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ABSTRACT
Data compression has been claimed to be an attractive solution
to save energy consumption in high-end servers and data centers.
However, there has not been a study to explore this. In this pa-
per, we present a comprehensive evaluation of energy consumption
for various file compression techniques implemented in software.
We apply various compression tools available on Linux to a vari-
ety of data files, and we try them on server class and workstation
class systems. We compare their energy and performance results
against raw reads and writes. Our results reveal that software based
data compression cannot be considered as a universal solution to
reduce energy consumption. Various factors like the type ofthe
data file, the compression tool being used, the read-to-write ratio of
the workload, and the hardware configuration of the system impact
the efficacy of this technique. In some cases, however, we found
compression to save substantial energy and improve performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes; E.4 [Cod-
ing and Information Theory ]: Data Compaction and Compres-
sion; H.3.4 [Information Storage and Retrieval]: Systems and
Software—performance evaluation (efficiency and effectiveness)

General Terms
Measurement, Performance

Keywords
Data compression, Energy, Performance evaluation, Storage

1. INTRODUCTION
Until recently, power management research was mostly directed

towards battery powered portable computers and mobile devices [4,
33, 38, 39, 52, 58, 59]. The motivation behind these efforts has
been to enhance user satisfaction by reducing the frequencyof bat-
tery recharges. However, the growing costs of power and cooling
have now caused researchers to look at the same issue on desktops
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and commercial servers [10, 11, 18, 26, 28, 41, 49, 68]. Data cen-
ters and servers primarily deal with data. Data compressionhas
been suggested an effective way of saving energy in such systems.
To the best of our knowledge, there has not been a study evaluating
these claims.

In this paper, we study several compression algorithms, imple-
mented in software, applied to various types of data files, and eval-
uate all in terms of performance and energy metrics. We compress
these data files at the CPU, and write the compressed file to thedisk;
the compressed file is read from the disk, and decompressed atthe
CPU. We use four different types of files for our experiments:zero,
text, binary, andrandom. These file types exhibit different levels of
data redundancy, with zero being the highest and random being the
lowest. Our benchmarks include four popular compression utilities
on Linux: gzip, lzop, bzip2, and compress. File compressionis
known to be computationally intensive, but can reduce the amount
of I/O being incurred due to a reduction in file size. The aim ofthis
study is to evaluate each of the compression tools, and determine if
the savings due to reduced I/O (both in time and energy) are worth
the added overhead at the CPU and memory. To be able to view the
effects of compression/decompression on energy and performance
simultaneously, we use the energy-delay product metric [23] for
our analysis.

Our results reveal that software based data compression cannot
be considered a universal solution to reduce energy consumption in
data centers and server class machines; it greatly depends on the
type of data files being compressed, the compression algorithm ap-
plied, the workload of the system, and the hardware configuration.
As we expected, compressing zero files was found to almost always
save energy, compared to raw reads and writes, no matter what
compression algorithm was used. We realize that such high levels
of redundancy are not common in real-life settings, but we include
it in our study to evaluate the best-case scenarios. Second to zero
files, we observed that text files exhibited the most potential for en-
ergy savings by compression, followed by binary files. Although
some utilities always performed better than plain writes and reads
for text files, other tools required some number of reads for every
write to result in energy savings. This is because compression typ-
ically consumes more CPU than decompression. To represent the
possible savings in such cases, we developed a simple read-write
model: it calculates the minimum number of decompressions re-
quired to offset the extra energy expended by a single compression.
This number can be useful in deciding whether or not a workload
whose read-to-write ratio is known would benefit from compress-
ing its data files using a particular compression tool. Finally, also
as expected, random files showed no energy or performance bene-
fits upon compression. Again, we included random files to be able
to evaluate the worst-case scenarios for compression.
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The rest of the paper is organized as follows. Section 2 pro-
vides some background and discusses related work in the area. In
Section 3 we talk about the various metrics used for evaluating our
results. We describe the details of the experimental methodology in
Section 4. We present the actual experimental results obtained from
the various benchmarks and the read-write model of evaluation in
Section 5. We conclude in Section 6.

2. BACKGROUND AND RELATED WORK
Section 2.1 provides an overview of some existing power man-

agement techniques in computing systems. In Section 2.2, wepres-
ent various power management solutions for primary storageme-
dia. In Section 2.3, we address compression techniques imple-
mented at various levels and their energy impact. We also draw
out important distinctions between our work and other research in
this area.

2.1 Power Management Approaches
Energy management techniques can be implemented at several

levels in a computer system. The fundamental idea behind these ap-
proaches has been to transition a component to a lower power mode
or to turn it off completely when not in use. Lorch et al. discuss
software techniques to utilize the power saving provisionsprovided
by the various hardware components, such as the CPUs, disks,dis-
plays, wireless communication devices, main memory, etc. [38].
Dynamic Voltage and Frequency Scaling (DVFS) techniques have
been widely employed for reducing CPU power consumption [10,
58, 59]. DVFS allows processors to dynamically switch to differ-
ent operating voltages and frequencies. Choosing a lower voltage
would translate to a reduction in power consumption. However,
since voltage cannot be changed independent of the frequency, it
would also result in some degree of performance degradation. Sev-
eral processors supportClock Gatingas a means to halt idle com-
ponents, and save power [15, 22, 25, 48].

