consumption are.
There is no simple way to model systems exhibiting such cexahd diverse behavior.

We conclude that the power response exhibits instabilimamy cases. This contributes to the
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Figure 5.5: Relationship between the rates of block reattesvand power consumption of bzip2.
The CPU frequency is set to the highest frequency in the abrperiments. One can see that the
power response is stable for each compression level.

complexity of the energy usage of the system and makes dlimgra serious challenge.

5.5.3 Multi-Dimensionality

In this section, we illustrate the dependence of the eneogywmption for our system on sev-
eral factors, such as CPU frequency, compression algoatiievel, file type, persistent storage
media, and disk I/O scheduler.

The compression algorithm is clearly an important factoemérgy consumption here, as we
have already seen in Figure 5.3. For examplap2 takes much longer time to compress than
lzop does. Thushzip2 usually takes more energy to compress tlzap does.

One might expect that a lower CPU frequency will result inéowenergy consumption. How-
ever, as we can see from Figures 5.8(a) and 5.8(b), that iseuatssarily true. With lower CPU
frequency, the energy consumption is actually increasedlfthe compression levels. The reason
is that when the CPU frequency is lower, it takes longer taffithe compression, which generally
results in a higher total energy consumption. We can alsdrsee Figure 5.8 that for both the
highest frequency and the lowest frequency, the consumad)eimcreases as a function of com-
pression level. However, there is also a possibility thagmvthe CPU frequency is lower, the rate
at which the CPU compresses data in the blocks will be clastrd rate at which the disk drive
produces blocks. If this happens, it can save energy at tthesérce there is no wasted energy.

The disk 1/0 scheduler influences the order of disk writes laedce may affect the energy
consumption. Figure 5.9 shows the energy consumption witlifdrent 1/0O schedulers. We can

33



N
o
o

Lzop, Text, H-Freq, SAS, CFQ level 1to 9

A ooaon o nmnm

~ 150
2
g
5 100 " 3 b
g level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9
o

50 -

0 I I I I I
0 200 400 600 800 1000 1200
Time (s)
(a) Power consumption response for each level of compmessilzop
= 160 : . . ‘ . -
3 Lzop, Text, H-Freq, SAS, CFQ Block in
§ 140 Block out g
:u;/ 120} level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 i
0
g 100 N
@
S 80 \ 4
o
2 eof || | |
=}
& af L M\ E
£ i I
i N I I | [y *
I | !
0 I I L AN
0 200 400 600 800 1000 1200

Time (s)

(b) Rate of block reads and writes for each level of compoessf Izop

Figure 5.6: Relationship between the rates of block reaitesvand power consumption of Izop.
The CPU frequency is set to the highest frequency in the abgperiments. One can see fluctua-
tions from levels 1 to 7.

200 -
Bzip2, Random, H-Freq, SATA, CFQ ‘ level 1t0 9
~ 150
2}
k)
=
5 100 i 1 S i § )
g level 1 level 2 level 3 level 4 level 5 ) level 6" ° level 7 level 8~ ~ level 9
a
50
0 . . . . .
0 200 400 600 800 1000 1200
Time (s)

(a) Power consumption response for each level of compmessiozip2 with SATA and random files

160

= Bzip2, Random, H-Freq, éATA, CFQ Block in
(=3
S l4of Block out Bl
§ 120 F level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 B
@
g 100 1
© 80 I 4
S
k=]
.’_; 60 - B
@ 40 & i
Qo
5
2 20 - i I i b
= o fwwwmmwm ;’ wwm»\ /\fwwwﬂ\ [vaww }qu\w»\ /w,w'\/ww\ /wﬂmﬂm‘ / I f’“v‘\fmw\wﬁ\

0 200 400 600 800 1000 1200

Time (s)

(b) Rate of block reads and writes for each level of compoessf bzip2 with SATA and random files

Figure 5.7: An even more complex example. The CPU frequensgtito the highest frequency in
the above experiments. One can see large fluctuations dewarg compression level.
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Figure 5.9: Energy consumption under 4 different 1/O scledu

see that anticipatory and CFQ have largely the same effétte weadline and NOOP also have
similar effect to each other but different from anticipgtor CFQ. As the unit for the y axis is Watt-

hours, the difference in energy consumption between guaticry and CFQ is actually significant,
especially for larger workloads.

The file type affects different compression strategies &hecompression algorithm and hence
plays a role in energy consumption. The left column of Figufé shows the energy consumption
of the compression workload for different file types. We dest the workload with binary files
consumes more energy than the workload with text files wheergiarameters are the same; this
makes sense because text files have more common patternanhz¢ compressed (e.g., lower en-
tropy). Also for text and binary files, more energy is consdiwgh compression level 9 than with
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Figure 5.10: Energy consumption for different File typed disk types

other compression levels. Surprisingly, for random filesgl 8 turns out to be the most energy-
consuming one, instead of level 9. We conclude that the fpe Bffects the energy consumption
response in a manner that is not easy to predict, and an abpnoeolving adaptive feedback
control may thus be required.

Different disk types usually have different electronicd irmware, different physical features,
and different storage strategies. This should affect gnecgpsumption. The right column of
Figure 5.10 shows the energy consumption of the compressiokioad for different persistent
storage media. As expected, SAS is generally faster tha\ Sgd the workload runs faster and
consumes less energy, 2—-12% less. SSD is the fastest stoeai@ among the three, consuming
the least energy, 3-5% less than SAS and 6—16% less than SAIRNs because an SSD contains
no energy-consuming moving parts (cf. Equation 5.3) anekstdata on non-volatile flash memory
chips using a Flash Translation Layer (FTL) that allows thedr device to look like a traditional
disk. These results also show that the workload is not caielgl€PU bound, even though it is
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CPU intensive.

In summary, we observe that the total energy consumptionrofpaiter systems follows a com-
plicated pattern, because the energy consumption for adaidystem contributes to it. This sug-
gests that instead of trying to develop system-level enargglels purely in a bottom-up fashion,
a more practical approach may be to use machine learningosheih the development of such
models to guide the design of energy-aware systems.

5.6 Conclusions

Accurate models of energy consumption and performanceitdar the design and implementa-
tion of energy-efficient systems. Our detailed experimaetults show that the behavior of these
quantities is far more complicated than one might expeet) éor a relatively simple workload such
as data compression. The complexity is reflected in nonlityeanstability, and multi-dimensiona-
lity. These factors must be considered in the design of greificient systems.

Although we have measured and analyzed the effects of ddaetars, there may be other
important factors to consider, depending on the systenh asdhe workload itself, and even the
server and machine-room temperatures.

We have discussed the energy and performance details ehsystoftware. Next, we explore
the GreenDM’s details in Chapter 6.
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Chapter 6

GreenDM: A Versatile Tiering Hybrid Drive
for the Trade-Off Evaluation of
Performance, Energy, and Endurance

In previous Chapters, we analyzed system performancegrand power under various condi-
tions, and we described how the device endurance intenattsthe other dimensions. In this
Chapter, we discuss the details of GreenDM.

The rest of the chapter is organized as follows. Sectionlfudtiates the design and imple-
mentation details. Section 6.2 presents the evaluatiantsesnd discussions. Section 6.3 shows
the related work. Section 6.4 discusses the limitation$uthee direction of our work. Section 6.5
concludes the chapter.

6.1 Design and Implementation

We describe GreenDM’s design and implementation in thisi@ec Section 6.1.1 presents the
design goals. Section 6.1.2 shows the system architecBeetion 6.1.3 details the design. Sec-
tion 6.1.4 describes our power-management techniquestioBe&1.5 describes the endurance
model used for the trade-off study. Section 6.1.6 pres@etgtplementation details.

6.1.1 Design Goals

The work was motivated by several concerns in storage sgst®vith the advent of SSDs, there
were more opportunities to tackle these concerns. Spdbjfieath GreenDM, our design goals
were as follows:

1. Hybrid Drive: we want to build a tiering hybrid drive with efficient data nagement and
additional power management, where the SSD was used agpstoeage, as the benchmark
system.

2. Trade-offs Study: we would like to come up with a per-device endurance metribeip
study the trade-offs.
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3. Versatility: we want to have versatile policies so that the system cantéddagtifferent
workloads.

To meet our desired design goals, GreenDM (1) migrates hattddhe primary device (SSD),
and migrates cold data to the secondary device (HDD)—usefubrkloads that exhibit hot/cold
I/O patterns; (2) decouples the logical storage addresedpam the physical one to allow flexible
data placement; (3) decouples the migrations between tbea®8 the HDD to improve concur-
rency between CPU and 1/O; (4) optimizes the data managenyeserving 1/0O requests directly
from RAM instead of the SSD whenever possible; (5) throtthegrations between the SSD and
the HDD to control the overhead and effectiveness of mignati (6) uses the lower-power SSD
over the HDD and spins down the HDD when it is idle for a sufficiamount of time; and (7)
is implemented in the Linux DM framework to be scalable. Nibtat we do not aim for super
fast performance, or super efficient energy consumptionptimized device endurance. Instead,
the techniques we used above just serve the purpose of iigdhybrid drive for us to study
quantitatively the trade-offs among performance, enexgg,endurance.

To help study the trade-offs among performance, energyeaddrance, GreenDM counts and
utilizes the number of SSD reads and writes and the numbeDd Ktart-stop (spin-up/down)
cycles to estimate the devices’ endurance. SSDs especalyear out quickly and become less
durable [120], and a mechanical disk drive can only be spwndind up for a limited number of
cycles [64].

To achieve the versatility goal, GreenDM supports sevesatrollable parameters so that the
system can be tuned to different workloads.

6.1.2 Architecture

We implemented GreenDM in the Linux DM framework, to benebith its scalability and flexibil-
ity. Figure 6.1 presents our system’s architecture. WeildetaenDM'’s internals in the following
sections. “Linear” is another existing DM target that linganaps from the virtual storage address
space to the physical one. GreenDM is scalable: it can b&/easifigured to use multiple drives
with minor code change. However, to better study and unaledshe fundamental behavior of our
tiering hybrid drive, we used a two-drive setup in this papere SSD as the primary drive and one
HDD as the secondary drive.

6.1.3 Data Management

GreenDM tries to keep hot data in the SSD so that the systemfilemost from the SSD’s su-
perior performance and efficient energy consumption. Taezelthis, GreenDM migrates hotter
data to the SSD, and migrates colder data to the HDD as theivgpslet changes over time. To
guarantee the correctness of moving data around, GreeneMausapping table to keep track of
data movement. Figure 6.2 illustrates GreenDM’s data memagt. GreenDM divides the Virtual
Block Address (VBA) space and the Logical Block Address (DBpace intextentghat are mul-
tiple of the (4KB) page size for efficient data management Ektent Size (ES) is a configurable
parameter, but once configured, the size is fixed for thariebf the DM instance. Our extents
are atomic units of data migration. GreenDM maintains thepireg information, from the VBA
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Figure 6.1:GreenDM Architecture. The shaded rectangles are DM targets, usually implemented
as loadable kernel modules.

to the LBA, in the mapping table; each table entry maps from \dntual Extent (VE) to one Log-
ical Extent (LE). Data migration involves migrating LEs Wween the SSD and the HDD, and then
updating the mapping table accordingly.

Mapping table The mapping table is a core data structure in GreenDM, asrshoWwigure 6.2.

It has four fields: LE ID, State, Usage Counter, and Time-ptaifthe latest access. The LE ID
identifies one LE. State represents the accessing statecbfexéent. The usage counter repre-
sents the number of total accesses. The time-stamp red¢mdstést access of one specific extent.
GreenDM populates the mapping table lazily. With a new wairtdrive, the table starts empty.
GreenDM creates the mappings in accordance with the watkl@ompared to fully initializing
the table with linear mapping, this approach provides menalillity to data migration, especially
when the workload is light. GreenDM uses a bit in the State faéleach table entry to indicate if
the entry is empty or not. GreenDM uses a bitmap to indicatetldr the LEs on both drives are
occupied or not. The mapping table and the bitmap togethepdse the metadata of GreenDM.
Whenever a new VE is accessed, GreenDM first allocates oaé E@nd then sets the correspond-
ing mapping entry and the bitmap field properly. To locateca itE, GreenDM always starts from
the lower LBAs so that it improves the SSD’s utilization. Tacelerate this operation, GreenDM
maintains an in-memory only free list for free LEs on the SSD.

Data separation GreenDM separates hot I/0Os from cold 1/0Os based on theirsadcequencies,
and stores them separately to best utilize the tiering dydevice. Temporal locality suggests that
once an extent is accessed, it is likely that the extent vellabcessed again soon. In our case,
active 1/Os are first served through the primary drive (iISSD) and the mapping is established
accordingly. Inactive I/Os are kept on the secondary diiee, HDD). GreenDM is designed this
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Figure 6.3: System State Transitions

way so that hot I1/0Os can mainly be served by the fast but sma#®, and cold 1/Os are held on
the slow but larger HDD drive.

Decoupled mapping GreenDM decouples the VBA space from the LBA space by mapihieg
VBA access to start from the Lowest Numbered LBA (LNL) of te[5and the HDD drives first.
If the mapping table is initially empty, then the decoupledpping mechanism would shift the
block access to the LNL in a monotonically decreasing maforerandom read workload. Note
that the mapping itself does not assume anything, we usemnanerkload just to illustrate its
mapping effect. We developed the theory to explain this beha

Suppose the virtual device hasvirtual blocks (VBs) in total. As shown in Figure 6.3, we use
S, to represent the system state when ith@s< i < n) mapped logical blocks (LBs). The system
can only go from staté; to stateS;,; (1 < i+ 1 < n) or stay at the same state. When it transits,
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one VB will be mapped to thé + 1) LB, which will then be accessed only once. Since the
workload is random, when there is one VB access, it has the gpaobability to be any one of the
n VBs. Therefore, the probability for the system state togitafinom S; to S; 1 (1 <i+1 < n)is

1-— % and the probability for the system state to stay the sarﬁ}eﬁlis is in fact a Markov Chain
as shown in Figure 6.3.

