Evaluating Performance and Energy in File System Server Wdkloads
Priya Sehgal, Vasily Tarasov, and Erez Zadok
Stony Brook University
Appears in the Proceedings of the 8th USENIX Conference on [and Storage Technologies (FAST 2010)

Abstract Less work has been done evorkload-reductiontech-
-) niques: better algorithms and data-structures to improve
_ Rgcently, power has emerged as a critical facto_r in debower/performance [14,19,24]. A few efforts focused
signing components of storage systems, especially fof, energy-performance tradeoffs in parts of the storage

power-hungry data centers. While there is some researcly [8, 18, 29]. However, they were limited to one prob-
into power-aware storage stack components, there are N@r, gomain or a specific workload scenario.
systematic studies evaluating each component’s impact

separately. This paper evaluates the file system’s impact Many factors affect power and performance in the stor-

on energy consumption and performance. We studied9e stack, especially workloads. Traditional file systems

. . . . and I/O schedulers were designed for generality, which
several popular Linux file systems, with various mount.

. . . is ill-suited for today’s specialized servers with long-

and format options, using the FileBench workload gen-
. running services (Web, database, email). We believe that
erator to emulate four server workloads: Web, database, .
. . . to improve performance and reduce energy use, custom
mail, and file server. In case of a server node consist- .
. . . . | storage layers are needed for specialized workloads. But
ing of a single disk, CPU power generally exceeds disk- . .
; . o before that, thorough systematic studies are needed to
power consumption. However, file system design, imple- : :
. . N, recognize the features affecting power-performance un-

mentation, and available features have a significant effec o
er specific workloads.

on CPU/disk utilization, and hence on performance an . . .
power. We discovered that default file system options are 1his paper studies the impact of server workloads
often suboptimal, and even poor. We show that a carefup? Poth power and performance. ~ We used the
matching of expected workloads to file system types an(_§:|IeBench [16] workl_o_ad generator due to its flexibil-

options can improve power-performance efficiency by aity, accuracy, and ability to scale and stress any server.

factor ranging from 1.05 to 9.4 times. We selected FileBench’s Web, database, email, and file
] server workloads as they represent most common server
1 Introduction workloads, yet they differ from each other. Modern stor-

Performance has a long tradition in storage research. Rege stacks consist of multiple layers. Each layer inde-
cently, power consumption has become a growing conpendently affects the performance and power consump-
cern. Recent studies show that the energy used insidéon of a system, and together the layers make such in-
all U.S. data centers is 1-2% of total U.S. energy conieraction rather complex. Here, we focused on the file
sumption [42], with more spent by other IT infrastruc- System layer only; to make this study a useful stepping
tures outside the data centers [44]. Storage stacks hawone towards understanding the entire storage stack, we
grown more complex with the addition of virtualization did not use LVM, RAID, or virtualization. We experi-
layers (RAID, LVM), stackable drivers and file systems, mented with Linux’s four most popular and stable local
virtual machines, and network-based storage and file sydile systems: Ext2, Ext3, XFS, and Reiserfs; and we var-
tem protocols. It is challenging today to understand the€d several common format- and mount-time options to
behavior of storage layers, especially when using comevaluate their impact on power/performance.
plex applications. We ran many experiments on a server-class machine,
Performance and energy use have a non-trivial, poorlyollected detailed performance and power measurements,
understood relationship: sometimes they are oppositeand analyzed them. We found that different workloads,
(e.g., spinning a disk faster costs more power but im-not too surprisingly, have a large impact on system be-
proves performance); but at other times they go hand irhavior. No single file system worked best for all work-
hand (e.g., localizing writes into adjacent sectors can imioads. Moreover, default file system format and mount
prove performance while reducing the energy). Worse options were often suboptimal. Some file system features
the growing number of storage layers further perturb ac-helped power/performance and others hurt it. Our ex-
cess patterns each time applications’ requests travezse tiperiments revealed a strong linearity between the power
layers, further obfuscating these relationships. efficiency and performance of a file system. Overall,
Traditional energy-saving techniques uight-sizing we found significant variations in the amount of useful
These techniques adjust node’s computational power tavork that can be accomplished per unit time or unit en-
fit the current load. Examples include spinning disksergy, with possible improvements over default configura-
down [12, 28, 30], reducing CPU frequencies and volt-tions ranging from 5% to 9,4. We conclude that long-
ages [46], shutting down individual CPU cores, andrunning servers should be carefully configured at instal-
putting entire machines into lower power states [13, 32].lation time. For busy servers this can yield significant