Su et al. proposed and evaluated several CPU cache designs based
onGray codesand cache organization [52]. As Gray codes require
only one bit modification to represent consecutive numbers,Su et
al. were able to obtain significant energy savings because ofre-
duced bit switching. They also found that cache sub-banking[53]
(i.e., organizing cache into banks), was an effective way toreduce
energy consumption of caches. Power Aware Page Allocation [33]
reduces the memory energy consumption by adding energy aware-
ness to the operating system’s virtual memory page allocator. The
authors explored various page allocation policies to harness the
power management features of emerging DRAM devices.

The OS has also been used to monitor the usage of hardware re-
sources, in order to transition the components to low power states
during periods of inactivity [4, 19, 39]. Zeng et al. proposean
Energy-Centric Operating System (ECOSystem), which allows en-
ergy to be managed as a first-class resource by the OS [67].

2.2 Energy Saving Techniques for Storage
One of the earliest ideas for energy conservation in disks was

to spin them down when idle. The controls on when to spin them
down have ranged from simple threshold-based policies to intelli-
gent prediction policies [16, 17, 36, 61]. Techniques such as Mas-
sive Array of Idle Disks (MAID) [11], Popular Data Concentra-
tion (PDC) [44], and write offloading [41] are based on the idea
of directing the requests to a subset of the disks or special log-
ging devices. This increases the idle time between requests, hence
justifying the spin down of the unused disks. GreenFS [28], is a
stackable file system for client systems. It services I/O requests
from remote servers in addition to adding a flash layer to the stor-

age hierarchy. In enterprise settings, with existing backup server
infrastructure already in place, the energy cost of networktransfers
for small transfers is much smaller than spinning up and writing to
the local disk. This allows the hard disks to be powered down for
longer, and hence save more energy. Many vendors, (e.g., NetApp,
EMC, etc.,) provide a large NVRAM to cache disk writes.

Analogous to DVFS for CPUs, Gurumurthi et al. [49] proposed
disks which can dynamically change their rotation speeds based
on the request traffic, thereby lowering their power consumption.
Zhu et al. [68] considered storage cache replacement techniques to
selectively keep some blocks from the disk in the main memory
cache, to increase the disk’s idle times; this allows disks to remain
in low power mode for longer.

Another approach taken by many researchers, distinct from the
disk spin-down policy, has been to reduce the energy consumed
by head seek operations. Essary et al. present a Predictive Data
Grouping technique [18] which attempts to co-locate related data
blocks on disk through remapping and replication. Huang et al.
proposed a file system, FS2 [26] which dynamically replicates data
so that the nearest copy of the data can be served on a request.
As the mechanical movement of the disk head is reduced by these
techniques, it results in power savings. Interestingly, the increased
proximity of the data to the disk head also reduces the seek and
rotational delays, which translates to better performance.

2.3 Saving Energy using Compression
Compression has been widely used to reduce traffic and latencies

on communication channels (Data bus, network, etc.) [6, 9, 27, 32,
62], and save storage space [2, 46]. Over the last decade, compres-
sion has been implemented at various levels of the memory hier-
archy and proved to be a successful method of saving energy. For
example, several encoding schemes have been proposed for com-
pressing the contents of the CPU instruction cache [7, 8, 34,65].
These techniques, calledcode compression, map the program in-
structions into a set of much shorter instructions, therebyreducing
the memory requirements and bus traffic. A decompressor, typi-
cally between the cache and the CPU, translates the compressed
instructions to the normal program instructions before execution
on the CPU. Various compression algorithms have been employed
on CPU data caches as well [30, 31, 54, 56].

Benini et al. propose a hardware implementation of the compres-
sion-decompression logic between the main memory and the CPU
cache for embedded processor systems [5]. On a cache write-back,
compressed data is written to main memory, while decompressed
data is written from main memory to the cache. IBM’s Memory Ex-
pansion Technology (MXT) [55] has made main memory data com-
pression commercially available to a wide range of systems.Kan-
demir et al. extend compression to multi-bank memory systems, by
compressing infrequently used data, and transitioning those banks
to lower power mode after a threshold idle time [29]. Sadler et
al. employ lossless compression on data communication in sensor
networks to reduce energy expenditure [50].

The work most closely related to ours, albeit in a different envi-
ronment of embedded and mobile devices, is that of Barr et al.[3].
Because the energy cost of a single bit wireless transmission is
many times that of a single 32-bit computation, they apply lossless
compression techniques to data before transmitting. In their work,
Barr et al. analyze various data compression algorithms from the
energy perspective. They foundlzop andcompress to be the
most energy efficient. Unlike their work, our study is focused on
server class machines and file compression. Our goal, however, is
to investigate potential energy savings in the storage stack, rather
than from transmission over a network. Furthermore, we found that
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only lzop can be widely applicable in such environments.
Another related work by Xu et al. [64] explores data compres-

sion as a means to reduce battery consumption of hand-held de-
vices when downloading data from proxy servers over a wireless
LAN. They assume that the data from the proxy server is available
in compressed format and hence focus their study only on the en-
ergy costs related to decompression. Our target systems differ from
theirs in that our systems would have to incur the costs of both reads
and writes. Hence, we take into account the energy costs of both
compression and decompression in our analysis.

Data compression for storage can be implemented at both hard-
ware [13, 42] and software levels. However, in this work we focus
our analysis on software implementations only, so as to minimize
variations due to hardware changes.