We useT; (1 < i < n) to represent how long the system stays in sfatélere,thpt, represents
the average throughput when the system stays in Stat®/e useB, to represent the block 1/0
size. For simplicity, we let the /O size be equal to the ekgire. We usd’acc(B;) to represent
the expected access frequency of block stateS;, each physical block, starting frointo 7, has
the same probability of being accessed. We can then haveltbeihg equations:

Face(B;) =1+ Zl x M;(1 <i<n) (6.1)
j=i

M; = TiXTthpti(l <i<n) (6.2)

FEace(B;) > Face(Biy1)(1 <i+1<n) (6.3)

We can see from Equation 6.3 that the expected access fr@gaéhlock: is larger than that
of block: + 1. It shows that GreenDM should shift the block access to the iotNa monotonically
decreasing manner.
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Figure 6.4: LBA Space Access Frequencylfarear andGreenDM. Figures are plotted to scale:
256 extents are merged into one point. The vertical lineesents the boundary between the SSD
capacity and the HDD capacity. Since the workload does ne¢icevery single VB, some of VBs
are not accessed. GreenDM observes this because startingtfre LNL, every single LB is being
mapped and accessed, while Linear does not.
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The DM Linear is a one-to-one direct mapping. For random rgackloads, the uniformly
distributed access from the VBA space is directly mapped&UBA space. Thus, the access
pattern on the LBA space should follow a uniform distribatioro verify the correctness of our
analysis, we ran random read experiments with Filebench [B& set up a 1GB tiering hybrid
drive with 256MB on the SSD and 768MB on the HDD for both GrebhBnd Linear. We ran
experiments for 20 minutes each and collected a block treicgybtrace . The processed trace,
seen in Figure 6.4, confirm our theory.

Data promotion To speed future accesses, promotions move hot LEs from th2 tdEhe SSD
as the workload changes over time. To detect hot LEs on the HE?BenDM counts the number
of 1/0 misses for every LE. An 1/O is considered missed whes ritapped LE resides on the
HDD. A LE is considered hot if the number of I/O misses excabdsPromotion Threshold (PT).
GreenDM increases the LE miss count if two adjacent I/O ase$0 the LE is within a Time
Window (TW). Otherwise, the miss count starts over from begig. The PT and the TW are
both configurable parameters. Once GreenDM decides to peomioot LE, it allocates a free LE
on the SSD and enqueues the job to a promotion queue. Green{¥eis a worker thread to
keep dequeuing promotion jobs and copy data from sourced.Hsdtination LEs synchronously.
When the mapped LE of one VE is being promoted, accesses WhRlaee suspended before being
served; then GreenDM updates the mapping table. GreenDkklsapromotion attempts under
any of the following conditions: (1) the SSD is full, becaygemotion requires free space in the
SSD; (2) the metadata is being flushed to disk, because piamiwds to update the metadata; (3)
the Maximum Concurrent Migration Limit (MCML) is reachededause we throttle migration; or
(4) there is concurrent access on the extent that is to beqisainbecause the extent is already
being accessed. Thus, instead of accessing the SSD, the ${@dgessed. This may delay HDD'’s
spin-down and help maintain SSD’s endurance, but increassa latencies.

Data demotion Demotion moves cold LEs from the SSD to free LEs on the HDD.rélage
different ways to perform data demotion. One approach ivitct &SD LEs instantly when pro-
motions are taking place but there are no free extents on3ie $his approach adapts well to
the workload changes. However, it can prolong the promdtonatencies, which is undesirable.
Another alternative is to schedule demotion as a periodikdpaund job. However, this strategy is
detrimental to energy efficiency because it has to wake ud@ periodically. Instead, GreenDM
schedules demotion in the background when the number of. sen the SSD drops to a config-
urable Low Threshold (LT). Once demotion is launched, ifdss@emoting extents until the number
of free LEs on the SSD reaches the configurable High Threqhbilgl The default value of HT is
higher than the LT so that cold LEs are demoted efficientlyatch without constantly disturbing
the HDD. When all LEs are mapped, GreenDM uses a small nunfledti@a reserved extents in
the HDD, as shown in Figure 6.2, to allow the demotion to firgft Es. Otherwise, data migration
stalls if no free LE is found. The demotion thread uses the W&Calgorithm to find cold extents
and updates the mapping table accordingly. GreenDM usesiced@mapper kernel thread called
dmkcopyd , which copies data between disk drives asynchronously.

Migration throtting  GreenDM throttles data migrations to improve throughpute Thapping
table has one field to count the number of accesses for eadicBhigxtent (LE). When the Promo-

43



Abbrev. | Name Ex. Values
ES | Extent Size (in 4K units) 4K, 16K, 64K
PT | Promotion Threshold 1,2,4,8

MCML | Maximum Concurrent Migration Limit 2,4,8,16, 64
SP | Spin Down Policy On, Off
LT Low Threshold of demotion 32,64
HT | High Threshold of demotion 64, 128
TW | Time Window length (sec) 30, 60

Table 6.1:GreenDM Parameters and Abbreviations

tion Threshold (PT) of one LE is reached, data promotiontenapted. The PT is configurable: (1)
alarger PT can decrease the number of promotions and reueiceerhead, especially when there
are lots of accesses; and (2) when the benefit of one promeiceeds the overhead, a larger PT
reduces the potential benefits. Migration is also throttlgdhe Maximum Concurrent Migration
Limit (MCML). The MCML specifies the maximum concurrent protions and demotions. The
MCML is tunable: (1) a larger MCML value can promote hot I/@ghe SSD earlier and prepare
free SSD extent slots earlier to benefit future accesseg2amdarger MCML value can potentially
choke the system as ongoing migrations can freeze otheet{@ests. Demotion tries to maintain
[LT, HT] free extents in the SSD so that promotion can justthedree extent instead of waiting for
demotion to proceed. Demotion is designed to decouple frameption to improve interleaving
between CPU and I/O.

Serving directly from RAM  To save 1/0Os, GreenDM serves buffered 1/0 requests diréctiy
RAM instead of the SSD in case of a successful promotion. T#eeaf the RAM buffer is equal to
the size of the hot LE. When a hot LE is being promoted, I/Ospedio it will be pending before
being served. A naive approach to serve the pending I/@sfist migrate one LE from the HDD
to the SSD, and then access the SSD again to serve the pef@iregjlests one by one. However,
this approach triggers more SSD accesses than needecadn&eeenDM first reads the LE data
from the HDD to RAM; then, GreenDM serves pending I/Os disefiom RAM, before the LE
data is written to the SSD. GreenDM invokes the DM AR _endio to indicate that the I/O
request was served. For each pending I/O, this saves one/8Sfydle by serving directly from
RAM. This approach can save many SSD I/Os because when a Id i is likely to be accessed
many times even during the short period of promotion. If ¢here more 1/0Os accessing the same
LE while data is being flushed from RAM to SSD, GreenDM suspgehdse 1/Os in the queue and
serves them from the SSD as usual.

Versatility To enable adaptation to different workloads, GreenDM sugseveral configurable
system parameters: ES, PT, MCML, SP (spin-down policy)HT,,and TW. Table 6.1 summarizes
the parameters in more detail. All parameters can be seeatdbr level. The ES can be set in the
GreenDM configuration file before the tiering hybrid drivarss service. The users can set the
remaining parameters at any time by accessing the corrdsgphinux debugfs entries.
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6.1.4 Power Management

In addition to the above data-management techniques, @arBiM manages the power consump-
tion of the system to save energy. First, GreenDM saves grsamgply by using the SSD in pref-
erence to the HDD. To further save power, when the secondskyiglidle, GreenDM spins down
the drive [153]. The side effect of this spin-down is twoefol1) it takes time for a spun-down
disk to spin back up, and (2) it reduces the HDD enduranceseiHBD is spun up and down too
frequently as each (mechanical) HDD has a limited numbetaot-stop cycles. GreenDM spins
down the disk when it is idle for at least five seconds, conéduyyhdparm . We chose five sec-
onds because itis the time it takes to spin down the HDD we.uBaelsmaller the time-out latency
is, the more aggressive the HDD spin-down policy is. Wheretieaccess on the spun-down disk,
it spins up automatically.

6.1.5 Endurance Model

Limits
SSD 36,500 GB writes
HDD | 300,000 spin up/down cycles

Table 6.2: Devices Wear-out Limits.

GreenDM explores the endurance model for both the SSD artdidie For the HDD, GreenDM
utilizes the number of start-stop cycles as the major faciwards endurance.

For the Flash-based SSD, it suffers from the endurance gmobEcause Flash device requires
one block erasure operation before the block can be rewritfégn SSD’s endurance depends on
many internal (often proprietary) parameters, some of whre hard or impossible to measure: in-
ternal write-amplification factor, wear-leveling techaés, FTL's effectiveness, garbage collection
algorithms, reserved space, internal caching, and motaidipaper, we do not attempt to measure
these internals. Instead, to help estimate the SSD’s endeirave used 4KB as the default SSD
page size, counted each page access (read and write) to Ehea8& formalized our endurance
model to study the trade-offs among performance, energlyeadurance.

Moreover, as the real-time endurance relies heavily onigtery usage of the devices, GreenDM
utilizes delta endurance metrics for both SSD and HDD to sti@iendurance reduction of each
device in any configured experiment. We summarize the endanmodels as follows:

writes(t)
Enduggg(t) =1 — ———=(t 6.4
ndugq(t) leltssd< > 0) (6.4)
B H#startstop(t)
Enduhdd(t) =1 Limitr (t > 0) (65)
Awrites
A+tstartst
AEndunga(At) — SHSATEOP 4 ) (6.7)
Lzmzthdd
0< Endussd(t), Enduhdd(t) < 1(t > 0) (68)
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Enduss(t) and Endupngq(t) represent the endurance metric of the SSD device and the HDD
device, at time, respectively.A Endugg(At) and A Enduyqq(At) represent the delta endurance
(i.e., the endurance reduction) of the SSD device and the d&iice during the time periodt,
respectively. The endurance of SSD at titmie represented by minus the fraction of writes per-
formed at timet (i.e., writes(t)) and the total writes limit (i.e.Limits,,). The more writes are
performed, the less durable the SSD is. Note that reads Hésd the SSD’s endurance because
erase operation will be incurred once read disturbancecton kicks in [84]. Since this is fairly
recent reported result and there is no quantitative studgherendurance effects of the read dis-
turbance, in our work, we convert the effect of reads to sritesed on several certain ratios (e.g.,
endurance effects caused by reads is calculateddis /10 andreads/100). The endurance of the
HDD at timet is represented by minus the fraction of start-stop cycles performed at tinfiee.,
#startstop(t)) and the total cycles limit (i.e Limit,qq). The more the device performs start-stop
actions, the less durable the HDD is, and the closer it isiiodga We show the limits for both SSD
and HDD in table 6.2 based on the vendor data-sheet.

To simplify the understanding and use of our endurance me&te defineu as the unit for the
endurance models as shown in Equation 6.8. We define enduosina scale of one million parts.
The higher the value is, the more durable the device is: a&wafld,000,000 is given to brand new
drive that is unlikely to break under failure mode I, and areadf O is given to a drive that is almost
certain to break under failure mode I in the very near ternr.éxample, a reduction of a device’s
endurance by, 000cu means that the probability of a device’s failure has inceedsy ;5755 OF
0.1%.

6.1.6 Implementation Details

Concurrency control  The Linux DM framework supports concurrent block accesSese data
migration is performed in the back-end, it is possible thatadmigration and an incoming 1/0
compete for the same extent. GreenDM uses a spin-lock tegirotitical resources, and creates
one atomic counter for each extent to ensure that beforenGiManigrates data, all I/0O requests
on associated extents are completed. This counter is ircreEn once per access on the extent, and
is decremented for each I/O request that is finished. If G&kpbserves that the counter of one
specific extent is larger than zero, it drops the data migmadttempt. If the incoming 1/0O happens
to be in the extent that data migration is going to be perfas®eenDM delays the I/0O by putting

it into a queue and serve it later.

Metadata management Metadata (e.g., mapping table and bitmap) is critical faai@emigration
based approach. GreenDM stores metadata in RAM for freqaemeisses. In case of a power out-
age, the system may be inconsistent and lose persistent @atefore, GreenDM periodically
flushes metadata to the SSD for recovery. GreenDM also e¢picmetadata on the HDD for
redundancy. In case of failures, GreenDM reads the latesdat checkpoint from one of the
persistent drives into RAM. We discuss limitations of thememory metadata management in
Section 6.4.

Statistics export To better analyze the dynamic mappings of block I/Os, thecsffeness of data
migrations, and the status of the running system, GreenDddrex several kernel-space statistics
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to user space. GreenDM creates a debugfs entry named “gtatsllect statistic information of
the running system (e.g., the SSD hit ratio, the number afnptons and demotions, the system
status, etc). GreenDM creates a debugfs entry named “tableXport the mapping table to user
level. These statistics were helpful during the developraad analysis phases.

Development cost We spent 2 years on this project. We developed around 3,500.&ernel
space for GreenDM, and developed fewer than 100 LoC to plugjatistic code for Linear. We
used Auto-pilot [146] to help benchmarking, but furthereleyped an additional 2,000 LoC in Bash
and Python to assist in benchmarking and analysis. To auéoraa data parsing and plotting, we
developed another 2,000 LoC in Bash and Python. To help impfte performance, we developed
another 1,000 LoC in Python. We also developed around 500ih. @3+ to replay the traces.

6.2 Evaluation

1. What are the GreenDM performance, energy, power, andrandel results compared with
other baselines under various workloads?

2. What are the trade-offs among performance, energy, pandrendurance?

3. How much do different tunable parameters affect the tadtteamong performance, energy,
and endurance under various workloads?