performance and power savings over time. We hope thigaches [5, 49], prefetching [26,30], and a combination
study will inspire other studies (e.qg., distributed file-sys of these techniques [11, 43]. Massive Array of Idle Disks
tems), and lead to novel storage layer designs. (MAID) augments RAID technology with automatic shut
The rest of this paper is organized as follows. Sec-down of idle disks [9]. Pinheiro and Bianchini used the
tion 2 surveys related work. Section 3 introduces ourfact that regularly only a small subset of data is accessed
experimental methodology. Section 4 provides useful in-by a system, and migrated frequently accessed data to
formation about energy measurements. The bulk of oua small number of active disks, keeping the remaining
evaluation and analysis is in Section 5. We conclude indisks off [31]. Other approaches dynamically control the
Section 6 and describe future directions in Section 7. platters’ rotation speed [35] or combine low- and high-

2 Related Work speed disks [8].
These approaches depend primarily on having or pro-

Past power-conservation research for storage focused 9Bnging idle periods, which is less likely on busy servers.
portable battery-operated computers [12,25]. Recentlyrq, thoge, aggressive use of shutdown, slowdown, or

researchers investigated data centers [9,28,43]. As OWpin_qown techniques can have adverse effects on per-
focus is file systems’ power and performance, we disCUs$,mance and energy use (e.g., disk spin-up is slow and

three areas of related work that mainly cover both power, ;5 energy); such aggressive techniques can also hurt

and performance: file system studies, lower-level storageagware reliability. Whereas idle-time techniques are
studies, and benchmarks commonly used to evaluate SY¥omplementary to our study, we examine file systems’

tems’ power efficiency. features that increase performance and reduce energy use

File system studies. Disk-head seeks consume a largein activesystems.
portion of hard-disk energy [2]. A popular approach to

optimize file system power-performanceis to localize on-_ \vide range of benchmarks to evaluate the performance

disk data to incur fewer head movements. Huang et al . e
replicated data on disk and picked the closest replica t(?f computer systems [39,41] and file systems specifi

the head'’s position at runtime [19]. The Energy-EfficientCaIIy [7,16,22,40]. Far fewer benchmarks exist to de-

. . L termine system power efficiency. The Standard Per-
File System (EEFS) groups files with high temporal aCformance Evaluation Corporation (SPEC) proposed the

gess(jl?callty [2.4]' Egsar;;- antq Ame;]r devetlope(cji preﬁlc- PECpowesssj benchmark to evaluate the energy effi-
V€ data grouping and replication schemes {o reduce heg ency of systems [38]. SPECpowssj stresses a Java

movements [14]. server with standardized workload at different load lev-

; Sodme suggested othertf|le-sy$errlglevel(j_technl(iuegls. It combines results and reports the number of Java
0 reduce power consumption without degrading per Or'operations per second per watt. Rivoire et al. used a large

|t”nan;:e. Blut?::Sdls an engggy-m0|entd|?trlt:yted file Syst'sorting problem (guaranteed to exceed main memory) to
em for mobile devices [29]. €N applications requesty, o ate a system’s power efficiency [34]; they report the

and performance. GreenFsS is a stackable file system thq?}ggngi; g‘;ﬁgﬁ?;ﬁﬁzrg;sﬁsgguIe' We use similar met-

combines a remote network disk and a local flash-base .
Our goal was to conduct a systematic power-

memory buffer to keep the local disk idling for as long as : '
. ; .) .~ performance study of file systems. Gurumurthi et al.
possible [20]. Kothiyal et al. examined file compression” ~ . S . .
carried out a similar study for various RAID configu-

to improve power and performance [23]. ations [18], but focused on database workloads alone.