3. METRICS
The increasing number of studies in the area of green technolo-

gies have revealed a problem of lack of agreement on a proper
metric for comparing energy efficiency of computer systems.The
choice of an appropriate metric depends on several factors:which
component of a system the metric will be applied to, what are the
purposes of comparison and how different are the systems. For our
study, the metric must be generic enough to express the energy ef-
ficiency of the system as a whole. We would also like the metric
to be usable for different purposes of comparison. Therefore, we
present in this section, not one, but several metrics based on a sim-
ple view of a computer system. This family of metrics allows us
to describe the energy efficiency profile of a system from several
angles, which offers enough scope for a broad analysis.

We define asystemas any device capable of performing compu-
tational work. The work is provided to the system by a user as a
list of tasks. A task is a logically independent unit of work that the
user wants the system to perform. The rational metric representing
the performance of such a system is its computational power:the
number of tasks the system is able to perform in a unit of time.For
the purposes of this paper, however, it is more convenient touse the
inverse value of computational power: the time required to finish a
single task. We denote this value asT and measure it in seconds
per task. Notice that the notion of a system and a task are highly
conceptual here. Depending on the specific scenario, the system
can be a CPU that is executing instructions, a disk drive perform-
ing I/O requests, a server executing compression algorithms on a
piece of data and writing the results to a disk, and more.

While performing computational work, the system consumes elec-
trical energy. In other words, the system converts electrical en-
ergy (typically measured in Joules) to computational work (mea-
sured in tasks accomplished). In terms of power consumption, we
are mostly interested in the effectiveness of this conversion: the
number of tasks the system is able to perform by using a unit of
energy—or in its inverse form—the energy consumed by the sys-
tem to perform a single task. We denote the latter value asE and
measure it in Joules per task. Figure 1 provides the system view we
used in our study.

Many projects use the plain metricE to compare energy effi-
ciency of different systems [12, 24, 58, 59]. However, this metric
ignores the amount of time it takes to complete a task,T . For ex-
ample Gonzaleze et al. [23] showed that it is fairly easy to improve
a processor’s energy efficiencyE, but it typically leads to degraded
performance of the chip. Sometimes, it is reasonable to ignore
T . For instance, when each system already has the desired per-
formance characteristics [12]. However, in some cases we would
like to have a unified metric that gives us a solid understanding of
both the system’s energy efficiency and its performance. Forsuch

Energy

Task 1
Task 2
Task 3
...

System
Task

Seconds

Joules
Task

Completed
tasks

Joules

Tasks

Figure 1: System view for energy efficiency estimations.

a metric we need to take into account both quantities. It is useful
to know, for example, how many tasks per Joule per second the
system can produce:

Tasks
Joules×Seconds

This metric has a clear physical meaning: given its value, one can
multiply it by the amount of energy and time, and obtain the num-
ber of tasks the system is able to perform under these constraints.
The inverse of this metric can be written in the following form:

Joules×Seconds
Tasks

= Joules
Tasks/Seconds

= Joules
Throughput

Again, this number has a natural meaning: how many Joules we
pay for the speed of execution of a task, as tasks per seconds in the
denominator is the throughput of the system. This metric is widely
known asenergy-delay[23, 37, 69]. We denote it asET .

We believe that omitting any of the metrics represented above
(T , E, ET ) takes away valuable information about the system.T

gives a good understanding of performance, but does not convey
power consumption.E provides reliable information about energy
efficiency, but ignores the performance. TheET metric has an
intuitive underlying physics and is valuable to compare systems in
the general case, but is not applicable when one is interested in
energy savings or performance only. For these reasons we adopt all
three metrics in this paper. The metrics we used are summarized
in Table 1. By convention we omit tasks unit from the table, asall
units are implicitly per task.

Metric Notation Unit
Time T Seconds

Energy E Joules

Energy-delay ET Joules × Seconds

Table 1: The metrics and corresponding units we used to eval-
uate performance and energy efficiency of a system.

Another well-known metric of energy efficiency isenergy ×
delay2 [40]. However, it is specific to the situations where the
voltage applied varies from system to system, for instance for com-
parison of different DVFS levels. Therefore, we do not use this
metric in the paper.

4. EXPERIMENTAL METHODOLOGY
This section details the setup used for our evaluations. We de-

scribe our testbed and the instruments used for energy measurement
in Section 4.1. In Section 4.2 we present the types of files andthe
compression tools we examined. We describe the various bench-
marks and the motivation behind their selection in Section 4.3.

4.1 Experimental Setup
We used two different machines for our experiments. The first

was a Dell PowerEdge SC1425 rack-mountable server, with 2 dual-
core IntelR© XeonTM CPUs at 2.8GHz, 1GB RAM, 73GB primary
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hard disk (SCSI Seagate ST373207LW, 10000 RPM) and a dedi-
cated 20GB partition on a separate hard disk (SCSI Seagate ST373-
207LW, 10000 RPM) for the tests. The server was running the Fe-
dora Core 6 (kernel 2.6.20-1.2952.fc6) distribution of Linux. In
order to simplify our evaluation, we enabled only one processor
unit by using themaxcpus = 1 boot time parameter in Linux.

The second machine was a desktop system, with an IntelR© Pent-
ium R© CPU at 1.7GHz, 1GB RAM, 20GB primary hard disk (WDC
WD200BB-00AUA1, 7200 RPM) and a 20GB test partition on a
separate disk (Maxtor 6E040L0, 7200 RPM). It was running the
same 2.6.20-1.2952.fc6 Linux kernel as the server.

