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ABSTRACT

Data compression has been claimed to be an attractive @oluti
to save energy consumption in high-end servers and datarsent
However, there has not been a study to explore this. In this pa
per, we present a comprehensive evaluation of energy cqutgum
for various file compression techniques implemented inveatt.
We apply various compression tools available on Linux to @& va
ety of data files, and we try them on server class and workstati
class systems. We compare their energy and performancksresu
against raw reads and writes. Our results reveal that softhased
data compression cannot be considered as a universalcsolati
reduce energy consumption. Various factors like the typéhef
data file, the compression tool being used, the read-tewatio of

the workload, and the hardware configuration of the systepaonh
the efficacy of this technique. In some cases, however, wedfou
compression to save substantial energy and improve pesfure

Categories and Subject Descriptors

C.4 [Performance of Systemf Performance Attributes; E.€Jod-
ing and Information Theory]: Data Compaction and Compres-
sion; H.3.4 [nformation Storage and Retrieval]: Systems and
Software—performance evaluation (efficiency and effectiveness)

General Terms
Measurement, Performance

Keywords
Data compression, Energy, Performance evaluation, Storag

1. INTRODUCTION

Until recently, power management research was mostly @idec
towards battery powered portable computers and mobiledsy#,
33, 38, 39, 52, 58, 59]. The motivation behind these effoas h
been to enhance user satisfaction by reducing the frequarimt-
tery recharges. However, the growing costs of power andimgol
have now caused researchers to look at the same issue opieskt
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and commercial servers [10, 11, 18, 26, 28, 41, 49, 68]. Datta c
ters and servers primarily deal with data. Data compresham
been suggested an effective way of saving energy in suchragst
To the best of our knowledge, there has not been a study evajua
these claims.

In this paper, we study several compression algorithms|amp
mented in software, applied to various types of data filed,eval-
uate all in terms of performance and energy metrics. We cesgpr
these data files at the CPU, and write the compressed file thske
the compressed file is read from the disk, and decompresskd at
CPU. We use four different types of files for our experimeatsg
text binary, andrandom These file types exhibit different levels of
data redundancy, with zero being the highest and randong ltleén
lowest. Our benchmarks include four popular compressidities
on Linux: gzip, Izop, bzip2, and compress. File compressson
known to be computationally intensive, but can reduce thewarn
of /0 being incurred due to a reduction in file size. The ainthi$
study is to evaluate each of the compression tools, andrdeteiif
the savings due to reduced I/O (both in time and energy) arghwo
the added overhead at the CPU and memory. To be able to view the
effects of compression/decompression on energy and pesfuce
simultaneously, we use the energy-delay product metri¢ f@3
our analysis.

Our results reveal that software based data compressiarotan
be considered a universal solution to reduce energy consomip
data centers and server class machines; it greatly depenttseo
type of data files being compressed, the compression aigoap-
plied, the workload of the system, and the hardware conftgura
As we expected, compressing zero files was found to almostyalw
save energy, compared to raw reads and writes, no matter what
compression algorithm was used. We realize that such higlisle
of redundancy are not common in real-life settings, but vetuite
it in our study to evaluate the best-case scenarios. Secoperd
files, we observed that text files exhibited the most potefaiaen-
ergy savings by compression, followed by binary files. Aitgo
some utilities always performed better than plain writed esads
for text files, other tools required some number of reads Yene
write to result in energy savings. This is because commpadyp-
ically consumes more CPU than decompression. To reprelsent t
possible savings in such cases, we developed a simple netd-w
model: it calculates the minimum number of decompressiens r
quired to offset the extra energy expended by a single cossjme.
This number can be useful in deciding whether or not a workloa
whose read-to-write ratio is known would benefit from congsre
ing its data files using a particular compression tool. Fynallso
as expected, random files showed no energy or performanee ben
fits upon compression. Again, we included random files to e ab
to evaluate the worst-case scenarios for compression.



The rest of the paper is organized as follows. Section 2 pro-
vides some background and discusses related work in the brea
Section 3 we talk about the various metrics used for evalgaiur
results. We describe the details of the experimental metiogg in
Section 4. We present the actual experimental resultsrdddrom
the various benchmarks and the read-write model of evainati
Section 5. We conclude in Section 6.

2. BACKGROUND AND RELATED WORK

Section 2.1 provides an overview of some existing power man-
agement techniques in computing systems. In Section 2.@rege
ent various power management solutions for primary storage
dia. In Section 2.3, we address compression techniqueseimpl
mented at various levels and their energy impact. We alse dra
out important distinctions between our work and other regea
this area.

2.1 Power Management Approaches

Energy management techniques can be implemented at sever
levels in a computer system. The fundamental idea behirse the-
proaches has been to transition a component to a lower poage m
or to turn it off completely when not in use. Lorch et al. dissu
software techniques to utilize the power saving provisigmided
by the various hardware components, such as the CPUs, disks,
plays, wireless communication devices, main memory, &8]. [
Dynamic Voltage and Frequency Scaling (DVFS) technique® ha
been widely employed for reducing CPU power consumption [10
58, 59]. DVFS allows processors to dynamically switch tdedif
ent operating voltages and frequencies. Choosing a lowaag®
would translate to a reduction in power consumption. Howeve
since voltage cannot be changed independent of the freguignc
would also result in some degree of performance degradafien
eral processors suppdfiock Gatingas a means to halt idle com-
ponents, and save power [15, 22, 25, 48].