6.2.1 Experimental Setup

We experimented on two identical Lengep ThinkCenter computers. Using Imbench [17], we
verified that the performance difference of the two machimas within 2%; and that the power
consumption difference was within 1.6%. Each server has RABI and one InteR) Core™ 2
Quad 2.66GHz CPU. We configured the BIOS identically on bagiclnmes. As energy consump-
tion is important to our study, we used the default “ondemiatRluFREQgovernor [156] and the
default “menu”cpPuIDLE governor [75]. We kept all CPU cores online by default. Oaritig hy-
brid drive consists of an Intel SSDSA2CW300G3 300GB SSD aBdamate ST32000641AS 2TB
HDD. We used only the middle portion of the HDD’s LBA space tei@age out any ZCAV [151]
effects. The OS, using a Linux 3.5.0 kernel, ran on a sep&Aid& drive. We prepared several
baselines: (1) SSD-only drive; (2) HDD-only drive; and (J)reear tiering hybrid drive (i.e.l.in-
ear) that linearly maps from the VBA space to the LBA space. Weealdal few statistics counting
code to Linear and namedMylinear in our experiments. We set the D&plit _io option so
that 1/0Os are split based on the Size (ES). We usedas the default ratio for the SSD partition
size out of the total drive size for our hybrid drive. The oa8 just one example for us to study
the trade-offs among performance, energy, and endurantesfybrid drive, and it also keeps the
SSD size relatively small compared with the workload wogkset size.

We connected each computer to a WattsUP Pro ES in-line powtarif136], which measures
the energy drawn by a device plugged into the meter’s reckeptarhe power meter uses non-
volatile memory to store measurements every second. kéutesn is 0.1 Watt-hours (1 Watt-hour
= 3,600 Joules) for energy measurements. The accuraty.i§% of the measured value plus a
constant error of£0.3 Watt-hours. Its resolution for power measurements is 0.1t3/NV&Ve used
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Workload Dr_ive Reads Writes
Size | Total [AvgSz| Total |Avg Sz

Web-search32GB| 1,055,236 16KB 212 8KB

FIU online| 8GB | 655,526| 8KB [4,211,786 4KB

Table 6.3:Trace Workloads Summary

thewattsup Linux utility to download the recorded data from the meteeroa USB interface to
the test machine.

6.2.2 Benchmarks
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Figure 6.5:Web-Search Trace Replay ResultsWe configured ES to 1MB in GreenDM, to help
with sequential prefetching. HDD spin-down was enabledafbr

We evaluated GreenDM carefully with three general purposekleads: (1) Web-search trace
workload; (2) FIU’s online trace workload; and (3) Filesgerworkload. We used the Web-search
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and FIU online trace workloads from the UMass Trace ReposjiB0] and the FIU Trace Repos-
itory [36], respectively. We summarized these traces’ patars in Table 6.3. Note that the drive
sizes are sized to meet the storage requirements of the twidoads, respectively. We used the
File-server workload from Filebench [35].

GreenDM'’s effectiveness depends on the amount of datatiptiaé workload exhibits. There-
fore, for the File-server workload, we varied the frequeti@t files are accessed using Filebench’s
Gamma distribution [142, 145].

In this Chapter, to understand our GreenDM’s behavior uddfsrent conditions, we focused
on parameters that tend to have more impact on the tradexwftsng performance, energy, and
endurance of the tiering hybrid drive. Thus, for example,tweed ES, PT, and MCML values
for different workloads while keeping the default valuesdther parameters (i.e., TW=60, LT=64,
HT=128). Specifically, we varied: (1) the Promotion Thrddi{®T) and the Maximum Concurrent
Migration Limit (MCML) values for the Web-search trace wtoéd; (2) the Extent Size (ES) for
the FIU online trace workload; and (3) the MCML and the Gamialaes for the File-server work-
load. To reduce side-effects due to the SSD’s Garbage GioleGC), we issued therIM [85]
command to the SSD before each experiment. The results we atgogeneral to illustrate the
effects of tuning parameters.

We ran all tests a minimum of three times unless otherwisechotVe computed the stan-
dard deviations and presented as error bars in figures. WeAwsg®pilot [146] to automate the
benchmarks.

6.2.3 Web-Search Trace Workload

We replayed the UMass Web-search trace with our own toolmelsgonous mode, without intro-
ducing any delay between two consecutive I/O requestseSirectrace is block-level, we disabled
the OS buffer cache in this experiment. To meet the storaggirement (i.e., 32GB), we set up
the tiering hybrids with the first 8GB from the SSD and the rammg 24GB from the middle of
the HDD. Note that the ratio between the SSD and the HDD washaden according to the full
capacity of the two devices we used in the experiments, batrather chosen based on the total
workload’s working set size so that the SSD capacity is kelatively small compared to the total
workload’s working set size. We scanned the device intitdl fill the mapping table such that
it could represent a more realistic situation where the nmapfable was not initially empty. We
present the results in Figure 6.5.

Figures 6.5(a), 6.5(b), and 6.5(c) show that: (1) the SSIP-dnive achieves the highest
throughput, the lowest energy consumption, and the high@ser consumption; (2) the HDD-
only drive achieves the lowest throughput, the highestggneonsumption, and the lowest power
consumption; (3) tiering hybrids achieve throughput, gpend power consumption in the middle;
and (4) among tiering hybrids, various GreenDM configuratiachieve higher throughput, lower
energy consumption, and higher power consumption compeitedVylinear since the real-world
Web-search trace exhibits many hot and cold 1/O pattern&feenDM to manage. Figure 6.5(d)
shows that the HDD is rarely spun down for all benchmarks wherdisk spin-down in enabled.
The reason is that this workload exhibits high randomnedstarefore keeps the HDD active most
of the time. Thus, the incurred reduction to the HDD’s endaeacan be ignored. Figures 6.5(e)
and 6.5(f) show that: (1) the HDD-only drive does not reddme3SD’s endurance since there are
no I/O accesses to the SSD; (2) the Mylinear tiering hybridedwears out the SSD the slowest
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since part of the 1/0Os goes to the HDD; (3) the GreenDM tiehghrid drive wears out the SSD
the fastest since data migration causes lots of SSD readwidted; and (4) the SSD-only drive
reduces the SSD endurance in the middle since there is nomigtation at all. As tiering hybrids
can better trade-off performance, capacity, and cost, wesfour study on the trade-offs for tiering
hybrid drives.

Higher throughputs lead to larger energy savings, as showigures 6.5(a) and 6.5(b). The
reason is that it takes less time to finish the same amount &€ wben the throughput is higher
and the system-level average power consumption betweesenBM and Mylinear is close (see
Figure 6.5(c)).

There are trade-offs between performance and power conteumps shown in Figures 6.5(a)
and 6.5(c), GreenDM achieves higher throughput (198—-32b&t)Mylinear, but consumes slightly
more power (5%) since the faster SSD 1I/Os indirectly keepCthe) and RAM busier, and shift the
bottleneck a bit towards the CPU. This keeps the system nutineealuring the run, and shows
the trade-off relationship between performance and powesumption for this workload. Note
that the SSD-only based system consumes a little bit highwep(1%) than GreenDM because it
makes the CPU and RAM even busier.

There are trade-offs between performance and the SSD eradurAs shown in Figures 6.5(a),
6.5(e), and 6.5(f), GreenDM achieves higher performanaa tMylinear, but reduces the SSD’s
endurance more. When the ratio of read-to-write effedt/i®), the reduction goes from 32to
70x more. When the ratio of read-to-write effectligl 00, the reduction goes from 186to 516x
more. The reason is two-fold: (1) GreenDM performs many dagrations to separate hot and
cold data; and (2) Web-search workload has many more reaaswhtes and reads are not as
effective as writes in reducing the SSD’s endurance [84]teNbat MCML values become less
effective when the PT value becomes larger since a large@aRiE eads to smaller promotions.

Different GreenDM tunable parameters have different é&fea performance, energy, and de-
vice endurance. As shown in Figures 6.5(a), 6.5(b), 6.56(e), and 6.5(f), different MCML
and PT values affects the performance, energy, and endurardifferent ways. For example,
when the PT and MCML values are 1 and 64, respectively, GrbenDproves throughput by
198%, saves energy by 64%, and reduces the SSD’s enduran@x@nd 516< more when the
ratio of read-to-write effect i3 /10 and1/100, respectively. However, when the PT and MCML
values are 4 and 16, respectively, GreenDM improves throuidby 325%, saves energy by 75%,
and reduces the SSD’s endurance by 4hd 295< more when the ratio of read-to-write effect
is 1/10 and1/100, respectively. The reason is that different GreenDM patameyield different
benefits and (CPU and 1/0O) overhead. Medium PT and MCML valaed to achieve the best
balance of benefits vs. overhead (see Figure 6.5(a)) fomthikload: (1) a too large PT value can
reduce the migration benefits and a too small PT value caraserthe migration overhead for this
workload; (2) when the PT value is small, large MCML values cansume more CPU and 1/O
resources on the system; and (3) when the PT value is large, MCML values can promote hot
I/Os to the SSD faster. However, when the PT value is largarcurs less reduction to the SSD’s
endurance (see Figures 6.5(e) and 6.5(f)). In sum, there &@ngle best configuration for this
workload. Therefore, to achieve different trade-off godite MCML and PT values have to be
chosen carefully.
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Figure 6.6:0Online Trace Replay Results As example, we set MCML to 16 and PT to 1. Disk
spin-down was enabled for all.

6.2.4 FIU Online Trace Workload

We replayed the FIU online trace using our own tool as meption Section 6.2.3. We disabled the
OS buffer cache as the trace is a block-level one. To meetdnage requirement (i.e., 8GB), we
set up the tiering hybrids with the first 2GB from the SSD arelrtmaining 6GB from the middle
of the HDD. We scanned the device initially to fill the mapptadple. We present the results in
Figure 6.6.

Figures 6.6(a), 6.6(b), and 6.6(c) show that: (1) the SSIP-drive achieves the highest
throughput, the lowest energy consumption, and a mediumepeansumption; (2) the HDD-
only drive achieves the lowest throughput, the highestggneonsumption, and the lowest power
consumption; (3) tiering hybrids achieve throughput arefgy consumption in the middle; and (4)
among tiering hybrids, various GreenDM configurations eehihigher throughput, lower energy
consumption, and higher power consumption compared witlndgr, due to GreenDM'’s efficient
data management. Figure 6.6(d) shows that GreenDM spins tHDD to some degree when
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the ES varies. Otherwise, the HDD is rarely spun down for otfemchmarks. Since only a few
start-stop cycles are caused, the reduction to the HDD’siramde can be ignored. Keeping the
HDD idle could save some power, but since the SSD indirealpsithe CPU stay busier and the
spin down/up process consumes more power, the GreenDMnsystel power consumption is
thus slightly higher than all others. Figures 6.6(e) and(ffshow that: (1) the HDD-only drive
does not reduce the SSD’s endurance; (2) the SSD-only dasiwout the SSD to a moderate
degree compared with tiering hybrids; and (3) GreenDM caoméigons wears out the SSD faster
than Mylinear. Next we discuss the trade-offs for tieringphg drives.

Higher throughputs lead to lower energy consumption, ag/sho Figures 6.6(a) and 6.6(b).
The reason is similar to what we have explained in Sectior86.2

There are trade-offs between performance and power cortearmps shown in Figure 6.6(c),
GreenDM achieves higher throughput (58-142%) than Mylinddowever, it consumes more
system-level power on average than Mylinear does, rangaorg #—8%, due to the aforementioned
reasons.

There are trade-offs between performance and the SSD eradurAs shown in Figures 6.6(a),
6.6(e), and 6.6(f), GreenDM achieves higher throughput tdalinear does, but it reduces the
SSD’s endurance by 14-19% more and by 11-15% more when theofatad-to-write effect is
1/10 and1/100, respectively, as we explained in Section 6.2.3.

Different GreenDM Extent Sizes (ES) have different effemtsGreenDM'’s performance, en-
ergy consumption, and device endurance. As shown in Figu6€a), 6.6(b), 6.5(d), 6.6(e), and
6.6(f), different ES values lead to different results. Foaraple, when the ES is 4KB, GreenDM
improves throughput by 58%, saves energy by 33%, and redbheeSSD’s endurance by 14%
and 11% more when the ratio of read-to-write effect i$0 and1/100, respectively. However,
when the ES is 64KB, GreenDM improves throughput by 142%esanergy by 55%, and reduces
the SSD’s endurance by 19% and 15% more when the ratio oftceaaiite effect is1/10 and
1/100, respectively. The larger the ES is, the more effective drisntial pre-fetching algorithm
is. Therefore, it leads to higher throughput and largerg@neavings. However, larger ES causes
more reduction to the SSD’s endurance. It suggests the E® baschosen carefully for the system
to achieve the best trade-offs because there is no singhlaamonfiguration.

6.2.5 File-Server Workload

We ran the File-server workload with a Gamma distributiorFilebench [35]. We varied the
Gamma value to show different results. The smaller the Gamwahee is, the higher the data
locality is since smaller Gamma values lead to narrower fiteeases: that is, a certain subset of
data items (i.e., Logical Blocks) would be referenced mbemtothers. We configured the usable
RAM size to be 1GB to ensure that the workload would generasynow-level 1/0s. To meet
the storage requirement (i.e., 8GB), we set up the tierirgyitdg with the first 2GB from the SSD
and the remaining 6GB from the middle of the HDD. We reportrésailts in Figure 6.7. Note that
since the OS buffer cache is enabled, to better estimateSPeeBdurance change, we assume all
I/Os for SSD-only benchmark go to the low-level device.