As our goal is to study the energy impact of data compression
on the entire system, and not on a component in isolation, we mea-
sure the total energy of the machine. Hence, we used a WattsUP
Pro ES [57] power meter to measure the energy consumption of
the system under test, instead of a current clamp attached toa digi-
tal multimeter [20, 21], which can provide component level energy
measurements. The WattsUP Pro ES is a plug-in style power meter,
which allows power measurements by plugging in the AC supply
of the test machine in the meter’s receptacle. It calculatesthe cu-
mulative energy in Watt-hours (1 Watt-hour = 3,600 Joules) every
second, and stores it in its non-volatile memory. It has a 1 second
time resolution and a 0.1 Watt-hour (360 Joules) resolutionfor en-
ergy measurements; it has an accuracy of±1.5% + 3 counts of the
displayed value. We used awattsup Linux utility [60] to down-
load the recorded data from the meter over a USB interface to the
test machine.

4.2 File Types and Compression Tools
Power consumption in the evaluated systems depends on the ef-

fectiveness of compression, which is typically measured byCom-
pression Ratio(CR) defined as:

CR = Originalfilesize
Compressedfilesize

Compression ratio is heavily affected by the type of input data
file. Hence, we include the file type as one of the dimensions for
our evaluation. In order to have a representative set of possible
data files, we chose to run the tests on four types of files of size
2GB each: zero, text, binary, and random. These files denote the
best-to-worst cases of compression, in order. We chose the file size
to be 2GB to ensure that each test ran for a considerable amount
of time, thereby reducing the scope of errors and high standard de-
viations arising out of even slight differences in recordedvalues
across multiple iterations of the test. Also, the 2GB file, being
larger than the system RAM (1GB), forces I/O to take place. We
created thezerofile by writing zeroes to the file. We generated the
text file by concatenating source files from the Linux kernel and
other open source projects. We created thebinary test file by com-
bining object files from the Linux kernel, Linux libraries and other
open source executables. We created therandomfile by reading
from /dev/urandom. All the files were generated before running
the benchmarks, so the time/energy required for the generation was
not included in the measurements.

Another factor influencing the compression effectiveness is the
compression algorithm itself. This constitutes the seconddimen-
sion of our analysis. We examined four popular compression utili-
ties available on Linux: compress, gzip, lzop [43], and bzip2. They
have significant differences in implementation and cover a wide
range of compression algorithms. Bar and Asanovic discuss these
tools and their algorithms in detail [3]. The compress utility, re-
garded as the oldest, implements the Lempel-Ziv-Welch (LZW)
algorithm which is a variant of the LZ78 algorithm. It usesm

bits (9–16) to encode the input symbols, and stores the string-to-
code mapping in a dictionary. Although based on the same LZ77
algorithm, gzip and lzop differ significantly in their implementa-
tion. As lzop was designed with the main goal to improve com-
pression/decompression speed, it tends to be generally faster than
gzip. The bzip2 utility is based on the Burrows Wheeler Transform
(BWT); it achieves better compression ratio than the Lempel-Ziv
based tools, at the expense of compression speed. The block size
for compression (commonly 100k–900k) can be specified at com-
mand invocation. A larger block size typically increases the com-
pression ratio, while increasing the memory footprint.

4.3 Benchmarks
Writing an uncompressed file involves reading the input and writ-

ing it to disk. We will refer to this as aplain-write in the rest
of the paper. Writing a compressed file involves reading the un-
compressed input, compressing it, and writing the compressed file
to disk. We shall call thiscompress-write. Similarly, we use the
term plain-read to denote reading the uncompressed file from the
disk; and we usedecompress-readto indicate reading the com-
pressed file and decompressing it. Each of the operations described
above (plain-write, compress-write, plain-read, and decompress-
read), constitute a task which we defined in Section 3.

The aim of this study is to compare aplain-write to compress-
write, and aplain-read to decompress-read, in terms of both en-
ergy consumption and performance. We therefore broadly have
four types of benchmarks:plain-write, compress-write, plain-read,
and decompress-read. As mentioned above, we used four differ-
ent compression tools, each of which can be invoked with tunable
parameters. For example, gzip allows the user to specify aneffort
parameter in the range 1–9 to choose between speed of compres-
sion and compression ratio; a choice of 1 would result in fastcom-
pression, but poorer compression ratio; and a 9 would give the best
compression ratio, but would be slower than 1. Table 2 lists the
various parameter values considered for the compress-write bench-
marks. For each of the compression tools we chose the default
invocation, and the options which provide the best and worstcase
of compression speed (if not already covered by the default option).
Table 3 lists the compression ratios achieved by compressing dif-
ferent types of files using various compression applications.

Invocation Implications
gzip –1 Favors speed over compression ratio
gzip –6 Default
gzip –9 Favors compression ratio over speed
lzop –1 Favors speed over compression ratio
lzop –3 Default
lzop –9 Favors compression ratio over speed
bzip2 –1 Use 100K block size
bzip2 –9 Use 900K block size (default)

compress –b 10 Use 10 bit codes
compress –b 16 Use 16 bit codes (default)

Table 2: Parameters used for invocation of various compression
tools for compress-write benchmark.