These _stuqlle_s Propose new Qe3|gns_fo_r storage sof They noted that tuning RAID parameters affected power
ware, which limit their applicability to existing systems. " .
and performance more than many traditional optimiza-

Also, they often focus on narrow problem domains. We'tion techniques. We observed similar trends, but for file

however, focus on servers, several common workloads ; :
o s systems. In 2002, Bryant et al. evaluated Linux file sys-
and use existing unmodified software.

tem performance [6], focusing on scalability and concur-
Lower-level storage studies. A disk drive’s platters rency. However, that study was conducted on an older
usually keep spinning even if there are no incoming I/OLinux 2.4 system. As hardware and software change
requests. Turning the spindle motor off during idle pe-so rapidly, it is difficult to extrapolate from such older
riods can reduce disk energy use by 60% [28]. Sev-studies—another motivation for our study here.

eral studies suggest ways to predict or prolong idle pe-
riods and shut the disk down appropriately [10, 12]. Un-3 Methodology

like laptop and desktop systems, idle periods in serveiThis section details the experimental hardware and soft-
workloads are commonly too short, making such ap-ware setup for our evaluations. We describe our testbed
proaches ineffective. This was addressed using 1/On Section 3.1. In Section 3.2 we describe our bench-
off-loading [28], power-aware (sometimes flash-basedmarks and tools used. Sections 3.3 and 3.4 motivate our

Benchmarks and systematic studies. Researchers use

selection of workloads and file systems, respectively. of corresponding applications in the enterprise environ-
. ment [16]. We used these personalities in our study.
3.1 Experimental Setup We used Auto-pilot [47] to drive FileBench. We built

We conducted our experiments on a Dell Pow-an Auto-pilot plug-in to communicate with the power
erEdge SC1425 server consisting of 2 dual-core @®tel Meter and modified FileBench to clear the two watt me-
Xeon™™ CPUs at 2.8GHz, 2GB RAM, and two ters internal memory before each run. After each bench-
73GB internal SATA disks. The server was run- mark run, Auto-Pilot extracts the energy readings from
ning the CentOS 5.3 Linux distribution with kernel both watt-meters. FileBench reports file system perfor-
2.6.18-128.1.16.el5.centos.plus. All the benchmarkgnance in operations per second, which Auto-pilot col-
were executed on an external 18GB, 15K RPM AT-lects. We ran all tests at least five times and computed
LAS15K_18WLS Maxtor SCSI disk connected through the 95% confidence intervals for the mean operations
Adaptec ASC-39320D Ultra320 SCSI Card. per second, and disk and CPU energy readings using the
As one of our goals was to evaluate file systems’Studentst distribution. Unless otherwise noted, the half
impact on CPU and disk power consumption, we con-Widths of the intervals were less than 5% of the mean—
nected the machine and the external disk to two separaf@oWn as error bars in our bar graphs. To reduce the im-
WattsUP Pro ES [45] power meters. This is an in-linePact of the watt-meter's constant error (0.3 Watt-hours)
power meter that measures the energy drawn by a de¥e increased FileBench’s default runtime from one to 10
vice plugged into the meter's receptacle. The power meinutes. Our test code, configuration files, logs, and re-
ter uses non-volatile memory to store measurements e\3Ults are available atuw. f si . cs. sunysb. edu/ docs/
ery second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600f S9r een- bench/..
Joules) resolution for energy measurements; the accuracy 3 \workload Categories
is +1.5% of the measured value plus a constant error of
4+0.3 Watt-hours. We used aat t sup Linux utility to One of our main goals was to evaluate the impact of dif-
download the recorded data from the meter over a USEerent file system workloads on performance and power
interface to the test machine. We kept the temperature iiS€. We selected four common server workloads: Web

the server room constant. server, file server, mail server, and database server. The
distinguishing workload features were: file size distribu-
3.2 Software Tools and Benchmarks tions, directory depths, read-write ratios, meta-data vs.

data activity, and access patterns (i.e., sequential us. ra
Ofiom vs. append). Table 1 summarizes our workloads’
GDroperties, which we detail next.