Figures 6.7(a), 6.7(b), and 6.7(c) show that: (1) the SSIp-drive achieves the highest
throughput, the lowest energy consumption, and the high@str consumption; (2) the HDD-
only drive achieves the lowest throughput, the highestggneonsumption, and medium power
consumption; (3) tiering hybrids achieve throughput, gpend power consumption in the middle

52



800 25

5 —— SSD-only P ——1 SSD-only
3700F HDD-only Z HDD-only
5 600 - Mylinear <] Mylinear
Sso0f green-4MCML EE 5 green-4MCML
= £25% green- |6MCML £ 157 s green-16MCML
54001 o vv7 green-6AMCMI, & | %7 green-64MCML
E300} o ~ 10+
on >
22001 g sl
ﬁ 100 - m
0 0 4
Gamma Parameter k Gamma Parameter k
(a) Throughput (b) Energy Consumption
z SSponly S o[ RS = on, o R ANEVE
= Mylinear ER
= green-4MCML S gl
g green-16MCML &
2 green-64AMCML g 60 -
& T oaf
L =
§ 50 2 20 - 10 1213 8
“ 0 g o o ML oo futct [ooimas
Gamma Parameter k Gamma Parameter k
(c) Power Consumption (d) HDD Standby Statistics
. 1400 . 1400
3 [ SSD-only 1 green-16MCML 3 [ SSD-only 3 Mylinear EXTY green-16MCML
e 1200 | #5354 HDD-only green-4MCML 77 green-64MCML e 1200 1 s green-4MCML
Q Q
g tooor g 10001
S 800 S 800
=] =
M o600 b M 600
E s
g 400 - g 400 |
a 200t a 200t
2] %]
w2 0 " wn 0
Gamma Parameter k
(e) SSD Delta Endurance with Ratiol/10 (f) SSD Delta Endurance with Ratiol /100

Figure 6.7:Fileserver Workload Results We configured the ES to be 128KB in GreenDM. It is
equal to the average 1/O size to avoid the migration wastd/@nsplit overhead. The PT value was
fixed at 1, as example. Disk spin-down was enabled for all.

in general; and (4) among tiering hybrids, various GreenDifigurations achieve higher through-
put, lower energy consumption, and higher power consumgiionpared with Mylinear through
efficient data management. Note that in Figure 6.7(a), taerdarger throughput variations when
the gamma parameter is 1. The reason is that when the daligicchigh, the OS buffer cache can
kick in and make the overall throughput vary wildly, resodtiin a bi-modal distribution [65, 126].
We have rerun this experiments ten times more, plotted adnsin, and verified that there were
two throughput modes: one from the RAM buffer cache and argkfrom the low-level tiering hy-
brid drive. Figure 6.7(d) shows that the HDD is spun down atbii0% of the time when Gamma
is small. The reason is that when the Logical Blocks (LBs)maoee narrowly localized, GreenDM
has a larger chance to spin down the HDD. Note that, althougler®M shows the HDD being
spun down, it incurs only a small number of HDD start-stopeythat can be ignored towards the
HDD’s endurance reduction. Figures 6.7(e) and 6.7(f) shhat (1) the HDD-only drive does not
reduce the SSD’s endurance; (2) the SSD-only drive wearhel8SD to a moderate degree com-
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pared with tiering hybrids; (3) GreenDM configurations weat the SSD faster than Mylinear;
and (4) larger Gamma value also tends to wear out the SSDr.fast®gt we discuss the trade-offs
on tiering hybrid drives.

Higher throughput leads to larger energy savings. We caiffrgeeFigures 6.7(a) and 6.7(b)
that when the throughput s higher, the corresponding grszrgings are larger under any condition.
The main reasons are that: (1) it takes less time to finish daneesamount of work when the
throughput is higher; and (2) the system-level average poamsumption between GreenDM and
Mylinear is close (see Figure 6.7(c)).

There are trade-offs between performance and power corigarmp GreenDM. As shown in
Figures 6.7(a) and 6.7(c), GreenDM achieves higher thrnougb0-267%) compared to Mylinear,
but consumes 3% more power. The reason is that because the IB3Pare faster than the HDD,
the bottleneck is shifted further to the CPU and RAM, makimg whole system more active and
consuming more power, even though the HDD is spun down in stegeee.

There are trade-offs between performance and SSD endurasskown in Figures 6.7(e) and
6.7(f), GreenDM achieves higher throughput than Mylineaeg] but it wears out the SSD faster
from 4x to 8x, because of the same reason as we explained in Section Ba@r8over, a larger
Gamma value can wear out the SSD faster. The reason is thattia&amma parameter is larger,
I/Os are distributed over a wider range of LBs. Hence, thezevaore promotions and demotions,
which eventually increases the SSD read and write countseahutes the SSD’s endurance.

Different GreenDM tunable parameters have different é&fea performance, energy, and de-
vice endurance. As shown in Figures 6.7(a), 6.7(b), 6.76dJ(e), and 6.7(f), different MCML
values under different data locality affect the performrggmmergy, and endurance in different ways.
For example, when the Gamma and MCML values are 1 and 64,atesgdg, GreenDM improves
throughput by 267%, saves energy by 50%, and reduces thes®@8Burance by>4 more. How-
ever, when the Gamma and MCML values are 16 and 4, respgcieenDM improves through-
put by 93%, saves energy by 71%, and reduces the SSD’s eméubgn’< more. The reason
is that different GreenDM parameters create different hesnend (CPU and I/O) overhead under
different data locality: (1) when the Gamma value is smalgér MCML values can promote hot
data to the SSD faster; and (2) when the Gamma value is largales MCML values incurs less
CPU and I/0 overhead. However, different configurationdwlifferent Gamma values wear out
the SSD to a different degree. Therefore, to meet differeqiirements, tunable parameters have
to be chosen carefully.

6.2.6 Summary

In this section, we summarize the best configuration for @glorkloads under the current setup.
Future storage system designs can potentially refer todhelasion here.

1. For the read-intensive Web-search workload, medium RIIM@ML values lead to the best
throughput for GreenDM due to the net effect of migrationdférover overhead. In terms of
SSD endurance reduction, the PT value is the dominant factoe it affects the SSD access
to a large degree. A smaller PT value wears out the SSD fastez & incurs more SSD
accesses.

2. For the write-intensive Online workload, a larger ES edleads to higher throughput for
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GreenDM since it introduces more efficient prefetching. ldeer, a larger ES value wears
out the SSD faster since it incurs more SSD accesses.

3. For the read- and write- intensive fileserver workloa@, @amma value is the dominant
factor for GreenDM'’s throughput and SSD endurance redndince data locality matters
significantly for GreenDM to work. When Gamma is small, a &alCML value achieves
better throughput and wears out the SSD slower since Greeniivhtes hot 1/0Os earlier
for both GreenDM and the OS buffer cache. When Gamma is largepall MCML value
achieves better throughput and wears out the SSD sloweg dimacurs less overhead for
GreenDM and the OS buffer cache.

4. For all workloads, since the system (e.g., CPU and RAMybess busier due to GreenDM’s
data management, the system consumes slightly more poavetite Mylinear baseline does.

5. For all workloads, since the system power consumptioroislargely different, a larger
throughput leads to smaller energy consumption when tla¢édaotount of workload is fixed.

6.3 Related Work

Our work is different from past ones in three ways: (1) we uadtering hybrid drive; (2) we
developed an endurance metric and studied the trade-otisg@mperformance, energy, and device
endurance in a tiering hybrid drive empirically; and (3) wWiered a versatile solution to enable the
system parameters to be tuned for specific workloads.

There are many existing systems exploring SSD as a cachg, 8% 153,70, 73, 83,92-94,103,
112,129, 133], where SSDs are used to cache data. Only s@n¢9%68, 123,129, 147] have
explored using SSDs as primary storage to better traddvadtighput, capacity, and cost. There
are also several tiering hybrid drives in industry: ApplEission Drive [141], Microsoft's Ready
Drive [100], Western Digital’s Solid State Hybrid Drive (B8) [138], Tintri’s VMstore [134], and
Dell’'s Compellent Flash Array [30]. However, most of theiternal designs and source code are
not publicly available. GreenDM is a tiering hybrid driveh@se source code and internal designs
are scheduled to be released under the GPL for the entire oaitynto utilize.

Many performance, energy, and endurance relevant studéesimulated: FlashTier [112],
SieveStore [103], BEST [53], HybridStore [68], Pearl [L4A3teenHDFS [67], PDC [101], NVCach-
e [14], and FAWN [5]. While simulation can help provide eadgeful results, we believe that
empirical experiments are more realistic. GreenDM perforeal-world experiments to study the
trade-offs among performance, energy, and endurance efiagihybrid drive.

For the SSD endurance metric, past studies normally reféneaumber of erasure cycles
that can be performed on an SSD during its lifetime [74], anchdt provide a concrete model
and metric to help study the SSD’s endurance. One study @ddlpres a hardware-specific SSD
endurance model. While it is useful in some cases, it requiegdware parameters (e.g., voltage,
density, etc.) to estimate the endurance through simulatiod can be inconvenient for user-level
endurance estimation in reality. GreenDM goes further byeltging an endurance model and
metric to help study the trade-offs among performance gghand endurance in a versatile hybrid
drive.
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Many storage systems use SSDs as the front tier, but theyaifigh performance, efficient
energy consumption, or improved endurance. Thus, they adlitenot closely study the trade-offs
among performance, energy, and endurance. Moreover, niaigs do not offer flexible policies
to enable adaptation to different workloads. HybridSt&&] [consolidates SSDs and HDDs for a
cost-efficient storage system while meeting the perforraamd lifetime requirements. It is based
on simulation, and does not study the trade-offs among padoce, energy, and endurance of the
tiering hybrid drive. EDT [49] dynamically migrates a fixatze extent among different tiers to
satisfy performance requirements and reduce power cortsamBTIER [129] uses a fast storage
medium for caching and migrates aged data to a lower tier twer for high performance. Its
migration policies are somewhat configurable, but it doeisconsider the power consumption
and the endurance of the tiered storage. Pearl [147] tribalamce the performance, energy, and
reliability of disk arrays by migration. It relies on simtilans alone and does not empirically study
the trade-offs in details. Hystor [23] and Aggregate [128} $SDs as the front tier primary storage
for high performance only. GreenHDFS [67] explores how tod# servers in a data-center into
different zones to save power while maintaining perforneaf®DC [101] discusses how to migrate
data center workloads to fewer disks so that others can béenmtower-power states to save
energy. NVCache [14] utilizes NVRAM for the 1/0O subsystenm fower power consumption.
GreenFS [64] allows hard disks to be kept off most of time tmimize the disk-drive-related
power consumption. MAID [24] uses data placement, scruipbamd recovery techniques to put
many of the drives in the system into a low-power mode to samzgy. Pergamum [122] adds
NVRAM at each storage node to allow inter-disk data verifaratwhile the disk is powered off
to save power in a distributed system. PARAID [139] allowagatie transitions between several
different RAID layouts to trade off energy, performanced aeliability. FAWN [5] uses “wimpy”
nodes with power-efficient CPUs and I/O capabilities to gaweer while achieving performance
and scalability in a distributed system.

GreenDM is different from the above approaches. It explanegepth the trade-offs among
performance, energy, and device endurance in a hybrid dndecomes with a versatile approach
so that important system parameters can be investigatenladet! off to be best tuned for specific
workloads.

6.4 Limitations

While GreenDM estimates the endurance metric by countie@®D reads and writes and the start-
stop (spin-up/down) cycles of the HDD, the endurance me#it be improved. A finer-grained
counting in terms of the internal SSD erasure cycles and Thesbehavior could help build a
more accurate endurance estimation for the SSD.

GreenDM provides coarse-grained control (i.e., tunabtarpaters) to trade-off performance,
energy, and device endurance under different workloadsd&Veot offer fine-grained control (e.g,
QoS). To reach that goal, we first have to formally study thegi@ship between performance, en-
ergy, device endurance, and various controllable systeampeters. We believe machine-learning-
based approaches (e.qg., hill-climbing [76] and controbtiid78, 155]) could help explore such
relationships.

GreenDM currently flushes dirty data periodically. It candamgerous. To provide transaction
support, it requires a journaling mechanism for tieringrnystorage systems.
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We currently build the virtual device from two drives onlyn 8SD and an HDD. We could
potentially scale the current setup to multiple drives aratertypes (e.g., SAS, Shingled, PCM,
and NAS) and develop more generalized techniques.

6.5 Conclusion

We designed, built, and evaluated the versatile tiring fayrive to study the trade-offs among
performance, energy, and endurance. We presented imeressults for various trade-offs ob-
served. For the FIU online trace workload, GreenDM achigugter throughput (58—-142%) than
Mylinear, but consumed more power (4—8%) and further redtice SSD’s endurance by 11-15%
when the ratio of read-to-write effect 19100. We demonstrated the importance of matching tun-
able parameters to different workloads to better tradg@®fformance, energy, and endurance. For
the FIU online trace workload, a larger extent size (ES) teddgher throughput and larger energy
savings, but also further reduced the SSD’s endurance.

Next, we discuss the cost evaluation results for GreenDMaiit help justify the performance
gained.
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Chapter 7

Cost Evaluation

Storage systems are getting more complex with solid-statetlogies rapidly taking hold, shin-
gled devices available, and hybrids thereof being propasedcommercialized [94, 133, 134]. As
the amount of digital data grows rapidly, virtualizatiordazioud technologies highlight the need
to consolidate storage and save on the longer-term cosetafktbrage. Complex workloads play
a key role in how storage systems behave. The interplay diveae, software, and workloads can
have significant impact on throughout, energy consump#aod,device durability. We propose to
evaluate modern storage systems from a monetary cost pavgpihat includes many dimensions
as well as traditional performance [42]. We assume thaesarass storage systems should be uti-
lized at high yields, due to consolidation and virtualiaati\We further propose that monetary costs
should be evaluated over the expected lifetime of the seosggtem, typically years, and consider
device wear-out and replacement [107].

Several studies integrate SSDs into storage systems, amel gansider the original purchase
cost or short-term energy use, but neglect to consider tigetlerm impact on device wear-out [49,
52,68,92,103,123]. Some simulated the results insteadrafuecting empirical studies [68, 103].

In this chapter, we propose a general cost model to studyoftedlanension of storage systems.
Our cost model considers not only the initial purchase ¢nsgtalso the total cost of ownership over
time. Our cost model includes several factors for the tatat of ownership: (1) energy cost; (2)
power cost; (3) device endurance cost; and (4) service dd&t.also scale the experiments to
observe long-term effects.

We conducted extensive experiments using many workloadscanfigurations—including
single-drives and hybrids. We observed that for some waddp an SSD-only solution incurs
the highest overall costs in the short term but much lowetsdosthe long run. We also observed
that hybrids incurs medium initial purchase investmentis,dan incur long-term costs of varying
degrees depending on the workloads. That is why we belietduture storage systems must be
evaluated across dimensions of lifetime cost, performaasevell as workloads.