Su et al. proposed and evaluated several CPU cache desgpts ba
on Gray codesand cache organization [52]. As Gray codes require
only one bit modification to represent consecutive humb®uset
al. were able to obtain significant energy savings becauge-of
duced bit switching. They also found that cache sub-banj&8y
(i.e., organizing cache into banks), was an effective waethice
energy consumption of caches. Power Aware Page AllocaBidh [
reduces the memory energy consumption by adding energyeawar
ness to the operating system’s virtual memory page allocatoe
authors explored various page allocation policies to resrbe
power management features of emerging DRAM devices.

age hierarchy. In enterprise settings, with existing backerver
infrastructure already in place, the energy cost of netviaksfers
for small transfers is much smaller than spinning up andingito
the local disk. This allows the hard disks to be powered dowvn f
longer, and hence save more energy. Many vendors, (e.gApNet
EMC, etc.,) provide a large NVRAM to cache disk writes.

Analogous to DVFS for CPUs, Gurumurthi et al. [49] proposed
disks which can dynamically change their rotation speededa
on the request traffic, thereby lowering their power constiomp
Zhu et al. [68] considered storage cache replacement tgeésito
selectively keep some blocks from the disk in the main memory
cache, to increase the disk’s idle times; this allows disk®main
in low power mode for longer.

Another approach taken by many researchers, distinct fram t
disk spin-down policy, has been to reduce the energy conrdume
by head seek operations. Essary et al. present a Predictitee D
Grouping technique [18] which attempts to co-locate relatata
blocks on disk through remapping and replication. Huangl.et a

aproposed a file system, FS2 [26] which dynamically replisal&ta

So that the nearest copy of the data can be served on a request.
As the mechanical movement of the disk head is reduced by thes
techniques, it results in power savings. Interestinglg,itfcreased
proximity of the data to the disk head also reduces the sedk an
rotational delays, which translates to better performance

2.3 Saving Energy using Compression

Compression has been widely used to reduce traffic and latenc
on communication channels (Data bus, network, etc.) [67932,
62], and save storage space [2, 46]. Over the last decad@resm
sion has been implemented at various levels of the memory hie
archy and proved to be a successful method of saving eneayy. F
example, several encoding schemes have been proposednier co
pressing the contents of the CPU instruction cache [7, 868},
These techniques, calledde compressigrmap the program in-
structions into a set of much shorter instructions, thenetcing
the memory requirements and bus traffic. A decompressor; typ
cally between the cache and the CPU, translates the corspress
instructions to the normal program instructions beforecexien
on the CPU. Various compression algorithms have been eragloy
on CPU data caches as well [30, 31, 54, 56].

Benini et al. propose a hardware implementation of the cesypr
sion-decompression logic between the main memory and thé CP
cache for embedded processor systems [5]. On a cache vacte-b
compressed data is written to main memory, while decomptess
data is written from main memory to the cache. IBM’s Memory Ex

The OS has also been used to monitor the usage of hardware repansion Technology (MXT) [55] has made main memory data com-

sources, in order to transition the components to low powstes
during periods of inactivity [4, 19, 39]. Zeng et al. propcse
Energy-Centric Operating System (ECOSystem), which alen-
ergy to be managed as a first-class resource by the OS [67].

2.2 Energy Saving Techniques for Storage

One of the earliest ideas for energy conservation in disks wa
to spin them down when idle. The controls on when to spin them
down have ranged from simple threshold-based policiesttdliin
gent prediction policies [16, 17, 36, 61]. Techniques sucMas-
sive Array of Idle Disks (MAID) [11], Popular Data Concentra
tion (PDC) [44], and write offloading [41] are based on theaide
of directing the requests to a subset of the disks or speaggl |
ging devices. This increases the idle time between requestse
justifying the spin down of the unused disks. GreenFS [28R i
stackable file system for client systems. It services |/Quests
from remote servers in addition to adding a flash layer to the s

pression commercially available to a wide range of systega-
demir et al. extend compression to multi-bank memory systdm
compressing infrequently used data, and transitioningehmnks
to lower power mode after a threshold idle time [29]. Sadler e
al. employ lossless compression on data communicationrnscse
networks to reduce energy expenditure [50].

The work most closely related to ours, albeit in a differemtie
ronment of embedded and mobile devices, is that of Barr ¢8jal.
Because the energy cost of a single bit wireless transnnigsio
many times that of a single 32-bit computation, they appbgless
compression techniques to data before transmitting. lin ¢k,
Barr et al. analyze various data compression algorithms fitoe
energy perspective. They foundzop andconpr ess to be the
most energy efficient. Unlike their work, our study is focdsen
server class machines and file compression. Our goal, howisve
to investigate potential energy savings in the storagekstather
than from transmission over a network. Furthermore, we fotinat



only Izop can be widely applicable in such environments.

Another related work by Xu et al. [64] explores data compres-
sion as a means to reduce battery consumption of hand-held de
vices when downloading data from proxy servers over a wéele
LAN. They assume that the data from the proxy server is avigla
in compressed format and hence focus their study only onrthe e
ergy costs related to decompression. Our target systefies fildm
theirs in that our systems would have to incur the costs df berds
and writes. Hence, we take into account the energy coststbf bo
compression and decompression in our analysis.

Data compression for storage can be implemented at both hard
ware [13, 42] and software levels. However, in this work weu®
our analysis on software implementations only, so as tomiie
variations due to hardware changes.