We usedFileBench[16], an application level workload
generator that allowed us to emulate a large variety
workloads. It was developed by Sun Microsystems an
was used for performance analysis of Solaris operatingVeb Server. The Web server workload uses a read-
system [27] and in other studies [1,17]. FileBench canwrite ratio of 10:1, and reads entire files sequentially by
emulate different workloads thanks to its flexibork- multiple threads, as if reading Web pages. All the threads
load Model LanguagéWML), used to describe a work- append 16KB to a common Web log, thereby contending
load. A WML workload description is called personal- for that common resource. This workload not only ex-
ity. Personalities define one or more groups of file systenercises fast lookups and sequential reads of small-sized
operations (e.g., read, write, append, stat), to be exdcutdfiles, but it also considers concurrent data and meta-data
by multiple threads. Each thread performs the group ofupdates into a single, growing Web log.

operations repeatedly, over a configurable period of time
At the end of the run, FileBench reports the total num-
ber of performed operations. WML allows one to specify
synchronization points between threads and the amou
of memory used by each thread, to emulate real-world
application more accurately. Personalities also describ

the directory structure(s) typical for a specific workload: .) .
y (5) typ b 'pend, read, write, and stat operations, exercising both the

average file size, directory depth, the total number o tadat d dat ths of the fil ‘
files, and alpha parameters governing the file and direc€ta-data and data paths ot the file system.

tory sizes that are based on a gamma random distributiorMail Server. The mail server workload (varmail) emu-
To emulate a real application accurately, one needates an electronic mail server, similar to Postmark [22],
to collect system call traces of an application and con-but it is multi-threaded. FileBench performs a sequence
vert them to a personality. FileBench includes severabf operations to mimic reading mails (open, read whole
predefined personalities—Web, file, mail and databaséile, and close), composing (open/create, append, close,
servers—which were created by analyzing the tracesnd fsync) and deleting mails. Unlike the file server and

File Server. The file server workload emulates a server
that hosts home directories of multiple users (threads).
r]L{sers are assumed to access files and directories belong-
ng only to their respective home directories. Each thread
icks up a different set of files based on its thread id.
ach thread performs a sequence of create, delete, ap-

Average Average Number I/0O sizes Number of .
Workload file sige directory gepth of files | read | write | append | threads R/W Ratio
Web Server| 32KB 3.3 20,000 | 1MB - 16KB 100 10:1
File Server | 256KB 3.6 50,000 | 1MB | 1MB | 16KB 100 1:2
Mail Server| 16KB 0.8 50,000 | 1MB - 16KB 100 1:1
DB Server | 0.5GB 0.3 10 2KB | 2KB - 200+ 10 20:1

Table 1: FileBench workload characteristics. The databasekload uses 200 readers and 10 writers.
Web server workloads, the mail server workload uses and 128B for XFS and Ext2/Ext3, respectively) and 1KB
flat directory structure, with all the files in one directory. inode size for all file systems except Reiserfs, as it does
This exercises large directory support and fast lookupsnot explicitly have an inode object.
The average file size for this workload is 16KB, which is \We evaluated various mount optiomat i e, jour-
the smallest amongst all other workloads. This initial file nal vs. no journal, and different journalling modes.
size, however, grows later due to appends. The noat i me option improves performance in read-

Database Server. This workload targets a specific class mtenswg workloads, as It sklp_s updat!ng.:?m modgs last
access time. Journalling provides reliability, but incurs

of systems, callednline transaction processir@LTP). n extra cost in logging information. Some file systems
OLTP databases handle real-time transaction-oriented . 9ging | ' Y
support different journalling modes: data, ordered, and

applications (e.g., e-commerce). The database emula-! . .
chronous reads, and moderate (256KB) synchronou ered mode (défaultin Ext3 and Reiserfs) logs onl m'eta—
writes to the log file. It launches 200 reader processes, 1) 109 Y

. . . . ata, but ensures that data blocks are written before meta-
asynchronous writers, and a single log writer. This work- . .