We discuss the cost model in Section 7.1. We provide one wgrgkample based on the cost
model in Section 7.2. We present the associated cost exaluasults of GreenDM under several
workloads in Section 7.3. Our results contain several @siang observations. We discuss related
work on cost dimension of storage systems in Section 7.4.i8¢eisls the limitations of our current
cost model in Section 7.5. We conclude the cost evaluatiaptehn in Section 7.6.
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7.1 Cost Model

This section details our work in building a cost model tolfiertjustify the performance trade-offs
explored. It can potentially provide valuable hints to thaufe design of storage systems.

A cost metric is important to justify storage systems’ exgiemes [49, 98, 122]. With the
advent of Flash-based SSD that is more expensive, the ecnshdion of storage systems with SSD
deployed is becoming more interesting to explore. Gengridié cost in dollars comes from the
upfront purchase and the total cost of ownership (TCO [47])121ore specifically, the cost model
combines several factors below.

1. The upfront capacity purchase.
2. The recurring energy and power cost.
3. The device replacement cost.

4. The service cost (e.g., rack space, man power, etc).

We also use a time factor to predict the long-run cost. Toarghe model better, we summa-
rize the calculation formula as follows:

1 <i < n(n:thenumberof devices) (7.1)
1 < TimeF actor (integer, de fault = 1) (7.2)
Cost = Purchase + TCO (7.3)

Purchase = Z Cost ey, (7.4)

i=1

Cost ey, = Normalized Pricege,, X Capacityge,, (7.5)
TCO = TimeFactor x (Costenergy + Costpower + CoStendurance) + C0Stservice (7.6)
Costenergy = Lookupppa(Amountepergy) (7.7)

Costpower = Lookuprrpa(Amount e ) (7.8)

COStendurance - Z COStendui (79)
=1

dev; wearout

Costendgu; = Costger,; X — (7.10)
Limit;
ites if dev; = SSD
dev; wearout = writes| 61_) (7.11)
#startstop if dev; = HDD
Limit piges if . =SSD
Limit; = { ZMiturites T devi = 55 (7.12)
Limit yees it dev; = HDD

Costservice = fixed estimation (7.13)

Equation 7.1 names a variable (i.8.for each of the devices. Equation 7.2 specifies the time
factor range for future projection. Equation 7.3 shows thattotal cost (i.e.(C'ost) depends on
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the upfront purchase cost (i.2urchase) and the Total Cost of Ownership (TCO) (i.€:C'O).
Equations 7.4 and 7.5 show that the upfront purchase depenagrmalized price of each device
(i.e., Normalized Priceq.,,) and the capacity of each device (i.€¢gpacity,..,,). Note that the
normalized price of each device can change over time. Intmsis, we present the results based
on the prices the Intel SSD and Seagate HDD we purchased th 201

Prices ($ per KWh/KW) under 7KW | under 145KW | over 145KW

Energy | Power| Energy | Power| Energy | Power

offpeak 0.0863| O 0.0191| O 0.0218| O
peak 0.1052| O 0.0340| 48.78| 0.0446| 28.76
intermediate 0.0863| O 0.0317| 5.94 | 0.0356| 8.13

Table 7.1: LIPA energy and power prices for commercial usef déay 2013.

Equation 7.6 shows that the TCO depends on the energy a®stost.erq4y), the power cost
(i.e.,Costpouwer), the endurance cost (i.€/0st cpdurance), and the service cost (i.€.,05t serpice). We
also use a time factor (i.€l;imeFactor) to predict future costs associated with the energy, power,
and endurance in a longer run (i.e., run the same workloatipteitimes). Equations 7.7 and 7.8
show that we can get the energy and power cost by looking uprtbe table (i.e.Lookupr;pa)
provided by the local electricity authority (i.e., Longdsld Power Authority), as shown in Ta-
ble 7.1. Note that we currently assume: (1) the energy igiliged by3/8, 1/4, and3/8 in
accordance with offpeak, peak, and intermediate; (2) thveepan offpeak, peak, and intermedi-
ate is the average power. The energy and power measureniesgdd on the whole system. We
used a simplified method to estimate the energy and power Eagtation 7.9 show that we can
get the total endurance cost by summarizing each devicdisrance cost (i.e('ost,q44;). Equa-
tion 7.10 shows that we can get each device’s endurance gastubiplying the wear out degree
(i.e., %) of each device type by the device’s cost (i€ost.,,). Note that if the device is
worn out a certain degree, we then need to save money acgbyrtiinrbuy a new device. Note that
the wear-out degree and the endurance limit of each devigeomdifferent.

Limits
SSD 36,500 GB writes
HDD | 300,000 spin up/down cycles

Table 7.2: Devices wear-out limits.

Equations 7.11 and 7.12 show that the Flash-based SSD ewéudtapends more on the writes
wear out (i.e.,writes). Note that reads also affect SSD’s endurance. In our woekceanvert
the effect of reads to writes based on a certain ratio (i.ates/caused by reads is calculated as
reads/10). They also show that for HDD, the number of HDD start-stopley (i.e.,#startstop)
is one major factor. Other factors include vibration, seetwors, and so on [102]. We use the
number of HDD start-stop cycles for simplicity. Table 7.2gent the detailed limits from the
hardware manufacture. Equation 7.13 shows that we carefune fixed estimation as the service
cost (Cost e vice) fOr the hardware setup. To better understand the model atesaibed above,
we come up with a working example in the following section.
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7.2 Working Example

This Section illustrates how the above cost model worksgusame example numbers.

Suppose, we have a tiering hybrid drive of 32GB capacity ialtdrhe tiering hybrid drive is
composed of one Flash-based SSD and one HDD: 8GB from the 8&R4GB from the HDD.
The total capacity of the SSD device is 300GB and the costherdevice is $529. The total
capacity of the HDD device is 2TB and the cost of the device2i30$ The normalized prices for
the SSD and HDD are $1.76 per GB and $0.1 per GB, respectivdig. Flash-based SSD can
endure a total amount of 36,500GB writes, and the HDD can renduotal amount of 300,000
start-stop cycles. The tiering hybrid drive is installedoime rack server machine that occupies
some space that costs $100 one time in total. The server ame benchmark (e.g., fileserver
workload), which consumes energy and power. Suppose therderishes running 100GB amount
of fileserver workload, and consumes a total amount of 8k\nggnand a average power of 100W.
Suppose running the workload causes 365GB worth of writése®SD and 10 start-stop cycles
to the HDD.

Now, what would be the associated cost according to the ainoedz|?

The total cost of purchase would be $16.48: $14%876 x 8) comes from the SSD device
cost and $2.4%0.1 x 24) comes from the HDD device cost. Since the average powesssthan
7KW, the energy cost would be $0.641® (0863 x 3 + $0.1052 x 2 + $0.0863 x 3). The power
cost would be $0%0 x 0.1). The endurance cost for SSD would be $5.220 x 365/36500). The
endurance cost of the HDD would be $0.82(0 x 10/200000). Since the service fee is $100 and
the time factor is 1, the total cost of running the 100GB fiteeeworkload would be $122.4219
($16.48 + 1 x (30.6419 + $0 + $5.29 4 $0.01) + $100). If the time factor becomes 100, then the
total cost would change to be $710.67.48 + 100 x ($0.6419 + $0 + $5.29 + $0.01) + $100).

Next, we evaluate the associated costs under several vaoikia the following sections.

7.3 Cost Results

In this Section, we present the associated cost resultsreer@®M under various workloads as we
discussed in Chapter 6.

7.3.1 Web-Search Trace Workload

We present the results of Web-search trace workload in Eigut. As we can see from Fig-
ures 7.1(a), 7.1(b), 7.1(c), 7.1(d), 7.1(e), and 7.1(f)emwkhe time factor is 1, the SSD-only
drive based system has the highest associated cost, thedAa@ive based system has the lowest
associated cost, and tiering hybrids based systems havemmadsociated costs. However, as the
time factor increases, the associated cost of the HDD-omNg dbased system stays the least, the
associated cost of the SSD-only drive and Mylinear tieripigrid drive based system increases in
the middle, and the associated cost of GreenDM tiering dythrive based system increases the
most. Among tiering hybrids, GreenDM incurs more cost thariidar does. The larger the time
factor is, the larger the difference is. When the time factdt, the difference is only $1. How-
ever, when the time factor is 1,000, the difference is makin&854, and when the time factor is
100,000, the difference is maximally $35,300. The maingras that GreenDM comes with many
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Figure 7.1: Web-Search workload results. We scale the tao®f to show various results.
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more data migrations that reduces the SSD’s endurance iXote that for Web-search workload,
when the time factor is 100,000, it translates to 2.1 yearavanage (min and max are 0.2 and 7.7
years, respectively) for all types of benchmarks—a redslertaneframe for long-time storage.

We can also see from the above figures that different GreenBBMand PT values lead to
different associated costs. The difference varies whetirtieefactor varies. For example, when the
time factor is 1, the difference is almost zero; when the tiactor is 10, the difference varies from
$0 to $2; when the time factor is 100, the difference variemff0 to $20; when the time factor is
1,000, the difference varies from $1 to $193; when the tinséofais 10,000, the difference varies
from $1,600 to $3,500; and when the time factor is 100,008 difference varies from $16,100
to $35,300. The main reason is that different GreenDM MCMH &T combinations affect the
trade-offs of performance, energy, and endurance in diftavays as we have already discussed in
Chapter 6.

For this workload, a larger PT value tends to incur less ao$ié long run since a larger PT
causes less number of data migrations. When PT is 1, a srivili&tL value tends to incur less
cost in the long run since a smaller MCML value in this caseseauess frequent data migration.
Therefore, system parameters have to be chosen carefyllgtify the gained performance.

7.3.2 FIU Online Trace Workload

We present the results of FIU online trace workload in Figora As we can see from Fig-
ures 7.2(a), 7.2(b), 7.2(c), 7.2(d), 7.2(e), and 7.2(f)emwkhe time factor is 1, the SSD-only
drive based system incurs the highest cost, the HDD-onledrased system incurs the least cost,
tiering hybrids based systems incur cost in the middle. Hewes the time factor increases, the
incurred cost of the HDD-only drive based system increalseddast and becomes the smallest
one, the incurred cost of the SSD-only drive based systemases greatly and becomes one of
the largest ones, and the incurred costs of tiering basddmegdncrease in large degrees as well.
Among the tiering hybrids, GreenDM causes more cost tharirdg does. The larger the time
factor is, the larger the difference is. When the time faitdr, the difference is $0. However, when
the time factor is 1,000, the difference is maximally $42] arhen the time factor is 100,000, the
difference is maximally $4,200. The reason is similar to iwke mentioned above. Note that for
FIU online workload, when the time factor is 100,000, it sktes to 3.3 years on average for all
types of benchmarks (min and max are 0.7 and 9.8 years, tesggc

We can also see from the above figures that different GreenBMdtes incur different costs.
The difference varies as the time factor varies. For examplen the time factor is 1 and 10,
the difference is zero; when the time factor is 100, the diffiee varies from zero to $1; when
the time factor is 1,000, the difference varies from $6 to;$8en the time factor is 10,000, the
difference varies from $0 to $100; and when the time fact@0i8,000, the difference varies from
$600 to $1,200. The main reason is that different GreenDM &&e¢ also affect the trade-offs of
performance, energy, and endurance in different ways asawe discussed in Chapter 6.

For this workload, a smaller ES seems to incur less cost ilotigerun since smaller ES leads to
smaller SSD accesses. Therefore, the ES parameter hashosenaarefully to justify the gained
performance.
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Figure 7.2: Online trace workload results. We scale the famtor to show various results.

64



Cost (Dollars) Cost (Dollars)

Cost ($1000) Dollars

Gamma Parameter k

(e) Cost Dimension with Time-Factor 10,000

200 —1 SSD-only Mylinear green-16MCML 200 —1 SSD-only Mylinear £S5 green-16MCML
&z HDD-only m— o reon-4MCML 7 green-64MCML o HDD-only w—orcen-4MCML VR green-64MCML
150 » 150
—
= 115
'_o' 1001 406106 106
100 | A 100+ . :
2
2
o)
50 O 50F
0 0
Gamma Parameter k Gamma Parameter k
(a) Cost Dimension with Time-Factor 1 (b) Cost Dimension with Time-Factor 10
200 800 "
—— SSD-only Mylinear green-16MCML ——= SSD-only Mylinear green-16MCML
#3272 HDD-only s orcen-4MCML green-64MCML 700 #3237 HDD-only s orcen-4MCML i green-64AMCML
150
150 | 1451?7 - ’@ 600 567
4126 >
i = 500 f
N <)
100 QA 400 [
2 300 [
o)
0r O 200+
100
0 0
Gamma Parameter k Gamma Parameter k
(c) Cost Dimension with Time-Factor 100 (d) Cost Dimension with Time-Factor 1,000
6 - 70 -
—1 SSD-only Mylinear green-16MCML SSD-only Mylinear 2 green-16MCML
&mxm HDD-only w—oreon-4MCML green-64MCML 2 60 b = HDD-only w—orcen-4MCML  green-64MCML
5r <
D 50t
Al g
=~ 40t
3t S
S 30f
L 17
2 €t
v
r SR
0 0

Gamma Parameter k

(f) Cost Dimension with Time-Factor 100,000

Figure 7.3: Fileserver workload results. We scale the tiaogofr to show various results.
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7.3.3 File-Server Workload

We present the results of file-server workload in Figure A8.we can see from Figures 7.3(a),
7.3(b), 7.3(c), 7.3(d), 7.3(e), and 7.3(f), when the timadais 1 and 10, the SSD-only drive
based system tends to incur the highest cost, the HDD-oivg dased system tends to incur the
lowest cost, and tiering hybrid drive based systems tenddoricosts in the middle. However, as
the time factor increases further, the incurred cost of tB®FbNly drive increases the least, the
incurred costs of GreenDM based systems increase the mdsth@ SSD-only drive and Mylinear
drive based systems increase in the middle. Among the gidrytorids, GreenDM causes more
cost than Mylinear does. The larger the time factor is, tihgelathe difference is. When the time
factor is 1, the difference is virtually zero, however, whbka time factor is 1,000, the difference
is maximally $510, and when the time factor is 100,000, tfifedince is maximally $41,000. The
number of data migrations in GreenDM is the main reason. Nwig for fileserver workloads,
when the time factor is 100,000, it translates to 1 year onagyefor all types of benchmarks (min
and max are 0.2 and 2.4 years, respectively).