3. METRICS

The increasing number of studies in the area of green teohnol
gies have revealed a problem of lack of agreement on a proper
metric for comparing energy efficiency of computer systeifise
choice of an appropriate metric depends on several factdngch
component of a system the metric will be applied to, what hee t
purposes of comparison and how different are the systemioufo
study, the metric must be generic enough to express theyenérg
ficiency of the system as a whole. We would also like the metric
to be usable for different purposes of comparison. Theegfare
present in this section, not one, but several metrics basedsim-
ple view of a computer system. This family of metrics alloves u
to describe the energy efficiency profile of a system from sdve
angles, which offers enough scope for a broad analysis.

We define asystemas any device capable of performing compu-
tational work. The work is provided to the system by a user as a
list of tasks A task is a logically independent unit of work that the
user wants the system to perform. The rational metric re sy
the performance of such a system is its computational pother:
number of tasks the system is able to perform in a unit of tifwe.
the purposes of this paper, however, it is more conveniemsédhe
inverse value of computational power: the time requiredriski a
single task. We denote this value Asand measure it in seconds
per task. Notice that the notion of a system and a task ardyhigh
conceptual here. Depending on the specific scenario, thersys
can be a CPU that is executing instructions, a disk driveoperf
ing I/O requests, a server executing compression algositbma
piece of data and writing the results to a disk, and more.

While performing computational work, the system consuntes-e
trical energy. In other words, the system converts eleaitrn-
ergy (typically measured in Joules) to computational warleg-
sured in tasks accomplished). In terms of power consumptien
are mostly interested in the effectiveness of this coneersithe
number of tasks the system is able to perform by using a unit of
energy—or in its inverse form—the energy consumed by the sys
tem to perform a single task. We denote the latter valu& asd
measure itin Joules per task. Figure 1 provides the systemwie
used in our study.

Many projects use the plain metrie to compare energy effi-
ciency of different systems [12, 24, 58, 59]. However, thistric
ignores the amount of time it takes to complete a tdskFor ex-
ample Gonzaleze et al. [23] showed that it is fairly easy tpriae
a processor’s energy efficiendy, but it typically leads to degraded
performance of the chip. Sometimes, it is reasonable toregno
T. For instance, when each system already has the desired per
formance characteristics [12]. However, in some cases wddvo
like to have a unified metric that gives us a solid understandif
both the system’s energy efficiency and its performance.sBoh

(Energ)

Joules Seconds
Task
System—— > C(i;nspf(lgted
Joules
Task

Figure 1: System view for energy efficiency estimations.

a metric we need to take into account both quantities. It &uls
to know, for example, how many tasks per Joule per second the
system can produce:
Tasks

Joulesx Seconds
This metric has a clear physical meaning: given its value, @am
multiply it by the amount of energy and time, and obtain thenau
ber of tasks the system is able to perform under these camistra
The inverse of this metric can be written in the followingrfor

Joules
Throughput

Joules _
T Tasks/Seconds

JoulesX Seconds __
Tasks

Again, this number has a natural meaning: how many Joules we
pay for the speed of execution of a task, as tasks per secotids i
denominator is the throughput of the system. This metricidely
known asenergy-delay23, 37, 69]. We denote it aBT'.

We believe that omitting any of the metrics represented abov
(T, E, ET) takes away valuable information about the systdm.
gives a good understanding of performance, but does notegonv
power consumptionE provides reliable information about energy
efficiency, but ignores the performance. TRE" metric has an
intuitive underlying physics and is valuable to compargeys in
the general case, but is not applicable when one is inteféste
energy savings or performance only. For these reasons we afflo
three metrics in this paper. The metrics we used are sumethriz
in Table 1. By convention we omit tasks unit from the tableaths
units are implicitly per task.

Metric Notation Unit
Time T Seconds
Energy E Joules
Energy-delay ET Joules x Seconds

Table 1: The metrics and corresponding units we used to eval-
uate performance and energy efficiency of a system.

Another well-known metric of energy efficiency isiergy x
delay® [40]. However, it is specific to the situations where the
voltage applied varies from system to system, for instancedm-
parison of different DVFS levels. Therefore, we do not uss th
metric in the paper.

4. EXPERIMENTAL METHODOLOGY

This section details the setup used for our evaluations. &e d
scribe our testbed and the instruments used for energy mezaent
in Section 4.1. In Section 4.2 we present the types of filestaad
compression tools we examined. We describe the varioushbenc
marks and the motivation behind their selection in Secti@n 4

4.1 Experimental Setup

We used two different machines for our experiments. The first
was a Dell PowerEdge SC1425 rack-mountable server, wittaR du
core Inte[®) Xeon™ CPUs at 2.8GHz, 1GB RAM, 73GB primary



hard disk (SCSI Seagate ST373207LW, 10000 RPM) and a dedi-
cated 20GB partition on a separate hard disk (SCSI| Seag&#3sT
207LW, 10000 RPM) for the tests. The server was running the Fe
dora Core 6 (kernel 2.6.20-1.2952.fc6) distribution of v In
order to simplify our evaluation, we enabled only one preoes
unit by using thevaxcpus 1 boot time parameter in Linux.

The second machine was a desktop system, with ar@nRent-
ium® CPU at 1.7GHz, 1GB RAM, 20GB primary hard disk (WDC
WD200BB-00AUAL, 7200 RPM) and a 20GB test partition on a
separate disk (Maxtor 6E040L0, 7200 RPM). It was running the
same 2.6.20-1.2952.fc6 Linux kernel as the server.

As our goal is to study the energy impact of data compression
on the entire system, and not on a component in isolation, ae& m

bits (9—16) to encode the input symbols, and stores thegston
code mapping in a dictionary. Although based on the same LZ77
algorithm, gzip and Izop differ significantly in their impreenta-
tion. As Izop was designed with the main goal to improve com-
pression/decompression speed, it tends to be generatr thsin
gzip. The bzip2 utility is based on the Burrows Wheeler Tfam
(BWT); it achieves better compression ratio than the Lerzjrel
based tools, at the expense of compression speed. The liteck s
for compression (commonly 100k—900k) can be specified at com
mand invocation. A larger block size typically increases ¢om-
pression ratio, while increasing the memory footprint.