. ! . Flata. The writeback mode logs meta-data without order-
load exercises large file management, extensive concul- data/meta-data writes. Ext3 and Reiserfs suoport all
rency, and random reads/writes. This leads to frequen 9 : PP

ree modes, whereas XFS supports only the writeback

cache misses and on-disk file access, thereby explorin ode. We also assessed a few file-system specific mount
the storage stack’s efficiency for caching, paging, an ' : . y P
and format options, described next.

1/0.
- - Ext2 and Ext3. Ext2 [4] and Ext3 [15] have been
3.4 File System and Properties the default file systems on most Linux distributions for
We ran our workloads on four different file systems: years. Ext2 divides the disk partition into fixed sized
Ext2, Ext3, Reiserfs, and XFS. We evaluated both theblocks, which are further grouped into similar-sized
default and variants of mount and format options forblock groups Each block group manages its own set of
each file system. We selected these file systems for theinodes, a free data block bitmap, and the actual files’ data.
widespread use on Linux servers and the variation in theifThe block groups can reduce file fragmentation and in-
features. Distinguishing file system features were: crease reference locality by keeping files in the same par-
ent directory and their data in the same block group. The
maximum block group size is constrained by the block
size. Ext3 has an identical on-disk structure as Ext2,
but adds journalling. Whereas journalling might degrade
performance due to extra writes, we found certain cases
)) _ where Ext3 outperforms Ext2. One of Ext2 and Ext3’s
For each file system, we tested the impact of variougyajor fimitations is their poor scalability to large files
format and mount options that are believed to affect per44 file systems because of the fixed number of inodes,

formance. We considered two common format optionSiiyeq plock sizes, and their simple array-indexing mech-
block size and inode size. Large block sizes improve 1/Ogpism [6].

performance of applications using large files due to fewer

number of indirections, but they increase fragmentationXFS. XFS [37] was designed for scalability: support-
for small files. We tested block sizes of 1KB, 2KB, and ing terabyte sized files on 64-bit systems, an unlimited
4KB. We excluded 8KB block sizes due to lack of full number of files, and large directories. XFS employs
support [15,48]. Larger inodes can improve data local-B+ trees to manage dynamic allocation of inodes, free
ity by embedding as much data as possible inside the inspace, and to map the data and meta-data of files/directo-
ode. For example, large enough inodes can hold small difies. XFS stores all data and meta-data in variable sized,
rectory entries and small files directly, avoiding the needcontiguousextents Further, XFS’s partition is divided

for disk block indirections. Moreover, larger inodes help into fixed-sized regions calleallocation groups(AGSs),
storing the extent file maps. We tested the default (256Bvhich are similar to block groups in Ext2/3, but are de-

B+/S+ Tree vs. linear fixed sized data structures
Fixed block size vs. variable-sized extent
Different allocation strategies

Different journal modes

Other specialized features (e.g., tail packing)

4

signed for scalability and parallelism. Each AG managedd Energy Breakdown
the free space and inodes of its group independently; inActive vs. passive energy. Even when a server does not

creazmg tfhe nu:lnll)i_rl of all?catlon groE[Ipsl)s,(:tales up thf)erform any work, it consumes some energy. We call this
number ot parallel Tie system requests, but too man energyidle or passive The file system selection alone

needed, thus not limiting the maximum number of files.ing idle periods. Theactive power of a node is an ad-
XFS uses a delayed allocation policy that helps in gettinqjitional power drawn by the system when it performs

large cgntiguous e_xtents, anq incr(_aases the performan(i%eful work. Different file systems exercise the system’s
of applications using large-sized files (e.g., databases)rESources differently, directly affecting active powet:- A

However, this Increases memory utlllzqtlon. XFS traCksthough file systems affect active energy only, users often
AG free space using two B+ trees: the first B+ tree tracks

free space by block number and the second tracks by t CT:I about total energy used. Therefore, we report only
. power used.