Different GreenDM MCML values under different Gamma valuas incur different costs. The
difference varies as the time factor vary. When the timeofaist 1, the difference is virtually $0.
When the time factor is 10, the difference is within $1. Whea time factor is 100, the difference
varies from $1 to $5. When the time factor is 1,000, the d#ifee varies from $5 to $53 . When the
time factor is 10,000, the difference varies from $100 to®3&hen the time factor is 100,000, the
difference varies from $500 to $5,300. The reason lies iffdabethat different GreenDM MCML
values under different Gamma values affect the trade-dffedormance, energy, and endurance
in different ways as we discussed in Chapter 6.

For this workload, a large MCML value of 64 under smaller Gamwalues tend to incur the
least cost in the long run since: (1) a smaller Gamma valusasaless number of data migrations;
and (2) when Gamma value is small, a large MCML of 64 enablegii@s to be served from OS
page buffer. Therefore, system parameters have to be claseiully to better justify the gained
performance.

7.3.4 Summary

We summarize the interesting observations across all wadd regarding the associated cost as-
pect of GreenDM as follows:

1. For the read-intensive Web-search workload, a larger &devincurs less cost in the long
run; for the write-intensive FIU online trace, a smaller Eue incurs less cost in the long
run; for the file-server workload that has a different readéwratio, a large MCML value
when the Gamma value is small incurs the least cost in theramg

2. The HDD-only drive based system has the least initialtehpivestment, and incurs the least
cost in dollars in the long run. Note that the HDD-only driveesbd system has the lowest
performance as well.

3. The SSD-only drive based system has the largest inifialadanvestment, and can incur low
and high long-term costs for read-intensive and writeAsiee workloads, respectively. Note
that the SSD-only drive based system has the highest paafarenas well.

66



4. Tiering based hybrid systems have medium initial cajitastment, and can incur costs in
different degrees in the long run. Note that the tiering iddbased system has a medium
throughput as well.

5. Depending on the data management policy, the associastsl af different tiering hybrids
can vary a lot in the long run: GreenDM triggers more cost thiatinear does; however,
GreenDM achieves better performance than Mylinear does.

6. Different GreenDM configurations lead to a certain degriedifference in cost, which in-
creases as the time factor increases. The difference atggylalepends on the workloads.

7.4 Related Work

Gartner reported that the total cost of ownership is 5«<1lfat of the initial purchase cost for stor-

age systems [42]. However, the study is old (1999) and daesomsider modern deployment using
SSDs. More recently, Gartner performed additional lomgiteost studies for desktops [43] and
notebooks [44]; however, these studies are only for the coenp (i.e., hardware and software pur-
chase and update), not dedicated for storage systems,@nddmot consider device replacement
cost.

There are several related studies on the cost dimensionrafggt systems with SSD deployed.
Some of them are using simulation [68,103], instead of periiog realistic experiments. Some [49,
92] do not consider the SSD endurance cost in their totalaastllation. The cost dimension of
storage systems with SSD deployed is discussed a lot intiycaswell [38,123], however, detailed
cost model that considers the total cost of ownership is nbligy available.

Our work is different in several aspects: (1) we collect ist@l energy and power numbers
from experiments; (2) we calculate the SSD endurance cosehls(3) we scale the experiments
to observe long-term effects; and (4) We developed and ssriia cost model containing the total
cost of ownership.

7.5 Limitations

Modeling the cost dimension of storage systems is not anteaky There is certainly limitations
regarding our current cost model. Specifically, we are nosizering the following cost aspects
yet: (1) computer resource cost; (2) air conditioning c@3};labor power cost; and (4) varying
service cost. We are also simplifying several conditiona#ie the cost model easy to understand:
(1) the hardware setup in a real data center may be more crthgle our setup in the experiments;
(2) the service cost may not be fixed; and (3) the workloads rieaa data center may be more
complex than the workloads we used in the experiments. Tdrereour cost model approach is
more like a best-effort approach. However, our work coulteptally help build more accurate
cost models to better justify the performance gained iregf@iystems.
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7.6 Conclusion

We have presented our cost model to show several interestsudts. The results further prove
that the trade-offs among performance, energy, and dewderance play a role in the aspect of
economics. Future storage system designs have to considplenoptimizations: performance,

energy, endurance, and cost.
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Chapter 8

Caching Follow-Up

Tiering and caching based hybrid approaches share sewsighdraits with each other (e.g., sim-
ilar data management policies). But, they are not the sarpmaphes. There are existing stud-
ies [24, 52] exploring the pros and cons of the tiering anchcezbased approaches. However,
there is no current work that builds the two realistic systemith similar strategies, and empiri-
cally evaluates the two systems from the cost perspectigenthe same environment, when SSDs
are deployed.

Our environment setup is not the best case for a cachingmydiat for a tiering system.
However, we choose to delve into such a caching system, ipadson with the tiering under the
same hardware and similar software setup, to provide méeesisting observations. We observed
that for some workloads, using the SSD as a cache had lowertbas when the SSD was used as
primary hot-data storage; but other workloads comple@grsed this trend.

We discuss the design and implementation of the caching@myst Section 8.1. We evaluate
the caching system in Section 8.2. We discuss related wotlkedng and caching in Section 8.3.
We explain the limitations of the caching system in Sectigh 8/e conclude the caching follow-up
work in Section 8.5.

8.1 Design and Implementation

Our caching system is largely based on the tiering systenegseviously discussed in Section 6.1.
Understanding how the tiering system works helps a lot irdikeussion because the two are very
similar to each other. For better illustration, we preséetdrchitecture of our caching system in
Figure 8.1, and show the data management strategies ineF&r To distinguish the caching
system from the tiering system, we explain the differenega/ben the two systems below.

Capacity Inthe caching system, since the SSD is not counted towartdthlecapacity, the HDD
capacity needs to be expanded to yield the same amount bfamacity as the tiering system has.
When the SSD capacity is not largely different than the totglacity, a tiering system can have
better purchase cost per GB than the caching system does.

Management Unit The caching system uses a cache entry table and the tierstgnsyses a
mapping table. Unlike the tiering mapping table that mapsnfthe whole virtual layer to the
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Figure 8.1:Caching Architecture. The shaded rectangles are DM targets, usually implemented
as loadable kernel modules.

physical layer, the cache entry table maintains mappingmétion only from the cache device to
the lower-level device. It contains not only the four fieldshe mapping table of the tiering system
(i.e., extent ID, state, usage counter, and time-stampeofatest access), but also a dirty flag to
indicate whether a cached extent is updated or not.

Data Movement The two systems use the same method to move data around. Véetharot
data moving proceggomotionandpre-fetchin the tiering system and caching system, respectively.
We name the cold data moving process in the two systemstiorandeviction respectively. The
caching system does not need to reserve extra extents inRBefét eviction to succeed, as it is
guaranteed to map an extent from the SSD to the HDD.

Read/Write Policy In atiering system, since the SSD is used as primary storegés and writes
access the data from the current location either on the S$D&raccording to the mapping table.
Cold data migrates to the HDD and hot data eventually migtatéhe SSD using kernel threads. In
a caching system, reads and writes access data from the Si&bdta is still there, else from the
HDD. If itis an SSD write hit or if there is a write to any of thé&is that are served from RAM, the
system stores information of the pending write-back I/O muaue, and an asynchronous write-
back kernel thread wakes up to flush dirty writes from the S&Ehé HDD. To control the rate
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Figure 8.2:Data Management in Caching “CID” and “PID” represent the cache extent ID and
the primary extent ID, respectively. The green arrows thate the mapping from the cache device
to the primary device.

of the write-back process, our caching system removes chipli, queued write-back 1/0s and
caps the maximum queue size. The queue is not blocking théevelgetem because the queue is
around1/3 full under pressure. The current policy can help illustitiie negative effects of the
caching write-back policy compared with the tiering systlat requires no write-back at all. The
implementation detail of the caching’s write policy is bega the eviction process for easy data
management. 1/O access can be slow down during write-bdisktyac

Other than the differences as we explained above, the twteragsare virtually identical in
terms of design and implementation.

8.2 Evaluation

Our caching system is evaluated under the exactly same astwe do for the tiering system, as
discussed in Section 6.2. Therefore, we do not duplicatesétep description in this evaluation
section for the caching system. The front tier device sizes ESD size used in the experiments)
are the same as well to produce comparable results.

We then discuss the results of the caching system under the warkloads: (1) Web-Search
trace workload; (2) FIU’s online trace workload; and (3)eBiénch file-server workload. The cost
results are based on the same cost model as we discussedpteCRd. For clarity, we use

71



abbreviations in the results below: (1) MCML means Maximuaon€urrent Migration Limit; (2)
PT means Pre-fetching Threshold (similar to Promotion $hoéd); and (3) ES means Extent Size.

8.2.1 Web-Search Trace Workload
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Figure 8.3:Web-Search Trace Replay Results (part 1)

We present the Web-search trace workload results of thergasiistem in Figures 8.3 and 8.4.
The parameter configurations for the caching system is tme s& the tiering system has for the
Web-search trace workload.

As shown in Figures 8.3(a), 8.3(b), 8.3(c), 8.3(e), and f8.8(e can observe similar trade-
offs among performance, energy, power, and endurance assagsded for our tiering system in
Section 6.2.3. In Figures 8.4(a), 8.4(b), 8.4(c), 8.4(dA(e8), and 8.4(f), we can observe similar
trend for the total cost of the system as we discussed fori@umg system in Section 7.3.1.

We then compare the caching system against the tieringmsyistenore details. For this Web-
search trace workload, the caching system achieves sligigther throughput (i.e., 4-9%) than the
tiering system does when the Pre-fetching Threshold (P#)asd 16; and achieves very similar
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Figure 8.4:Web-Search Trace Replay Results (part 2)
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throughput than the tiering system does when PT is 64, as wesaa in Figure 8.3(a). For the

purpose of explanation, the Web-search trace workload lias more reads than writes, as shown
in Table 6.3. That means the overhead of the write back is aioigggo be significant since there

are only a few writes. Moreover, as the primary storage, §8D) in the tiering system contains

either cold or hot data before hand, this can incur additiomarhead to the overall throughput.

However, the caching device in the caching system only amsitaot data. That means the overall
throughput of the caching system may be higher than thateofiéhning system in some degree if

the primary storage initially contains cold data in theitigrsystem.

The caching system also consumes very similar energy agetirgtsystem does when the PT
is 1 and 16. When the PT is 4, the caching system consumeslgliegs energy (i.e., 7-10%) than
the tiering system does, as shown in Figure 8.3(b). The neaisan is that the energy consumption
is coupled with the throughput since the total amount of Wia# is the same.

The caching system consumes similar power as the tieringrsydoes, as shown in Fig-
ure 8.3(c). The caching system also rarely spins down the Hi3Bhown in Figure 8.3(d).

Besides, the caching system also incurs less SSD enduseheetion (i.e., 8—20%) than that of
the tiering system when the ratio of read-to-write effedt/is), as seen in Figure 8.3(e). The reason
is due to the aggregated primary SSD 1/Os in the tiering sysféhe caching system wears out the
SSD faster (i.e., 8-19%) than the tiering system does wheeratfo of read-to-write effect is/100,
as we can see in Figure 8.3(f). The reason is two-fold: (E)\Web-search is read-dominated; and
(2) reads are not as effective as the writes to reduce the 8rance.

Moreover, the caching system causes less total dollar ndsiei long run (i.e., 8—20%) than
the tiering system does, as shown in Figure 8.4(f). NoteftirdiVeb-search workload, when the
time factor is 100,000, it translates to 2.1 years on ave(age and max are 0.2 and 7.7 years,
respectively) for all types of benchmarks, a reasonable fiame for long-term storage. The
reason for the above difference is that the caching systesnsimit the SSD slower when the ratio
of read-to-write effect id /10, and the current cost results are based on the assumptiotihéha
ratio of read-to-write effect i$/10.

8.2.2 Online Trace Workload

We present the FIU online trace workload results of the caghystem in Figures 8.5 and 8.6. The
parameter configurations for the caching system is the sarniediering system has for the online
trace workload.

As shown in Figures 8.5(a), 8.5(b), 8.5(c), 8.5(e), and f8.B(e can observe similar trade-
offs among performance, energy, power, and endurance assagsded for our tiering system in
Section 6.2.4. In Figures 8.6(a), 8.6(b), 8.6(c), 8.6(dk(8), and 8.6(f), we can observe similar
trend for the total cost of the system as we discussed forieumg system in Section 7.3.2.

We then compare the caching system against the tieringmyistenore details. For this FIU
online trace workload, the caching system achieves lessidgimput (i.e., 58—82%) than the tiering
system does when the ES varies, as we can see in Figure 8%falhe purpose of explanation,
the online trace workload has lots of writes, as shown ind&tB. That means the overhead of the
write back can be a bottleneck when it comes to throughput.

The caching system also consumes more energy (i.ex Rtan the tiering system does, as
shown in Figure 8.5(b). The reason is that the total energgwmption is coupled with the through-
put and the total amount of workload is the same.
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The caching system consumes similar power as the tieringrsydoes, as seen in Figure 8.5(c).
The only big difference is that for the caching system, when ES is 4K, the caching system
consumes much higher power than other conditions. The magagbat when the ES is 4K, there
are much more write-back 1/Os that cause the system (i.&J, RRM, and 1/O system) to be even
more active. The caching system also rarely spins down th,HB shown in Figure 8.3(d).