4.3 Benchmarks

sure the total energy of the machine. Hence, we used a WattsUP Writing an uncompressed file involves reading the input arit w

Pro ES [57] power meter to measure the energy consumption of
the system under test, instead of a current clamp attacheditp-

tal multimeter [20, 21], which can provide component levetigy
measurements. The WattsUP Pro ES is a plug-in style powarmet
which allows power measurements by plugging in the AC supply
of the test machine in the meter’s receptacle. It calculdtesu-
mulative energy in Watt-hours (1 Watt-hour = 3,600 Joulegre
second, and stores it in its non-volatile memory. It has acbrse
time resolution and a 0.1 Watt-hour (360 Joules) resoluioen-
ergy measurements; it has an accuracy0f5% -+ 3 counts of the
displayed value. We usedvaat t sup Linux utility [60] to down-
load the recorded data from the meter over a USB interfackeo t
test machine.

4.2 File Types and Compression Tools

ing it to disk. We will refer to this as alain-write in the rest

of the paper. Writing a compressed file involves reading the u
compressed input, compressing it, and writing the comprkfite

to disk. We shall call thizompress-write Similarly, we use the
term plain-readto denote reading the uncompressed file from the
disk; and we usaelecompress-readb indicate reading the com-
pressed file and decompressing it. Each of the operatiomsibeg
above (plain-write, compress-write, plain-read, and dgoess-
read), constitute a task which we defined in Section 3.

The aim of this study is to comparepdain-write to compress-
write, and aplain-read to decompress-readn terms of both en-
ergy consumption and performance. We therefore broadle hav
four types of benchmarksalain-write, compress-write, plain-read,
and decompress-readAs mentioned above, we used four differ-
ent compression tools, each of which can be invoked withkilena

Power consumption in the evaluated systems depends on-the ef parameters. For example, gzip allows the user to specifgffant

fectiveness of compression, which is typically measure€byn-
pression RatidCR) defined as:

Original filesize
Compressedfilesize

CR =

Compression ratio is heavily affected by the type of inputada
file. Hence, we include the file type as one of the dimensions fo
our evaluation. In order to have a representative set ofilpless
data files, we chose to run the tests on four types of files & siz
2GB each: zero, text, binary, and random. These files dehete t
best-to-worst cases of compression, in order. We choselésZe
to be 2GB to ensure that each test ran for a considerable amoun
of time, thereby reducing the scope of errors and high stahndie:
viations arising out of even slight differences in recordedues
across multiple iterations of the test. Also, the 2GB fileinbe
larger than the system RAM (1GB), forces I/O to take place. We
created theerofile by writing zeroes to the file. We generated the
text file by concatenating source files from the Linux kernel and
other open source projects. We createdtimary test file by com-
bining object files from the Linux kernel, Linux libraries dother
open source executables. We createdrédmelomfile by reading
from / dev/ ur andom All the files were generated before running
the benchmarks, so the time/energy required for the geénarags
not included in the measurements.

Another factor influencing the compression effectivenssthé
compression algorithm itself. This constitutes the secdinten-
sion of our analysis. We examined four popular compresstidia u
ties available on Linux: compress, gzip, Izop [43], and Bziphey
have significant differences in implementation and coveridew
range of compression algorithms. Bar and Asanovic disdusset
tools and their algorithms in detail [3]. The compress tytilre-
garded as the oldest, implements the Lempel-Ziv-Welch ()ZW
algorithm which is a variant of the LZ78 algorithm. It uses

parameter in the range 1-9 to choose between speed of compres
sion and compression ratio; a choice of 1 would result indast-
pression, but poorer compression ratio; and a 9 would giedo#st
compression ratio, but would be slower than 1. Table 2 lisés t
various parameter values considered for the compress-ieitch-
marks. For each of the compression tools we chose the default
invocation, and the options which provide the best and wzase

of compression speed (if not already covered by the defatilbio).
Table 3 lists the compression ratios achieved by comprgstifn
ferent types of files using various compression application

Invocation Implications
gzip-1 Favors speed over compression rafio
gzip -6 Default
gzip -9 Favors compression ratio over spegd
Izop -1 Favors speed over compression rafio
Izop -3 Default
Izop -9 Favors compression ratio over spegd
bzip2 -1 Use 100K block size
bzip2 -9 Use 900K block size (default)
compress —b 10 Use 10 hit codes
compress —b 16 Use 16 hit codes (default)

Table 2: Parameters used for invocation of various compressn
tools for compress-write benchmark.