We used the Auto-pilot test suite infrastructure [63] to runthe
benchmarks. Auto-pilot measures the time required to run a bench-
mark and reports it in terms of Elapsed, System, User, and Wait
times. We developed an Auto-pilot script plug-in to measurethe
energy consumed while running the benchmark. The plug-in relies
on the Linux utility described in Section 4.1 to communicatewith
the meter. The plug-in uses the utility to send a command to clear
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Tool
File Type

Text Binary Rand Zero
None 1 1 1 1
gz-1 4.16 1.81 0.95 ˜10

2

gz-6 4.79 1.81 0.95 ˜10
3

gz-9 4.84 1.81 0.95 ˜10
3

lzo-1 3.52 1.53 0.95 ˜10
2

lzo-3 3.51 1.53 0.95 ˜10
2

lzo-9 4.37 1.81 0.95 ˜10
2

bz-1 5.09 1.81 0.95 ˜10
6

bz-9 6.11 2.09 0.95 ˜10
7

c-10 1.17 1 0.8 ˜10
2

c-16 2.07 1.17 0.8 ˜10
5

Table 3: Compression ratios achieved by various compression
utilities on 2GB files.

the meter’s internal memory before starting the benchmark.After
the benchmark has finished execution, we invoke the utility to send
a command to read the data from the meter, and extract the total en-
ergy expended (in Joules) while running the benchmark. Since the
benchmark themselves run for a significant time, any energy mea-
surement errors due to the measurement tool itself are negligible.

We ran all tests at least five times and computed the 95% confi-
dence intervals for the mean elapsed, system, user, and waittimes
using the Student’s-t distribution. In each case, unless otherwise
noted, the half widths of the intervals were less than 5% of the
mean. In all bar graphs, we show the half widths using an error
bar. Wait time is elapsed time less system and user time and mostly
measures time performing I/O, though it can also be affectedby
process scheduling.

We ran the tests on a dedicated hard disk, with the partition for-
matted with the Ext2 file system and mounted using the default
options. To ensure that writes to the partition were flushed to the
disk during our measurements, we unmounted the partition atthe
end of each test iteration.

5. EVALUATION
In this section, we evaluate the effect of compression and decom-

pression on energy savings and performance, based on the met-
rics: energy (E), time (T ), and energy-delay (ET ), as discussed
in Section 3. Section 5.1 explains the terms we use later. Sec-
tion 5.2 presents our read-write model. Section 5.3 analyzes the re-
sults of the compression utilities for text files, on both server class
and desktop machines. As we found similar results on both the
classes of machines, Sections 5.4, 5.5, and 5.6 evaluate theresults
on server class machines only, for binary, random, and zero files,
respectively. Finally, Section 5.7 summarizes the evaluations.

5.1 Terminology
Figures 2, 4, 5, and 6 show the metrics plotted for text, binary,

random, and zero files, respectively. In all these figures, the x-
axis denotesalg-mode-level, wherealg is the type of the compres-
sion/decompression algorithm: gzip, lzop, bzip, or compress;mode
is either Compression or Decompression;level is passed as a pa-
rameter to the compression/decompression algorithm to control the
compression ratio (CR). Similarly, we use the notationalg-level, to
refer to a given tool operating at a specific compression level.

The time result figures show the total time required to compress-
write or decompress-read a 2GB file using the compression utilities
discussed above, compared to plain-writes and plain-reads, respec-

tively. The y-axis on this graph denotes the elapsed time, which
constitutes of thesystemtime,usertime, andwait time.

The second type of metric plotted is the energy results. These
results compare the total energy required in performing a plain-
write/plain-read versus a compress-write/decompress-read. On the
y-axis we have the total energy, constituting ofactiveandpassive
energy. Passive energy is the energy that is consumed by an idle
system, for the elapsed period, without any other activity.For cal-
culating the passive energy, we first need to estimate the average
power consumption of the idle system. To compute this, we let
the system idle ten times for 10 minutes each, computed the aver-
age idle power, and we verified that the standard deviations were
small. We then divided the total energy measured by the duration
of the idleness, yielding the average idle power of the system. Pas-
sive energy can be obtained by multiplying the average idle power
with the elapsed time. Active energy is the extra energy required,
apart from the passive counterpart, to complete the required task.
In our graphs, we represent energy in units of Kilojoules, where
1Kilojoule = 103Joules.

Theenergy-delay product(ET ) metric, as discussed in Section 3,
compares theET results of compression/ decompression versus
pure writes/reads. Similar to the energy results, the totalET also
consists of an active and passive component. We have plottedthe
ET results in units of Kilojoule-seconds.

5.2 Read-Write Model
The best case for compression would be when compress-write

outperforms plain-write, and decompress-read fares better than plain-
read, in terms of a metric. However, there might be scenarioswhen
only one of these comparisons favor compression. For example,
for a given compression tool, compress-write might requiremore
energy than plain-write, but expends less energy for a decompress-
read than a plain-read. Notice that the metric we consider inthis
example is energy, but the argument applies to the other metrics as
well (e.g., time or energy-delay). Compression might stillachieve
energy savings in such a case if the number of reads is more than
a “break-even” value to amortize the extra energy consumed by a
single compress-write.