Besides, the caching system also incurs more SSD enduresheetion (i.e., 1-23% and 2—5%)
than the tiering system does when the ratio of read-to-weffext is1/10 and1/100, respectively,
as seen in Figure 8.5(e) and Figure 8.5(f), respectivelg. mhin reason is that the caching system
has more write-back 1/Os than the aggregated primary SSBili@he tiering system. Therefore,
the caching system can wear out the SSD faster than thegtigystem does.

Moreover, the caching system causes more total dollar ndsiei long run (i.e., 5—-23%) than
the tiering system does, as shown in Figure 8.6(f). NoteftivaEIU online workload, when the
time factor is 100,000, it translates to 3.3 years on avefagall types of benchmarks (min and
max are 0.7 and 9.8 years, respectively). The reason fortbibreeadifference is that the caching
system wears out the SSD faster as we explained above, ag&&iendurance reduction counts
more toward the total cost of ownership.

8.2.3 File-server Workload

We present the file-server workload results of the cachirgesy in Figures 8.7 and 8.8. The
parameter configurations for the caching system is the sartfeeaiering system has for the file-
server workload.

As shown in Figures 8.7(a), 8.7(b), 8.7(c), 8.7(e), and f8.We can observe similar trade-
offs among performance, energy, power, and endurance assagsded for our tiering system in
Section 6.2.5. In Figures 8.8(a), 8.8(b), 8.8(c), 8.8(dB(8), and 8.8(f), we can observe similar
trend for the total cost of the system as we discussed forieumg system in Section 7.3.3.

We then compare the caching system against the tieringmsystenore details. For this
Filebench file-server workload, the caching system ackiée®s throughput (i.e., 14-71%) than
the tiering system does when the system parameters (i.eMIM®T, and Gamma) vary, as we
can see in Figure 8.7(a). For the purpose of explanatiorfjldaserver workload has lots of I/Os:
both reads and writes. There are more reads than writeshéulifference is not that significant,
according to Filebench. That means the overhead of the bait& is going to play some role in
making the throughput lower.

The caching system also consumes more energy (i.e., up tptha¥the tiering system does,
as shown in Figure 8.7(b). The reason is similar with what axelexplained in Section 8.2.1.

The caching system consumes similar power as the tieringrsydoes, as shown in Fig-
ure 8.7(c). The caching system spins down the HDD even |essttie tiering system does, as
shown in Figure 8.7(d) and since the caching system uses [l fdore aggressively than the
tiering system.

Moreover, the caching system wears out the SSD slower 2i7e:60% and 28—60%) than the
tiering system does when the ratio of read-to-writd j40 and 1/100, respectively, as seen in
Figure 8.7(e) and Figure 8.7(f), respectively. The maisoeas that the tiering system’s aggregated
primary SSD 1/0Os become a bigger factor toward the SSD endereaeduction. Therefore, the
caching system wears out the SSD slower than the tieringrsydoes.
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Moreover, the caching system causes less total dollarctis¢ilong run (i.e., 27-55%) than the
tiering system does, as shown in Figure 8.8(f). Note thatfefileserver workloads, when the time
factor is 100,000, it translates to 1 year on average foypéls of benchmarks (min and max are 0.2
and 2.4 years, respectively). The main reason for the abiffeeeshce is that the caching system
incurs less SSD endurance reduction as we explained abogietha SSD endurance reduction
counts more toward the total cost of ownership.

8.2.4 Summary

We summarize the caching follow-up results in comparisah tie tiering system below.

1. For the read-intensive Web-search workload, cachingeaes similar throughput, energy
and power consumption, and short-term dollar cost with ikeng system since the two
systems are similar. Moreover, caching wears out the SSesland has lower long-term
dollar cost than tiering due to the aggregated primary S8B ih the tiering system.

2. For the write-intensive Online workload, caching achgless throughput than tiering does
due to the negative effect of the write-back policy in thehtag system. Moreover, caching
causes higher energy and power consumption, wears out Dde8gr, and causes higher
long-term cost than tiering does due to the same write-baghative effect in the caching
system. Besides, caching causes similar short-term casttiering does since the hybrid
drive setup is relatively small.

3. For the read- and write-intensive file-server workloaathing achieves less throughput than
tiering does due to the write-back negative effect in théncarsystem. Moreover, caching
also wears out the SSD slower and incurs less long-term easilise the tiering system has
more aggregated primary SSD 1/Os. Moreover, caching cehigegr energy consumption
than tiering, and similar power consumption and short-teost with tiering.

4. Caching and tiering are very similar except that: (1) aaglonly maintains mapping infor-
mation from the cache device to the lower-level device winieng has to maintain mapping
from the whole virtual device to the actual physical devjd¢@% caching has to further sup-
port a write policy in case of a write hit in the cache devicelatiering does not need to;
and (3) tiering can achieve better initial purchase cost ocapacity than caching does since
the hot device is used as the primary storage.

8.3 Related Work

There are several related work on the comparison betwe&imgpand tiering systems. MAID [24]
briefly discusses the pros and cons of caching and migraisedpolicies for massive storage
systems. With the advent of Phase Change Memories (PCMsg ihone work [52] that evaluates
PCMs for enterprise storage systems by case studies ofngaahd tiering approaches. However,
there is no direct comparison study performed for the cachimd tiering approaches from the
perspective of total cost of ownership.

Our work is different from the above work in several aspe(t$we build two realistic systems
(i.e., tiering and caching) with similar strategies andienmvment to evaluate the pros and cons of
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the caching and tiering based storage systems; and (2) Wwentwothe total cost of ownership for
the two systems with SSD deployed to provide even more istieiggobservations.

8.4 Limitations

Caching system and tiering system share several desi¢s t@ir caching system is largely based
on the tiering system. Other than the limitations we disedss Section 6.4, there is also another
limitation. Our experiment setup is a better environmentofar tiering system, not for a caching
system. Caching system is normally deployed in large stosgtems where the caching tier
is comparably small compared with the lower-level storagg.( 1 PB). We stick to the current
environment because our comparison study will only maksesgrhen the hardware and software
setup is the same between the two systems. It would be ititegeend challenging to further
discuss the caching system in a large storage system.

8.5 Conclusion

Caching system and tiering system are two types of hybridhgtosystems. They share several de-
sign traits and are normally deployed in different contegéhing system is normally explored in
very large storage systems with relatively small cachirng,sand tiering system is normally utilized
in relatively small storage system, where the capacity efttigh-level tier storage is comparable
with the lower-level storage.

To provide comparable results for the two hybrid systemsjesigned, implemented, and eval-
uated the two systems in similar environment. However, \lleostserved interesting results. The
results, collected under our current environment wherentiesystem can achieve better purchase
cost over capacity, provide several interesting obsemati First of all, tiering system generally
achieves better performance than caching system sinceriteepalicy of the caching system in-
curs more overhead to the system and the tiering systemteadgregate hot data more efficiently
than the caching system. Secondly, the caching system canownethe SSD faster or slower than
the tiering system depending on two factors: (1) the SSD ahicg system is not used as primary
storage so that there is no primary SSD I/Os; and (2) thera aegtain amount of write back 1/0s
in the caching system. Last but not least, caching systearsnoore or less total cost (i.e., pur-
chase cost plus total cost of ownership) than tiering sysiarthe long run depending on the SSD
endurance reduction each system causes.

81



Chapter 9
Capacity Ratio Follow-Up

The capacity ratio of the SSD as a fraction over the total dapanatters for both the tiering and
caching systems in terms of throughput, energy and poweicelendurance reduction, and dollar
cost. Previously, in Chapters 6, 7, and 8, we usgtias the capacity ratio of SSD over total.
Here, we report results from trying'8 as the SSD’s capacity ratio over total capacity. We reran all
experiments and report our results and analysis here.

In this Chapter, we present our evaluation results in Sed&i&, and summarize the capacity
ratio discussion in Section 9.2.

9.1 Evaluation

We reran all the experiments under the same hardware anebseftonfigurations, other than with
a newl /8 capacity ratio of the SSD over total capacity. We presenthisliss those results in this
Section. To avoid duplicated description and discussianfagus more on representative results
(i.e., throughput, SSD endurance reduction, and cost).

9.1.1 Web-Search Trace Workload

We present the results of Web-search workload in Figure 9.1.

In terms of throughput for the Web-search workload, as wessnfrom Figures 8.3(a) and
9.1(a), when the SSD capacity ratio varies froyd to 1/8, the throughputs for both caching and
tiering goes down, ranging from 48% to 81%. The main reasorhe throughput degradation
is due to the increased number of data movements betweerSihead the HDD for both the
two systems and a reduced SSD hit ratio when the availablecapBeity is reduced in half. We
can also see that when the SSD capacity decreases, thetiprdud Mylinear increases by 19%
because of fewer SSD hits.

In terms of SSD endurance reduction, as we can see from Bidug¢e) and 9.1(b), when
the SSD capacity ratio varies fromy4 to 1/8, it wears out the SSD faster for both caching and
tiering systems, from 26% tox3 The reason is that the smaller SSD capacity causes more data
movements between the SSD and the HDD for both tiering ankingsystems. The smaller the
PT value is, the more the data movements are incurred beBdusads to be the dominating factor
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Figure 9.1:Web-Search Trace Replay ResultsWe configured ES to 1MB in GreenDM, to help
with sequential prefetching. HDD spin-down was enabledifbconfigurations. The new capacity
ratio of SSD over total ig/8.

of SSD’s endurance reduction. We can also see that when De&scity decreases, it wears out
the SSD 58% slower for Mylinear because of reduced SSD agsess

In terms of cost, as we can see from Figures 8.4(a) and 9dr{d)Figures 8.4(f) and 9.1(d),
when the SSD capacity ratio varies froij4 to 1/8, it incurs similar short-term cost for both
the caching and tiering systems, but incurs more long-tesst for both systems, from 27% to
3x. The reason for the similar short-term cost is due to the tlagt when the capacity ratio
varies, it only causes little variation in the capacity ¢astergy and power costs, and the SSD
replacement cost, when the time-factor is 1. The reasorhédifferent long-term cost is because
of the additional number of data movements between the SSDttenHDD. We can also see
that when the SSD capacity ratio decreases, it incurs 308ddeg-term cost for Mylinear due to
reduced SSD accesses.

9.1.2 Online Trace Workload

We present the results of Online workload in Figure 9.2.

For throughput, as we can see from Figures 8.5(a) and 9.&&n the SSD capacity ra-
tio varies from1/4 to 1/8, the throughput for the tiering system goes down, from 21%%b;
throughput for the caching system increases from 7% to 18%nwine ES is 4K and 16K, respec-
tively, and decreases by 4% when the ES is 64K. The reasoréotigring system throughput
degradation is due to the increased data movements bethe&8D and the HDD when the SSD
capacity is smaller. The reason for the caching system ¢ffimout increase when the ES is small is
because: (1) the caching system is bottlenecked by the-hait& I/Os since this is a write-intensive
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Figure 9.2:0Online Trace Replay Results As example, we set MCML to 16 and PT to 1. Disk
spin-down was enabled for all configurations. The new capaafio of SSD over total i3 /8.

workload; and (2) the smaller SSD capacity reduces the nuoflverite-back 1/0s. The reason for
the small caching system throughput degradation is dueetéattt that when the ES is larger, data
movements between the SSD and the HDD causes more overheachriVdlso see that when the
SSD capacity decreases, the throughput of Mylinear inesebg 32% due to the aforementioned
reason.

For SSD endurance reduction, as we can see from Figureg &ride 9.2(b), when the SSD
capacity ratio varies from /4 to 1/8, the SSD endurance reduction for both tiering and caching
stays roughly the same. The reason is actually due to theffeet ef the following factors: (1)
smaller SSD capacity leads to more data movements, whiclnsveed the SSD faster; and (2)
smaller SSD capacity leads to fewer SSD hits, which wearsh@uSSD slower. We can also see
that when the SSD capacity reduces, it wears out the SSD 8R&isfor Mylinear due to reduced
SSD accesses.

For cost, as we can see from Figures 8.6(a) and 9.2(c), andleSi@.6(f) and 9.2(d), when
the SSD capacity ratio varies frotj4 to 1/8, it incurs similar short-term and long-term costs for
both tiering and caching systems. The reason for the sistil@art-term cost when the SSD capacity
ratio reduces is due to the aforementioned reason. Therrdaisthe similar long-term cost when
the SSD capacity ratio reduces is due to the fact the SSD andeireduction stays similar when
the SSD capacity ratio varies. We can also see that when the&$acity decreases, it causes 8%
less long-term cost for Mylinear because of reduced SSDsaese

84



800 1400
[1SSD-only M cache-4MCML 72 green-4MCML [1SSD-only M cache-4MCML 7% green-4MCML

HDD-only cache-16MCML 1773 green-16MCML 1200 } 22 HDD-only {5 cache-16MCML 1773 green-16MCML
Mylinear {7 cache-64MCML green-64MCML £ Mylinear 7 cache-64MCML green-64MCML
1000

®
=3
3

-y
3
3

Throughput (MB/Sec)
SSD Delta Endurance (eu)

IS
3
S

Gamma Parameter k Gamma Parameter k

(a) Throughput (b) SSD Delta Endurance with Ratiol/10

[1SSD-only M cache-4MCML {3 green-4MCML
[5 cache-16MCML {77 green-16MCML

{7 cache-64MCML {__igreen-64MCML

M cache-4MCML {2 green-4MCML
S5 cache-16MCML {74 green-16MCML

{7 cache-64MCML {__igreen-64MCML

93
3

IS
S

30

Cost (1000) Dollars

20

- 4
Gamma Parameter k

16

16

1 1

7}
Gamma Parameter k

(c) Cost Dimension with Time-Factor 1 (d) Cost Dimension with Time-Factor 100,000

Figure 9.3:Fileserver Workload Results We configured the ES to be 128KB in GreenDM. It is
equal to the average 1/O size to avoid the migration wastd/@nsplit overhead. The PT value was
fixed at 1, as example. Disk spin-down was enabled for all. Adwe capacity ratio of SSD over

total is1/8.

9.1.3 File-server Workload

We present the results of File-server workload in Figure N\dte that the OS buffer cache is
enabled for this workload.