We used the Auto-pilot test suite infrastructure [63] to the
benchmarks. Auto-pilot measures the time required to ruereh-
mark and reports it in terms of Elapsed, System, User, and Wai
times. We developed an Auto-pilot script plug-in to meashes
energy consumed while running the benchmark. The plugtiesre
on the Linux utility described in Section 4.1 to communicaiéh
the meter. The plug-in uses the utility to send a commandearcl



File Type

Tool Text | Binary yIE)zand Zero
None 1 1 1 1

gz-1 | 4.16 1.81 0.95 | ~10°
gz-6 | 4.79 1.81 0.95 | ~10°
gz-9 | 4.84 1.81 0.95 | ~10°
lzo-1 | 352 153 | 0.95 | ~10°
Izo-3 | 351 153 | 0.95 | ~10°
Izo-9 | 437 1.81 | 0.95 | ~10°
bz-1 [ 5.09] 181 | 0.95 | ~10°
bz-9 | 6.11| 2.09 0.95 | ~107
c-10 | 1.17 1 0.8 | ~10°
c-16 | 207 1.17 0.8 | ~10°

Table 3: Compression ratios achieved by various compressio
utilities on 2GB files.

the meter’s internal memory before starting the benchmafker
the benchmark has finished execution, we invoke the utditgend
a command to read the data from the meter, and extract tHetota
ergy expended (in Joules) while running the benchmark. esine
benchmark themselves run for a significant time, any energg-m
surement errors due to the measurement tool itself aregilelgli

We ran all tests at least five times and computed the 95% confi-
dence intervals for the mean elapsed, system, user, andimag
using the Student’s-distribution. In each case, unless otherwise
noted, the half widths of the intervals were less than 5% ef th
mean. In all bar graphs, we show the half widths using an error
bar. Wait time is elapsed time less system and user time astymo
measures time performing 1/O, though it can also be affebted
process scheduling.

We ran the tests on a dedicated hard disk, with the partition f
matted with the Ext2 file system and mounted using the default
options. To ensure that writes to the partition were flusleethe
disk during our measurements, we unmounted the partitidgheat
end of each test iteration.

5. EVALUATION

In this section, we evaluate the effect of compression andrde

tively. The y-axis on this graph denotes the elapsed timechwh
constitutes of theystentime, usertime, andwait time.

The second type of metric plotted is the energy results. &hes
results compare the total energy required in performingaanpl
write/plain-read versus a compress-write/decompread:rén the
y-axis we have the total energy, constitutingaativeandpassive
energy. Passive energy is the energy that is consumed bylean id
system, for the elapsed period, without any other actity cal-
culating the passive energy, we first need to estimate thexgee
power consumption of the idle system. To compute this, we let
the system idle ten times for 10 minutes each, computed thie av
age idle power, and we verified that the standard deviatiogre w
small. We then divided the total energy measured by the idurat
of the idleness, yielding the average idle power of the systeas-
sive energy can be obtained by multiplying the average idlegp
with the elapsed time. Active energy is the extra energyiredu
apart from the passive counterpart, to complete the reguask.

In our graphs, we represent energy in units of Kilojoulesgxeh
1Kilojoule = 103 Joules.

Theenergy-delay produdt=T") metric, as discussed in Section 3,
compares theZT results of compression/ decompression versus
pure writes/reads. Similar to the energy results, the tBtalalso
consists of an active and passive component. We have plibtted
ET results in units of Kilojoule-seconds.

5.2 Read-Write Model

The best case for compression would be when compress-write
outperforms plain-write, and decompress-read faresitbia plain-
read, in terms of a metric. However, there might be scenavion
only one of these comparisons favor compression. For exampl
for a given compression tool, compress-write might requiiae
energy than plain-write, but expends less energy for a dpoess-
read than a plain-read. Notice that the metric we considéhis
example is energy, but the argument applies to the otheiicnets
well (e.g., time or energy-delay). Compression might stithieve
energy savings in such a case if the number of reads is mone tha
a “break-even” value to amortize the extra energy consunyea b
single compress-write.

Workloads are characterized byead-to-writeratio (n), which
represents the distribution of read and write 1/0 requeStsere
have been extensive studies to characterize workloads bastis

pression on energy savings and performance, based on the metparameter [47, 35]. Given a workload, with knowledge abtgit i

rics: energy F), time (T'), and energy-delayKT'), as discussed

in Section 3. Section 5.1 explains the terms we use later- Sec
tion 5.2 presents our read-write model. Section 5.3 analylzere-
sults of the compression utilities for text files, on bothveerclass
and desktop machines. As we found similar results on both the
classes of machines, Sections 5.4, 5.5, and 5.6 evaluateshis

on server class machines only, for binary, random, and ztas, fi
respectively. Finally, Section 5.7 summarizes the evanat

5.1 Terminology

Figures 2, 4, 5, and 6 show the metrics plotted for text, lyinar
random, and zero files, respectively. In all these figures,xh
axis denotesilg-mode level wherealg is the type of the compres-
sion/decompression algorithm:igzlzop, bzp, or compressmode
is either @mpression or Bcompressionlevel is passed as a pa-
rameter to the compression/decompression algorithm tvadhe
compression ratio (CR). Similarly, we use the notatidg/evel to
refer to a given tool operating at a specific compression leve

The time result figures show the total time required to cospre
write or decompress-read a 2GB file using the compressititiagi
discussed above, compared to plain-writes and plain-reasigec-

read-to-write ratio and the type of file data it handles, we ase
this break-even valuent,.) to decide if compressing the data files
would be beneficial. We formalize this by the following madel
For a given metric M, let M, M., M,., and M; be the mea-
sured values of M on a plain-write, compress-write, plaad, and
decompress-read, respectively. g} represent the break-even
read-to-write ratio to obtain energy savings. Assuming wst fi
need to write once before reading, the following inequatityst
hold to compensate the excess energy expended during ttee wri

M. — My, <ndf x (M, — My)

Solving fornj!, we get

(M.—M,,)
(M)

Nhe >
whereM € {T,E, ET}
We calculate and present thé! values for thel', E, and ET
metrics for the various compression tools and test files biekad
and 5 of Section 5.3.
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Figure 2: Text file: The time, energy and energy-delay produt(ET) for compressing/decompressing a 2GB text file. In (a) and
(b), the values at the x-axis are of the formalg-mode-level where alg is the type of the compression/decompression algorithm: @z,
1zop, bzip, or compress; mode is Compression or Decompression;level is the parameter passed to the compression/decompression
algorithm. The energy results in (c) and (d) represent the ttal energy (kilojoules) required for compressing/decompessing the
file with the corresponding algorithm. Section 5.1 describge the terms Active-Energy and Passive-Energy In (e) and (f) we use
kilojoule-seconds to denote the energy-delay product to capress-write/decompress-read the same file.