Workloads are characterized by aread-to-writeratio (n), which
represents the distribution of read and write I/O requests.There
have been extensive studies to characterize workloads based on this
parameter [47, 35]. Given a workload, with knowledge about its
read-to-write ratio and the type of file data it handles, we can use
this break-even value (nbe) to decide if compressing the data files
would be beneficial. We formalize this by the following model.

For a given metric M, let Mw, Mc, Mr , and Md be the mea-
sured values of M on a plain-write, compress-write, plain-read, and
decompress-read, respectively. LetnM

be represent the break-even
read-to-write ratio to obtain energy savings. Assuming we first
need to write once before reading, the following inequalitymust
hold to compensate the excess energy expended during the write:

Mc − Mw ≤ nM
be × (Mr − Md)

Solving fornM
be , we get

nM
be ≥ (Mc−Mw)

(Mr−Md)

whereM ∈ {T, E, ET}
We calculate and present thenM

be values for theT , E, andET

metrics for the various compression tools and test files in Tables 4
and 5 of Section 5.3.
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Figure 2: Text file: The time, energy and energy-delay product (ET ) for compressing/decompressing a 2GB text file. In (a) and
(b), the values at the x-axis are of the formalg-mode-level, wherealg is the type of the compression/decompression algorithm: gzip,
lzop, bzip, or compress;mode is Compression or Decompression;level is the parameter passed to the compression/decompression
algorithm. The energy results in (c) and (d) represent the total energy (kilojoules) required for compressing/decompressing the
file with the corresponding algorithm. Section 5.1 describes the terms Active-Energy and Passive-Energy. In (e) and (f) we use
kilojoule-seconds to denote the energy-delay product to compress-write/decompress-read the same file.

We define the energy savings (Esav) for decompress-read and
compress-write vs. plain-read and plain-write for a given value of
read-to-write ratio,n:

Esav = (n × (Er − Ed)) + (Ew − Ec)

where,Ew, Ec, Er, andEd is the energy expended in plain-write,
compress-write, plain-read, and decompress-read, respectively.

Note that a negative value ofEsav means energy loss. Figure 3
presents the values ofEsav for n ranging from 0 to 30 for different
compression algorithms applied on a text file. The value ofn for
whichEsav becomes zero is thenE

be.

5.3 Text File Analysis
As we observe in Figures 2(a), 2(b), 2(c), and 2(d), lzo-1 and

lzo-3 always outperform pure writes and reads in terms of both
time and energy consumption for text files. Both lzo-1 and lzo-3
save approximately 29% energy compared to plain-writes, and 68%
compared to plain-reads. Conversely, gz-6, for example, requires

more energy to compress-write than plain-write, but it saves dur-
ing the decompress-read of the same file compared to a plain-read.
As discussed in Section 5.2, we achieve significant energy savings
without compromising performance when the read-to-write ratio
exceeds thebreak-evenvalue. Both lzo-1 and lzo-3 save more en-
ergy than their counterparts (e.g., gz-6) because lzop implements a
fast compression algorithm at the cost of lower compressionratio,
thereby delivering the most energy savings.

Figure 3 demonstrates the dependency of energy savings or loss
on the read-to-write ratio on a server system. The y-axis denotes the
energy savings,Esav, (in Kilojoules). Esav = 0 indicates neither
energy savings nor energy losses. A positive value ofEsav means
some energy savings, whereas a negative value denotes energy loss.
The plots for gz-1, gz-6, gz-9, and lzo-9 cross theEsav = 0 line,
denoting that there exists a read-to-write ratio when the correspond-
ing algorithm becomes beneficial in terms of energy. For example,
gz-1 crosses theEsav = 0 line whenn is equal to 20.2. This means
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and write as a function of the number of reads per one write
for text files on the server system. The lzo-1 and lzo-3 results
are so close, that we put them on the same line.

that if for every write the system experiences 21 or more reads, we
can save energy. The lines for lzo-1 and lzo-3 (coincided because
of the proximity of results) are always above theEsav = 0 line,
indicating that these compression tools save energy for anyratio.
Conversely, the plots for bz-1, bz-9, c-10, and c-16 never cross the
Esav = 0 line, implying that these tools expend so much more en-
ergy compared to plain-write and plain-read that they are unable to
amortize the energy losses for any read-to-write ratio. Both bz-1
and bz-9 consume more time and energy during compress-writeas
well as decompress-read, because of the algorithmic complexity
of bzip, which uses the Burrows-Wheeler transform, the move-to-
front transform, and Huffman coding.

Table 4 contains the calculations ofnE
be andnET

be for the com-
pression tools discussed in this paper. The break-even value varies
depending on the compression tools used and their CR values.Of-
ten, the higher the CR, the slower the utility operates, consuming
more energy, thereby raising the break-even ratio. Although the
break-even ratio for some utilities (gz-9, lzo-9, etc.) is greater than
the read-to-write ratio on a common server system [35, 47], we can
consider them beneficial for a read-intensive workload (e.g., public
FTP mirrors). In this case, tools with a higher CR can be applicable,
especially if storage space and network traffic are a great concern.

Figures 2(e) and 2(f) show the combinedET metric, which high-
lights both energy consumption and performance. In these figures,
we observe the same trend as in the energy and time results: lzo-1
and lzo-3 performing the best among all, followed by gz-1 and
gz-6, considering both read and write workloads.