In terms of throughput, as shown in Figures 8.7(a) and 9.8¢agn the SSD capacity ratio
varies from1/4 to 1/8, the throughputs for both tiering and caching systems gdlyereduces,
from 35% to 57%. The main reason is due to the reduced SSDrldtsareased data movements
between the SSD and the HDD when the available SSD capaatynies smaller. We can also
see that when the SSD capacity decreases, the throughputlioielsr increases from 4% to 30%
instead of decreasing. We believe that the OS buffer cadeeid to different degrees here, which
causes this difference.

In terms of SSD endurance reduction, as shown in Figureg)8and 9.3(b), when the SSD
capacity ratio varies fromi /4 to 1/8, it generally wears out the SSD slower for both tiering and
caching, from 7% to 25%. The main reason is because therewes 5SD hits and it is generally
a bigger factor than the increased data movements. We carsedsthat for Mylinear, when the
SSD capacity reduces, it wears out the SSD slower, from 199%%, because of fewer SSD hits
since the SSD capacity becomes smaller.

In terms of cost, as shown in Figures 8.8(a) and 9.3(c), agdrés 8.8(f) and 9.3(d), when
the SSD capacity ratio varies frofi4 to 1/8, it incurs similar short-term cost for both tiering and
caching systems due to the aforementioned reason. It afsally incurs less long-term cost for
both tiering and caching systems, from 7% to 25%. The reasdue to the fact that, when the SSD
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capacity reduces, it wears out the SSD slower. There ars gasare the long-term cost increases
instead, and that is because the smaller SSD capacity causgker energy consumption which
eventually increases the long-term cost. We can also séw/tien the SSD capacity is smaller, it
incurs less long-term cost for Mylinear, from 19% to 44%, doi¢he net effect of reduced SSD
access cost and increased energy cost.

9.2 Summary

We summarize the new SSD capacity ratio results in compawsth the previous old SSD capacity
ratio below.

1. For the read-intensive Web-search trace workload, thelemSSD capacity leads to de-
creased throughputs, wears out the SSD faster, and leadsréased long-term costs for
both tiering and caching systems. This is due to the dealeéaS® usage to a small degree,
but primarily due to a larger increase in data movementdsdt l@ads to decreased through-
put, wears out the SSD slower, and incurs lower long-terrmfoo$lylinear due to decreased
SSD hit.

2. For the write-intensive Online trace workload, the seraBSD capacity causes different
throughput effects in tiering and caching systems. Fomiigrthe throughput decreases—
while for caching, the throughput generally increases.sThibecause for this workload,
the caching system is bottlenecked by the write-back I/Ogevihe tiering system is bottle-
necked by the SSD hit rate and the data movement. The sm&8@rc8pacity also leads to
similar SSD wear out rates and long-term cost for both tgeend caching systems. This
is due to the net effect of the reduced SSD hit and the incdedata movement. It also
leads to decreased throughput, wears out the SSD slowen@nd lower long-term cost for
Mylinear due to reduced SSD hit.

3. For the read- and write- intensive File-server workldhd, smaller SSD capacity generally
leads to decreased throughputs, reduced SSD wear out,\@ad|tmg-term costs for both
tiering and caching systems. This is due to the decreased8SD a large degree and
increased data movements to a smaller degree. It also leadsreased throughput for
Mylinear due to the OS buffer cache effects, wears out the SI8®er, and incurs lower
long-term cost for Mylinear due to reduced SSD accesses.

4. For all workloads, the smaller SSD capacity leads to singhort-term costs for all hybrid
systems. This is due to the fact that a smaller SSD capacigesdittle variation for capacity
cost, energy and power costs, and SSD replacement cost.
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Chapter 10

Future

There are also several interesting longer-term relatezhreh topics that are interesting to explore
in the future. this dissertation. Some of the promising fuefense future work are as follows:

Automate the choosing of controllable parameters.
Research and develop a three-tier and tNetrer storage system.
Support security as a fourth dimension.

Support New Storage Devices.

o & w0 bdh ke

Provide Control Support at the CPU Level.

We further discuss the future work in more details below.

10.1 Automation of the Control Knobs

This section discusses the most interesting and challgrigjpic on automating the selection and
setting of the controllable knobs. Tackling the mentiorssdie here can help achieve user perceived
importance among performance, energy efficiency, and andarof the tiering hybrid drive stor-
age system under various workloads.

Our tiered hybrid drive storage system provides severairotb@ble knobs that can help cer-
tain workloads. The work will be made even more useful by egmip with a method to auto-
mate the choosing of the control knobs so that users do ndttoespecify the control parameters
on their own. For example, we may provide options for the siserdecide which dimensions,
among performance, cost, and endurance, are more impsefitacitiding weights applied to each
dimension—so that internal system parameters can be seélaatomatically to meet the require-
ments.

We will try to explore such automation strategy in the futtmemake the work more useful.
More specifically, an ad-hoc algorithm-based approach neagxplored to guide the design of
automation. For example, depending on the trade-offs wergbswe may develop a simple user-
level “governor” that can potentially use one of severahteques to decide how many cores to
keep on/off and what the GreenDM parameters should be: kilbing [57], Markov chains [87],

87



Machine learning [86], Fast Fourier transform [34], Wav§l&7], and Control theory [155]). This
is going to be a challenging research topic to explore as well

10.2 Three-Tier and N-Tier Storage Systems

This section discusses another interesting post-defamse on extending the previous two-tier
hybrid drive storage system to include the network tier alé \Based on the three-tier system, one
may further investigate and develop &ntier storage system. The research work on this topic can
potentially have more interesting results and provideaalel observations to future hybrid storage
system for years to come.

/ DRAM A
| PCM v.s. SSD
Capacity Speed
HDD v.s. SMR
I/ \\
v \
. Network '

Figure 10.1: Storage pyramid

Our current system design, implementation, benchmarkimg analysis are based on a two-tier
hybrid drive storage system. The interesting observaaodsesults can be made even more useful
by extending the two-tier hybrid drive storage system toradftier storage system, as shown in
Figure 10.1. At the network tier, the space can be more leiid.g., NAS and cloud storage), but
network bandwidth becomes the bottleneck. It is also cdstijush data from a local to a remote
site. Therefore, there are more important trade-offs tdcegpn terms of performance, cost, and
endurance in the whole systems. Moreover, one can potigritiether expand the two-tier storage
system to beV-Tier (N > 3) to research more topics. Note that once the storage systemmbre
tiers, it will become more complex to implement and analyze.

Moreover, each tier is flexible. It can be implemented inedight layers and through differ-
ent interfaces. For example, each tier is applicable eithigr block interface [129] or file inter-
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face [64]. There are options both in kernel space [129] andér space [67]. They have different
trade-offs in deployment effort and versatility, however.

We will sure have much more policies in each tier to explorlefuture, and there are several
interesting questions to explore as well:

1. Should each tier be based on caching or tiering or even ahihe two, and what are the
trade-offs?

2. Which layer should each tier be implemented in? By whi¢hriace? What are the trade-
offs?

3. How many controllable parameters would the three-tieNetier storage system have and
how complex would the system become?

10.3 Security as a Fourth Additional Dimension

This section discusses considering security as a forthribioa of a hybrid storage system other
than just considering the performance, energy efficienag,endurance. This research topic can
potentially open the door of a vast amount of future resetopits.

Security is another important aspect of the storage systsigu. There are certainly trade-
offs among the performance, energy, endurance, and seairéd hybrid storage system. For
example, to guarantee security, a hybrid storage systemauaiyextra code to check the user’s
authentication and authorization, and to ensure datarityeand privacy. This can add an extra
amount of overhead to the performance of the system, and eaeragte trade-off effects to the
energy efficiency and endurance dimension of the whole syatewell.

Exploring security as a fourth dimension would be an advdaeel interesting topic to study in
the future. Once security is in the list, users would haveewere choices to explore. In particular,
the users may consider which dimension among the four, ig imgportant (and how much) under
their particular deployment scenarios. For example, fofgpemance-oriented application, the user
can prioritize the control switch for performance, and fecwity-oriented applications, the user
can prioritize the control switch for security.

An even more interesting topic would be having upper and tave@s on the security levels
to control in a finer granularity. For example, a person mayhowilling to reduce the security
beyond a certain point, therefore, the system should beinemthin its the caps.

10.4 Support New Storage Devices

This section details interesting future work on explorimgwstorage devices toward building cost-
effective 1/0 services of storage systems. This topic cdp tiscover more trade-offs of the new
and yet less understood storage devices in terms of pernfmenanergy efficiency, and endurance.

Hybrid system designs are becoming more popular in todagtage systems to provide cost-
aware 1/O services. Modern storage devices are emerging\aoiding rapidly. They differ in
speed, capacity, cost, endurance, power consumption, arel m

New storage devices provide more flexibilities to the layolueach tier in a hybrid storage
system. For example, flash-based SSDs are fast but moresax@éoompared to HDDs). Many
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Device Performance| Price | Capacity | Endurance | Power
Tape * * *kkk *kkkk *

H D D *%* *k*k *k*k *kkk *k*k

S M R *%* *%* *kkk *kkk *k*k

SS D *kkk *kkk *k%k ** *

PCM *kkk *kkkk * *kkk *

D RAM *kkkk *kkkk *%* *kkk *
Other SCMg N/A N/A | N/A N/A N/A

Table 10.1: Summary of storage devices. We use numbers ofo“ihdicate the degree. For
example, “*” means very low or very small; “**” means low or @iy “***” means medium,
k% means high or large; and “*****” means very high or vey large.

studies show that SSDs can be utilized either as a cachingrtie persistent tier for a more ef-
ficient storage system design [11,37,103,112,129]. How&&Ds suffer from endurance and
unpredictable garbage collections.

Emerging PCMs [25] are even faster, more durable, and aeedndressable; but PCMs have
much smaller capacity per dollar. The trade-off betweeniptaPCMs and SSDs is an interesting
question to explore.

To a lower tier, Shingled Magnetic Recording (SMR) [20] diske emerging to further lower
down the cost of HDDs. SMR disks require more sophisticatae @ontrollers or file systems to
make them work: they offer more space than HDDs, but requiteng data sequentially for effi-
ciency, which requires an SSD-like FTL and garbage-cabbecsupport. Shingling is a technique
that is applicable to other future magnetic recording devi@.g., BPR [16] and HAMR [55]). For
this future work, we can use the SMR prototypes we have thr@gnique collaboration with
industry.

We provide a summary table for new-old storage devices imeThb.1. One thing worth men-
tioning is that the prices of the various storage deviceswaay depending on the technology,
market, and economics. It makes our work more useful in thedu

However, there is no one-to-all solution combining thesaads to build hybrid drive storage
systems. Placing different storage devices in differestitogether with different policies (e.g.,
data movement throttling, /O management, meta-data neanegt), will produce vary different
results and trace-offs in terms of performance, energy,eaadirance of the hybrid drive storage
system. We would be targeting SSDs, PCMs, and SMRs towardding cost-effective 1/O ser-
vices of hybrid storage systems.

Specifically, it would be interesting to answer the follogimvo questions:

1. What if we utilize the PCM instead of the SSD as the fronf’tie
2. What if we utilize the SMR instead of the HDD as the back-eer?

10.5 Provide Control Support at the CPU Level

This section further details future work on providing cahtsupport at the CPU level as well.
Depending on the observed results, our analysis can helg foaire intelligent hybrid drive stor-
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age systems. How to automate the controllable paramete@mgthing we discussed eatrlier in
Section 10.1.

We have another project, named “CPUIDLE”, that aims to lesaricontrol the low-power
states of individual CPU cores [99]. Therefore, we can ektée reach of our storage system to
provide controls not only at the block level, but also at tHUCand core level. Therefore, there
will have more controllable parameters to explore in term&okling the trade-offs between the
CPU performance and the power consumption.

It would be interesting to merge the CPUIDLE kernel modul¢hwour GreenDM module,
and perform more experiments (e.g., turning CPU cores bim'aiccordance with workloads) and
do more analysis toward the trade-offs among performanegg, and endurance of the whole
systems. Depending on the observed results, our analysiketp build more intelligent hybrid
drive storage systems, considering the performance, geéfigiency, and endurance of the entire
systems.
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Chapter 11

Conclusion

There are trade-offs among performance, energy, and dewdarance for storage systems. De-
signs optimized for one dimension or workload often suffieamother. Therefore, it is important to
study the trade-offs so as to be able to adapt the system tdoadis. As different types of drives
have different traits, hybrid drives are studied more diposélowever, previous hybrids are of-
ten designed for high throughput, efficient energy constonpbr improving endurance—leaving
empirical study on the trade-offs being unexplored. Padtuimamce studies also lack a concrete
model and metric to help study the trade-offs. Lastly, ppasidesigns are often based on inflexible
policies that cannot adapt easily to changing conditions.

Our previous study has looked at the power consumption isseieterprise-scale backup stor-
age systems in Chapter 4 to gain us more domain knowledge war@nd energy in the field.
Besides, our previous study in Chapter 5 on the trade-otisden performance and energy has
given us the understanding of variations for both the paréorce and energy with varying soft-
ware and hardware conditions. We presented GreenDM in €hépds a versatile tiering hybrid
drive to study empirically the trade-offs among performgnenergy, and endurance. We also
provided several interesting observations regarding $se@ated cost dimension of GreenDM in
Chapter 7. We further presented the follow-up work on ouhtag system based on the same
hardware and similar software setup in Chapter 8. We alssepted additional work on evaluating
both the tiering and caching systems with a different capaatio of SSD over total in Chapter 9.

To conclude with several interesting future research ®fsee Chapter 10). First, it will be
interesting to provide automated control knobs for the wsdrade-off performance, energy ef-
ficiency, and endurance. Second, one could extend the ergytstem to three tiers and explore
more tiering policies. Third, it would be useful to add sétyuas a forth dimension to further
explore the trade-offs. Forth, one could experiment wiffedent storage devices and policies in
the future, and help build more efficient storage systemshaesae the high performance with the
minimum cost. Last but not least, it would be interesting tovide control support at the CPU
level as well to further justify the trade-offs among penfiance, energy, and endurance.
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