We define the energy saving&{,.) for decompress-read and
compress-write vs. plain-read and plain-write for a givafue of
read-to-write ration:

Esav = (n X (Er — Eq)) + (Ew — E¢)

where,E.,, E., E,, andFE, is the energy expended in plain-write,
compress-write, plain-read, and decompress-read, resplgc

Note that a negative value @, means energy loss. Figure 3
presents the values @&, for n ranging from 0 to 30 for different
compression algorithms applied on a text file. The value &br
which E,.., becomes zero is thef .

5.3 Text File Analysis

As we observe in Figures 2(a), 2(b), 2(c), and 2(d), I1zo-1 and
I1zo-3 always outperform pure writes and reads in terms ohbot
time and energy consumption for text files. Both I1zo-1 and3zo
save approximately 29% energy compared to plain-writed 68%
compared to plain-reads. Conversely, gz-6, for examplgyires

more energy to compress-write than plain-write, but it sagher-
ing the decompress-read of the same file compared to a @auth-r
As discussed in Section 5.2, we achieve significant enengngs.
without compromising performance when the read-to-wrégor
exceeds théreak-evenvalue. Both Izo-1 and Izo-3 save more en-
ergy than their counterparts (e.g., gz-6) because |zopaments a
fast compression algorithm at the cost of lower compreskitio,
thereby delivering the most energy savings.

Figure 3 demonstrates the dependency of energy savingssr lo
on the read-to-write ratio on a server system. The y-axistierthe
energy savingsEs.., (in Kilojoules). Fs.., = 0 indicates neither
energy savings nor energy losses. A positive valu& of, means
some energy savings, whereas a negative value denotey érssg
The plots for gz-1, gz-6, gz-9, and Izo-9 cross ffig,, = 0 line,
denoting that there exists a read-to-write ratio when thieespond-
ing algorithm becomes beneficial in terms of energy. For estam
gz-1 crosses thE,,, = 0line whenn is equal to 20.2. This means
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Figure 3: Energy savings or loss Fs..,) compared to plain read

and write as a function of the number of reads per one write
for text files on the server system. The Izo-1 and 1zo-3 resut
are so close, that we put them on the same line.

that if for every write the system experiences 21 or more seae
can save energy. The lines for Izo-1 and Izo-3 (coincidecbse
of the proximity of results) are always above thg,, = 0 line,
indicating that these compression tools save energy forratiy.
Conversely, the plots for bz-1, bz-9, ¢-10, and ¢-16 neves<the
Esar = 0 line, implying that these tools expend so much more en-
ergy compared to plain-write and plain-read that they aabieto
amortize the energy losses for any read-to-write ratio. hBu-1
and bz-9 consume more time and energy during compress-agite
well as decompress-read, because of the algorithmic codbple
of bzip, which uses the Burrows-Wheeler transform, the rrove
front transform, and Huffman coding.

Table 4 contains the calculations of, andnZ” for the com-
pression tools discussed in this paper. The break-evee valties
depending on the compression tools used and their CR valifes.
ten, the higher the CR, the slower the utility operates, aorisg
more energy, thereby raising the break-even ratio. Altthotige
break-even ratio for some utilities (gz-9, 1zo0-9, etc.) ieajer than
the read-to-write ratio on a common server system [35, 4&]can
consider them beneficial for a read-intensive workload. (@ugblic
FTP mirrors). In this case, tools with a higher CR can be appli,
especially if storage space and network traffic are a greatern.

Figures 2(e) and 2(f) show the combinEd™ metric, which high-
lights both energy consumption and performance. In thesed
we observe the same trend as in the energy and time resuitd: 1z
and Izo-3 performing the best among all, followed by gz-1 and
gz-6, considering both read and write workloads.

Tool Text Binary Rand Zero
gz-1| 20.2/18.3 X X A4
0z-6| 19.7/62.5 X X v
gz-9| 49.0/~10% X X v
1zo-1 v 2.1/4.0 X v
1zo0-3 \4 2.0/4.3 X \4
Izo-9] 35.4/~10% | ~10%/~10° X 5.4/19.94
bz-1 X X X 0.28/V
bz-9 X X X 1.28/2.36
c-10 X X X v
c-16 X X X v

Table 4: The number of reads for each write required to ben-
efit from compression for E (n2) and ET (nE£T) metrics on a
server system, separated by 4. For break-even values greater
than 100 we only report magnitudesY denotes that it is benefi-
cial to use compression for any read-to-write ratio. The syrhol

x denotes scenarios when no savings can be made. Values less
than 1 represent that just one read can compensate for multile
writes.