Tool Text Binary Rand Zero
gz-1 20.2 / 18.3 × × ∀
gz-6 19.7 / 62.5 × × ∀

gz-9 49.0 / ˜10
3 × × ∀

lzo-1 ∀ 2.1 / 4.0 × ∀
lzo-3 ∀ 2.0 / 4.3 × ∀

lzo-9 35.4 / ˜10
2

˜10
2 / ˜10

3 × 5.4 / 19.94
bz-1 × × × 0.28 / ∀
bz-9 × × × 1.28 / 2.36
c-10 × × × ∀
c-16 × × × ∀

Table 4: The number of reads for each write required to ben-
efit from compression for E (nE

be) and ET (nET
be ) metrics on a

server system, separated by a/. For break-even values greater
than 100 we only report magnitudes.∀ denotes that it is benefi-
cial to use compression for any read-to-write ratio. The symbol
× denotes scenarios when no savings can be made. Values less
than 1 represent that just one read can compensate for multiple
writes.

Tool Text Binary Rand Zero
gz-1 × / 9.1 × × ∀
gz-6 33.2 / 38.4 × × ∀

gz-9 78.6 / ˜10
2 × × ∀

lzo-1 ∀ 3.8 / 6.7 × ∀
lzo-3 ∀ 3.5 / 5.9 × ∀

lzo-9 31.6 / ˜10
2

˜10
2 / ˜10

3 × 4.2 / 15.3
bz-1 × × × 1.3 / 1.4
bz-9 × × × 1.7 / 2.3
c-10 × × × ∀
c-16 × × × ∀

Table 5: Same results as in Table 4, but for the desktop system.

These results indicate a strong linear relationship between the
time to complete the compression/decompression and the energy
consumed during these operations. To show this linearity weuse
the correlation coefficient,R, which measures how linearly energy
and time are related [14, 45]. A value ofR = 1 means that energy
and time both lie on the same line (i.e., they are linear in relation-
ship). A value close to 1 implies a stronger linear relationship be-
tween the two values. We calculated the value ofR to be greater
than 0.991 for all four sets of files in our benchmarks, which cor-
roborates the strong linear relationship between time and energy.
Linear relationship is the result of the fact that compression tools
consume equal amount of energy per unit time to perform com-
pression or decompression. Due to this linearity, we omit the time
metric for the remaining types of files in the subsections below.

Apart from the four compression utilities mentioned before, we
also used the PPMd compression utility [51] on a 2GB text file and
found that it is the largest consumer of energy and time. Thiscan
be attributed to the fact that PPMd is based on the PPM algorithm,
which is known to produce the best compression ratio, at the ex-
pense of considerably greater time and memory resources. Wefind
PPMd to yield a compression ratio of 7.6, but consuming about10
times more energy than a plain write. Unlike all other compres-
sion utilities, which often decompress faster than they compress,
PPMd has to perform similar operations during compression as
well as decompression. Hence, it is equally slow and energy ex-
haustive during both compression and decompression of files. It
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Figure 4: Binary file: The energy and energy-delay product (ET ) for compress-write/decompress-read a 2GB binary file.

consumes approximately 30 times more energy during decompres-
sion as compared to a normal read. As PPMd does not save energy
during either compression or decompression for all types offiles,
we do not present the analysis of its results here.

We also observed that the compress tool takes significantly more
system time as compared to other compression utilities. We ran
strace and observed that compress performs multiple read and
write system calls in units of 1024 bytes, instead of a more optimal
unit such as 4KB (page frame size), thereby increasing system time.

Analysis on desktop machines.
We ran the same set of tests on a slower desktop class machine

(described in Section 4.1) and found similar results as thaton the
server class machine. Even on desktop machines, lzo-1 and lzo-3
proved to be the most energy-efficient. But, the break-even ratio
for the desktop class machine, shown in Table 5, differs fromthat
computed for a server class machine. Generally we noticed that it
is harder to realize energy savings on the slower desktop system,
because its CPU is slower. Based on these observations, we con-
clude that CPU speeds and hardware configuration considerably
impact the break-even ratio. Hence, a compression utility which
seems promising in terms of energy savings on one hardware con-
figuration, might turn out to be more expensive on the other, for a
given set of workload. In Table 5, we see that although gz-1 never
saves energy for text files, it does provide savings, after a break-
even value of 9.1, when we factor in performance along with en-
ergy. This happens because in spite of the decompression andthe
plain read taking the same amount of energy, the former finishes
significantly faster than the latter.

5.4 Binary File Analysis
In the case of a 2GB binary file, as shown in Figure 4(a), the

energy consumption during compress-write using both lzo-1and
lzo-3 is greater than plain-write. Conversely, both of themsave en-

ergy during decompress-read, seen in Figure 4(b). Hence, similar
to the discussion in Sections 5.2 and 5.3, we compute that lzo-1
and lzo-3 save energy only whennE

be ≥ 2. However, if we con-
sider the energy-delay metric, shown in Figures 4(c) and 4(d), the
value of the break-even ratio changes to 4 and 4.3, for lzo-1 and
lzo-3, respectively. We also see that lzo-9 consumes significantly
more energy during compression compared to pure-write, that it is
difficult to recoup the over-consumption of power through multiple
decompress-read workloads. This is evident from the large value
of nET

be (̃ 103) in Table 4. As all other compression utilities have a
greater energy consumption andET values than plain-writes, they
cannot be considered as good candidates for compression with en-
ergy savings in mind.