size of the free space block. XFS supports only meta-data

journalling (writeback). Although XFS was designed for Hard disk vs. node power. We collected power con-

scalability, we evaluate all file systems using differemt fil sumption readings for the external disk drive and the test

sizes and directory depths. Apart from evaluating XFS’'snode separately. We measured our hard disk’s idle power

common format and mount options, we also varied itsto be 7 watts, matching its specification. We wrote a tool

AG count. that constantly performs direct 1/O to distant disk tracks
to maximize its power consumption, and measured a
maximum power of 22 watts. However, the average disk
power consumed for our experiments was only 14 watts

. . e . with little variations. This is because the workloads ex-
Relgerfs._ The R(_e|serfs partition is divided into blocks hibited high locality, heavy CPU/memory use, and many
of fixed size. Reiserfs usesbamlanced S+ tred33] to I/O requests were satisfied from caches. Whenever the

optimize |ookups, reference locality, and Space'eﬁiCiemi/vorkloads did exercise the disk, its power consumption

packing. The S+ tree consists of internal nodes, fOrmati/vas still small relative to the total power. Therefore, for
ted leaf nodes, and unformatted nodes.

Each internqh .
. . :) . e rest of this paper, we report only total system power
node consists of key-pointer pairs to its children. The for'consumption (dFi)sIfincIuded)p y y P

matted nodes pack objects tightly, callezins each item A node’s power consumption consists of its compo-

is referenced through a unique key (akin to an inode num- ; , ;
: nents’ power. Our server’s measured idle-to-peak power
ber). These items includstat itemdfile meta-data)di- P P P

rorv it direct triesyindirect it imilart is 214-279W. The CPU tends to be a major contribu-
rectory! ems(. rectory en n_es)Ln rect! ems(5|m| arto tor, in our case from 86-165W (i.e., Intel's SpeedStep
inode block lists), andirect items(tails of files less than

.) technology). However, the behavior of power consump-
4K). A formatted node accommodates items of d'ﬁeremtion within a computer is complex due to thermal effects

f|Ie§ gnd d;rectc_)r;e_s. tUnfcl)rmkattedTrrl]od(;e_s cc:r)ttaln raw(;j?r:%nd feedback loops. For example, our CPU’s core power
and do not assist in tree Iookup. The direct fiems an se can drop to a mere 27W if its temperature is cooled

pointers inside indirect items point to these unformatte 0 50°C, whereas it consumes 165W at a normal tem-

nodes. The internal and formatted nodes are sorted a%'erature off6 °C.. Motherboards today include dynamic

cording to their keys. As a file’s meta-data and data '.Ssystem and CPU fans which turn on/off or change their

searched through the combined S+ treg using keys,_ Rel”gs'peeds; while they reduce power elsewhere, the fans con-
erfs scales well for a large and deep file system hierar-

chy. Reis_erfs has a unique fez?lture we evaluated gmlbd ?ggg?tss (())r:l)e/ E)c:gesrytsrlzms; (I)\\j\?esr' C'f)?]rsilmgtl:glr:y our paper
packing intended to reduce internal fragmentation and

optimize the I/O performance of small sized files (lessFS vs. other software power consumption. It is rea-
than 4K). Tail-packing support is enabled by default, andsonable to question how much energy does a file sys-
groups different files in the same node. These are refetem consume compared to other software components.
enced using direct pointers, called the tail of the file. Al- According to Almeida et al., a Web server saturated by
though the tail option looks attractive in terms of spaceclient requests spends 90% of the time in kernel space,
efficiency and performance, it incurs an extra cost duringnvoking mostly file system related system calls [3]. In
reads if the tail is spread across different nodes. Simigeneral, if a user-space program is not computationally
larly, additional appends to existing tail objects lead tointensive, it frequently invokes system calls and spends
unnecessary copy and movement of the tail data, hurting lot of time in kernel space. Therefore, it makes sense
performance. We evaluated all three journalling modedgo focus the efforts on analyzing energy efficiency of file
of Reiserfs. systems. Moreover, our results in Section 5 support this

fact: changing only the file system type can increase
power/performance numbers up to a factor of 9.