Tool Text Binary Rand Zero
gz-1 x 19.1 X X N
gz-6| 3327384 X X %
gz-9| 78.6 /~107 X X v
1zo-1 v 3.8/6.7 X \
Izo-3 v 3.5/5.9 X \4
Izo-9| 31.6/~10% | ~10%/~10° X 4.2/15.3
bz-1 X X % 1.3/14
bz-9 X X X 1.7/2.3
c-10 X X X v
c-16 X X X v

Table 5: Same results as in Table 4, but for the desktop system

These results indicate a strong linear relationship betvibe
time to complete the compression/decompression and thgyene
consumed during these operations. To show this linearityses
the correlation coefficientR, which measures how linearly energy
and time are related [14, 45]. A value & = 1 means that energy
and time both lie on the same line (i.e., they are linear iatieh-
ship). A value close to 1 implies a stronger linear relatiopge-
tween the two values. We calculated the valueRofo be greater
than 0.991 for all four sets of files in our benchmarks, whiohc
roborates the strong linear relationship between time aredgy.
Linear relationship is the result of the fact that comprasgbols
consume equal amount of energy per unit time to perform com-
pression or decompression. Due to this linearity, we ongttiime
metric for the remaining types of files in the subsectionsWwel

Apart from the four compression utilities mentioned befave
also used the PPMd compression utility [51] on a 2GB text file a
found that it is the largest consumer of energy and time. €ais
be attributed to the fact that PPMd is based on the PPM altgorit
which is known to produce the best compression ratio, at Xie e
pense of considerably greater time and memory resource$ind/e
PPMd to yield a compression ratio of 7.6, but consuming ahbut
times more energy than a plain write. Unlike all other conspre
sion utilities, which often decompress faster than they p@ss,
PPMd has to perform similar operations during compressi®n a
well as decompression. Hence, it is equally slow and enexgy e
haustive during both compression and decompression of fltes
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write  gz-C-1 gz-C-6 gz-C9 Iz0-C-1 Izo-C-3 1zo-C-9 bz-C-1 bz-C9 c-C-10 c-C-16 read gz-D-1 gzD-6 gz-D-9 Izo-D-1 Izo-D-3 Izo-D-9 bz-D-1 bz-D-9 ¢-D-10 c-D-16

(c) ET for write vs. compression (d) ET for read vs. decompression

Figure 4: Binary file: The energy and energy-delay product £7°) for compress-write/decompress-read a 2GB binary file.

consumes approximately 30 times more energy during deasnpr  ergy during decompress-read, seen in Figure 4(b). Hencglasi

sion as compared to a normal read. As PPMd does not save energyo the discussion in Sections 5.2 and 5.3, we compute that Izo

during either compression or decompression for all typetled, and 1zo-3 save energy only wheif, > 2. However, if we con-

we do not present the analysis of its results here. sider the energy-delay metric, shown in Figures 4(c) and, 4(e
We also observed that the compress tool takes significamdigm  value of the break-even ratio changes to 4 and 4.3, for Izodl a

system time as compared to other compression utilities. &kle r  1zo-3, respectively. We also see that 1z0-9 consumes sigunitiy

st race and observed that compress performs multiple read and more energy during compression compared to pure-writé jthea

write system calls in units of 1024 bytes, instead of a motérayg difficult to recoup the over-consumption of power throughltipie
unit such as 4KB (page frame size), thereby increasingsytitae. decompress-read workloads. This is evident from the laejaeev
of nfT ¢10%) in Table 4. As all other compression utilities have a
Analysis on desktop machines. greater energy consumption aftf” values than plain-writes, they
We ran the same set of tests on a slower desktop class machinecannot be considered as good candidates for compressibremt
(described in Section 4.1) and found similar results as ¢hathe ergy savings in mind.

server class machine. Even on desktop machines, 1zo-1 arl Iz . .
proved to be the most energy-efficient. But, the break-ewatio r 5.5 Random File AnalySIS

for the desktop class machine, shown in Table 5, differs ftoat It is evident from Figure 5 that no compression utility saees
computed for a server class machine. Generally we noticatitth ~ €rgy during compression or decompression. Consequehéy; T’

is harder to realize energy savings on the slower desktorsys values for the compression utilities is also greater thahdhplain-
because its CPU is slower. Based on these observations,we co read and plain-write. The reason is that compressionigsliind
clude that CPU speeds and hardware configuration consigierab it difficult to discover repeated patterns in a random filejafitin-
impact the break-even ratio. Hence, a compression utilttjciv herently has a high entropy [1]. Therefore, the tools wadte af
seems promising in terms of energy savings on one hardware co CPU time and energy trying to compress, but do not gain much in
figuration, might turn out to be more expensive on the otteraf ~ terms of CR, as shown in Table 3. Hence, modern storage system
given set of workload. In Table 5, we see that although gzvene  should recognize high entropy files, such as multimediaaaly
saves energy for text files, it does provide savings, aftereals compressed files, encrypted files, etc., and write them tijrés
even value of 9.1, when we factor in performance along with en the disk without compression.

ergy. This happens because in spite of the decompressiothand 56 Zero File Analysis

plain read taking the same amount of energy, the former fsish
significantly faster than the latter. As expected, all the compression utilities, except 1zoz91 pand

bz-9 consume less energy than writes and reads (Figure 8)effh
ergy consumption by 1zo-9 compress-write is almost twic tf

5.4 Bmary File AnaIyS|s plain write, but it recovers from the energy losses #df > 5.4
In the case of a 2GB binary file, as shown in Figure 4(a), the (Table 4). Similarly, the break-even ratios for bz-1 and%are

energy consumption during compress-write using both lzmd 0.28 and 1.28, respectively. Considering fii&€ metric, the break-