5.5 Random File Analysis
It is evident from Figure 5 that no compression utility savesen-

ergy during compression or decompression. Consequently, theET

values for the compression utilities is also greater than that of plain-
read and plain-write. The reason is that compression utilities find
it difficult to discover repeated patterns in a random file, which in-
herently has a high entropy [1]. Therefore, the tools waste alot of
CPU time and energy trying to compress, but do not gain much in
terms of CR, as shown in Table 3. Hence, modern storage systems
should recognize high entropy files, such as multimedia, already
compressed files, encrypted files, etc., and write them directly to
the disk without compression.

5.6 Zero File Analysis
As expected, all the compression utilities, except lzo-9, bz-1, and

bz-9 consume less energy than writes and reads (Figure 6). The en-
ergy consumption by lzo-9 compress-write is almost twice that of
plain write, but it recovers from the energy losses fornE

be ≥ 5.4
(Table 4). Similarly, the break-even ratios for bz-1 and bz-9 are
0.28 and 1.28, respectively. Considering theET metric, the break-
even ratio for lzo-9 rises to 20. Most of the compression utilities
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Figure 5: Random file: The energy and energy-delay product (ET ) for compress-write/decompress-read a 2GB random file.
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Figure 6: Zero file: The energy and energy-delay product (ET ) for compress-write/decompress-read a 2GB zero file.

achieve a high CR without increasing theET because of the large
frequency of repeated patterns. From this observation, we can sug-
gest that if a storage system consists of files with a large number
of repeated patterns (e.g., log files) compression is definitely a bet-
ter alternative in terms of saving on energy without performance
degradation.

5.7 Summary of Evaluation
The strong linear dependency between energy and time found in

all experiments indicates that energy consumption per unitof time
(power) is independent of the compression algorithm. This leads to
the conclusion that the fastest algorithm is the most energy-efficient
one. The time required to accomplish the task consists of thetime
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required to perform an I/O and the time required to compress (or
decompress) the data. The time for completing I/O operations, in
turn, depends on the amount of data to be written, whereas thecom-
pression time depends on the algorithm used. This means thatan
optimal compression tool should have a high compression ratio and
low compression time. There is a clear trade-off between compres-
sion ratio and the speed of compression.

The file data type affects the compression ratio dramatically.
None of the compression tools we considered provided advantages
in energy consumption for the files with random content. For zero
files, however, almost all tools provided benefits for both read-
ing and writing. For text and binary files, we observe situations
when compress-write is less energy-efficient than plain-write, but
decompress-read is more energy-efficient than plain-read.We cal-
culated the break-even ratio of reads to writes (nbe) in such cases.
For most of the compression tools, this value is significantly higher
than the read-to-write ratio on common server systems, which has
been found to be typically 2–4 [47, 35]. Some notable exceptions
were lzo-1 and lzo-3, which are always beneficial for text files.
They also save energy in case of binary files, if the read-to-write ra-
tio is at least 2 (or about 4 in terms ofET metric). We recommend
the use of lzo-1 and lzo-3 in all cases, except the situationswhere
disk space is a greater concern than energy or performance. We
also recommend that future systems recognize high-entropyfiles
(e.g., encrypted, random, etc.) and avoid compressing themat all.
Lastly, while most of the results reported in this section were per-
taining to server-class systems, we found similar trends for desktop
class systems too; however, we noted that on slower systems with
slower CPUs, it is harder to save energy with compression.

6. CONCLUSIONS
In this paper, our research contribution was to investigatethe va-

lidity of the assumption that data compression is an effective tech-
nique to reduce energy consumption in server systems. We evalu-
ated several compression tools on Linux on a variety of data files
and compared them against raw reads and writes based on perfor-
mance and energy metrics. Our experimental results suggestthat
no generalized conclusion regarding the efficacy of compression
can be drawn. It greatly depends on the data redundancy of thefile,
the compression algorithm being used, the read-to-write ratio of the
workload, and the hardware configuration of the system. We found
that compressing zero files is beneficial for almost all the compres-
sion tools. Random files are better-off not being compressedat all.
Text files, when compressed with lzop using options 1 and 3, will
always save energy, irrespective of the workload’s read-to-write ra-
tio. We developed a simple read-write model to evaluate energy
savings in cases where only compression or decompression saves
energy. When applied to text and binary files, it reveals thatonly
gzip and lzop can offer energy savings; in most cases the break-
even read-to-write ratio is significantly greater (more than 20) than
that found in common workloads. Other than on zero files, bzip2
and the compress utility never save any energy.

Future Work.
We intend to extend this study to a wider range of systems, in-

cluding systems with multiple cores and multiple CPUs, CPUswith
Dynamic Voltage and Frequency Scaling (DVFS), different disk
speeds, etc. We also plan on conducting our study on real server
workloads. Compression significantly reduces the storage require-
ment for data, and hence can result in lesser spinning disks.We
plan to extend our current model to factor in the additional power
savings thus achieved. We are currently also working on extend-
ing gzipfs [66], a stackable compression file system, to include the

various compression algorithms we wish to compare. In the future,
we plan to explore and evaluate data de-duplication as an energy
saving technique.

Another interesting direction would be to include archivers in the
evaluation. Archivers generally work by combining multiple files
into one. In scenarios where we have several small files, withsim-
ilar content or format, compressing their archive would typically
result in better compression. Decompression on an archive to read
one file will, however, be more expensive than if the file was indi-
vidually compressed.
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