300

5 Evaluation

280 -

This section details our results and analysis. We abbre
viated the terms Ext2, Ext3, Reiserfs, and XFSe&s

260

Average Power (Watts)

e3, r, andx, respectively. File systems formatted with 2o} o —
block size of 1K and 2K are denotbtik 1k andbl k2Kk, " ‘ ‘ ‘ ‘ | Reisers —=—
respectivelyj sz1k denotes 1K inode sizeBg16k de- 0 10 20 3 40 50 60 ™

Load (1000 ops/sec)

notes 16K block group sizeslt | g andw bck denote Figure 1: Webserver: Mean power consumption by Ext2, Ext3,
data and writeback journal modes, respectivelg| og Reiserfs, and XFS at different load levels. Thexis scale

denotes Reiserfs's no-logging feature; allocation grougstarts at 220 Watts. Ext2 does not scale above 10,000 ops/sec
count is abbreviated aagc followed by number of

100

groups (8, 32, etc.), no-atime is denotechasit m w pa
Section 5.1 overviews our metrics and terms. We de- -~ o =
tail the Web, File, Mail, and DB workload results in Sec- “ -
tions 5.2-5.5. Section 5.6 provides recommendations fo D 0%
selecting and designing efficient file systems. ° \ %
. 0 — I;xt; 7777777 - Ext3 Reiserfs XFS
5.1 Overview Figure 2: Average CPU utilization for the Webserver worlkdoa

In all our tests, we collected two raw metrics: perfor- consumed almost the same amount of energy at a cer-
mance (from FileBench), and the average power of thdain performance levels, but only a few could withstand
machine and disk (from watt-meters). FileBench re-more load than the others. For example, Ext2 had a max-
ports file system performance under different workloadsimum of only 8,160 Web ops/sec with an average power
in units of operations per seconfops/sec). As each consumption of 239W, while XFS peaked at 70,992 op-
workload targets a different application domain, this met-s/sec, with only 29% more power consumption. Figure 2
ric is not comparable across workloads: A Web server'sshows the percentages of CPU utilization, 1/O wait, and
ops/sec are not the same as, say, the database serveitfe time for each file system at its maximum load. Ext2
Their magnitude also varies: the Web server’s rates numand Reiserfs spend more time waiting for 1/0 than any
bers are two orders of magnitude larger than other work-other file system, thereby performing less useful work, as
loads. Therefore, we report Web server performance irper Figure 1. XFS consumes almost the same amount of
1,000 ops/sec, and just ops/sec for the rest. energy as the other three file systems at lower load levels,
Electrical power, measured in Watts, is defined as théut it handles much higher Web server loads, winning
rate at which electrical energy is transferred by a circuit.over others in both power efficiency and performance.
Instead of reporting the raw power numbers, we selectedVe observed similar trends for other workloads: only one
a derived metric calledperations per jouldops/joule), file system outperformed the rest in terms of both power
which better explains power efficiency. This is definedand performance, at all load levels. Thus, in the rest of
as the amount of work a file system can accomplish in 1this paper we report only peak performance figures.
Joule of energyl(Joule = lwatt x 1sec). The higher
the value, the more power-efficient the system is. Thiss'2 Webserver Workload
metric is similar to SPEC’s %=22") metric, used by As we see in Figures 3(a) and 3(b), XFS proved to be
SPECPowessj2008 [38]. Note that we report the Web the most power- and performance-efficient file system.
server’s power efficiency in ops/joule, and use ops/kilo-XFS performed 9 times better than Ext2, as well as 2
joule for the rest. times better than Reiserfs, in terms of both power and
A system'’s active power consumption depends on howperformance. Ext3 lagged behind XFS by 22%. XFS
much it is being utilized by software, in our case a file wins over all the other file systems as it handles concur-
system. We measured that the higher the system/CPlent updates to a single file efficiently, without incurring
utilization, the greater the power consumption. We there-a lot of 1/0 wait (Figure 2), thanks to its journal design.
fore ran experiments to measure the power consumptioXFS maintains an active item list, which it uses to pre-
of aworkload at differentload levels (i.e., ops/sec), fibra vent meta-data buffers from being written multiple times
four file systems, with default format and mount options. if they belong to multiple transactions. XFS pins a meta-
Figure 1 shows the average power consumed (in Wattsjlata buffer to prevent it from being written to the disk
by each file system, increasing Web server loads fronuntil the log is committed. As XFS batches multiple up-
3,000 to 70,000 ops/sec. We found that all file systemslates to a common inode together, it utilizes the CPU