I1zo-3 is greater than plain-write. Conversely, both of theaxe en- even ratio for 1zo-9 rises to 20. Most of the compressionitigf
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write gz-C-1 gz-C-6 gz-C9 Iz0-C-1 Iz0-C-3 1z0-C-9 bz-C-1 bz-C-9 ¢-C-10 ¢-C-16 read gz-D-1 gz-D-6 gz-D-9 Izo-D-1 Iz0o-D-3 1z0-D-9 bz-D-1 bz-D-9 ¢-D-10 ¢-D-16
(a) Energy consumed for write vs. compression (b) Energy consumed for read vs. decompression
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write gz-C-1 gz-C6 gz-C9 Iz0-C-1 1z0-C-3 1z0-C-9 bz-C-1 bz-C-9 ¢-C-10 ¢-C-16 read gz-D-1 gz-D-6 gz-D-9 Iz0-D-1 Iz0-D-3 1z0-D-9 bz-D-1 bz-D-9 ¢-D-10 ¢-D-16
(c) ET for write vs. compression (d) ET for read vs. decompression

Figure 5: Random file: The energy and energy-delay productET’) for compress-write/decompress-read a 2GB random file.
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write gz-C-1  gz-C6 gz-C-9 Iz0-C-1 Iz0-C-3 1z0-C-9 bz-C-1 bz-C-9 ¢C-10 c-C-16 read gz-D-1 gz-D-6 gz-D-9 Izo-D-1 Iz0-D-3 1z0-D-9 bz-D-1 bz-D-9 ¢-D-10 ¢-D-16
(c) ET for write vs. compression (d) ET for read vs. decompression

Figure 6: Zero file: The energy and energy-delay product £7°) for compress-write/decompress-read a 2GB zero file.

achieve a high CR without increasing thd” because of the large 5.7 Summary of Evaluation

frequency of repeated patterns. From this observation,amesag- The strong linear dependency between energy and time found i
gest that if a storage system consists of files with a largeium )| experiments indicates that energy consumption perafrtime
of repeated patterns (e.g., log files) compression is deljnét bet- (power) is independent of the compression algorithm. Téssls to
ter alternative in terms of saving on energy without perfance the conclusion that the fastest algorithm is the most eneffigient
degradation. one. The time required to accomplish the task consists dfirte



required to perform an I/O and the time required to compress (
decompress) the data. The time for completing I/O operation
turn, depends on the amount of data to be written, whereaothe
pression time depends on the algorithm used. This meanathat
optimal compression tool should have a high compressian aad
low compression time. There is a clear trade-off betweenpres:
sion ratio and the speed of compression.

The file data type affects the compression ratio dramagicall
None of the compression tools we considered provided adgast
in energy consumption for the files with random content. Fpz
files, however, almost all tools provided benefits for bothadre
ing and writing. For text and binary files, we observe sitagi
when compress-write is less energy-efficient than plaiitewbut
decompress-read is more energy-efficient than plain-réédcal-
culated the break-even ratio of reads to writeg.§ in such cases.
For most of the compression tools, this value is signifigahnigher
than the read-to-write ratio on common server systems, iwhés
been found to be typically 2-4 [47, 35]. Some notable exoapti
were Izo-1 and Izo-3, which are always beneficial for textsfile
They also save energy in case of binary files, if the read+itewa-
tio is at least 2 (or about 4 in terms &fT" metric). We recommend
the use of 1zo-1 and 1zo-3 in all cases, except the situatidrere
disk space is a greater concern than energy or performanee. W
also recommend that future systems recognize high-entfitgsy
(e.g., encrypted, random, etc.) and avoid compressing titeat.
Lastly, while most of the results reported in this sectiorrevger-
taining to server-class systems, we found similar trenddésktop
class systems too; however, we noted that on slower systatins w
slower CPUs, it is harder to save energy with compression.

6. CONCLUSIONS

In this paper, our research contribution was to investitfate/a-
lidity of the assumption that data compression is an effedg&ch-
nigue to reduce energy consumption in server systems. Wa-eva
ated several compression tools on Linux on a variety of déta fi
and compared them against raw reads and writes based om-perfo
mance and energy metrics. Our experimental results sugjgeist
no generalized conclusion regarding the efficacy of congioas
can be drawn. It greatly depends on the data redundancy &fehe
the compression algorithm being used, the read-to-write cdithe
workload, and the hardware configuration of the system. Wado
that compressing zero files is beneficial for almost all thepes-
sion tools. Random files are better-off not being compressedl.
Text files, when compressed with Izop using options 1 and B, wi
always save energy, irrespective of the workload’s readhite ra-
tio. We developed a simple read-write model to evaluateggner
savings in cases where only compression or decompressies sa
energy. When applied to text and binary files, it reveals tdy
gzip and Izop can offer energy savings; in most cases the&brea
even read-to-write ratio is significantly greater (morert28) than
that found in common workloads. Other than on zero files, dzip
and the compress utility never save any energy.

Future Work.

We intend to extend this study to a wider range of systems, in-
cluding systems with multiple cores and multiple CPUs, CRitls
Dynamic Voltage and Frequency Scaling (DVFS), differerskdi
speeds, etc. We also plan on conducting our study on reatrserv
workloads. Compression significantly reduces the storagaire-
ment for data, and hence can result in lesser spinning digkes.
plan to extend our current model to factor in the additioraher
savings thus achieved. We are currently also working onnelte
ing gzipfs [66], a stackable compression file system, taldelthe
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various compression algorithms we wish to compare. In thaéy
we plan to explore and evaluate data de-duplication as amgne
saving technique.

Another interesting direction would be to include archs/igrthe
evaluation. Archivers generally work by combining mulégdiles
into one. In scenarios where we have several small files, suith
ilar content or format, compressing their archive wouldi¢gtly
result in better compression. Decompression on an archivead
one file will, however, be more expensive than if the file wak-in
vidually compressed.
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