Performance (1000 ops/sec)

Energy Efficiency (opsfjoule)

(b) File system energy efficiency for Webserver workloadafas/joule)
Figure 3: File system performance and energy efficiency utige\Webserver workload
better. We observed a linear relationship between powelr our nal _.conmi t _t ransacti on are all the meta-
efficiency and performance for the Web server workload,data updates actually synced to the disk (after committing
so we report below on the basis of performance alone. the data). Although journalling was designed primarily
for reliability reasons, we conclude that a careful journal

Ext2 performed the worst and exhibited inconsistentdesign can help some concurrent-write workloads akin to
behavior. Its standard deviation was as high as 80%lLFS [36].
even after 30 runs. We plotted the performance val-

. Reiserfs exhibits poor performance for different rea-
ues on a histogram and observed that Ext2 had a NON- < than Ext? and Ext3. As Fiqures 3(a) and 3(b) show
Gaussian (long-tailed) distribution. Out of 30 runs, 21 ’ 9 '

runs (70%) consumed less than 25% of the CPU, whil Reiserfs (default) performed worse than both XFS and

L xt3, but Reiserfs with theot ai I mount option out-
0, 0, 0, !
the remaining ones qsed up to 50%, 75%, and 100.@ 0performed Ext3 by 15% and the default Reiserfs by 2.25
the CPU (three runs in each bucket). We wrote a micro-.) . ;
. . ; . times. The reason is that by default thai | option
benchmark which ran for a fixed time period and ap-. . : . : :
. is enabled in Reiserfs, which tries to pack all files less
pended to 3 common files shared between 100 threads. .
an 4KB in one block. As the Web server has an aver-
We found that Ext3 performed 13% fewer appends thana e file size of just 32KB, it has many files smaller than
XFS, while Ext2 was 2.5 times slower than XFS. We then 9 J ' Y

ran a modified Web server workload witimly reads and 4KB. We confirmed this by runningebugr ei ser f s

no log appends. In this case, Ext2 and Ext3 performe(ﬁn the Reiserfs partition: it showed_ that many small files

the same. with XES Iagging,behind by 11%. This is ad thel_r data spr_ead across th_e different blocks (packed

because),(FS’sookup operation takes more time than along with other files’ data). This resulted in more than
one data block access for each file read, thereby increas-

other file systems for deeper hierarchy (see Section S'Sz'ng /O, as seen in Figure 2. We concluded that unlike

AS XFS handles concurrent writes better.than the OthersExt2 and Ext3, the default Reiserfs experienced a perfor-
it overcomes the performance degradation due to slow

. mance hit due to its small file read design, rather than
lookups and outperforms in the Web server workload. : ;
oncurrent appends. This demonstrates that even simple
OSprof results [21] revealed that the average latency o . : .
. . eb server workload can still exercise different parts of
wr it e_super for Ext2 was 6 times larger than Ext3.

Analyzing the file systems’ source code helped explain]clle systems’ code.

this inconsistency. First, as Ext2 does not have a journal, An interesting observation was that tmmat i me

it commits superblock and inode changes to the on-disknount option improved the performance of Reiserfs by
image immediately, without batching changes. Seconda factor of 2.5 times. In other file systems, this option
Ext2 takes the global kernel lock (aka BKL) while call- did not have such a significant impact. The reason is that
ing ext2.write_super andext2.wite.node, thereiserfs_dirty_. node function, whichupdates
which further reduce parallelism: all processes usingthe access time field, acquires the BKL and then searches
Ext2 which try to sync an inode or the superblock to diskfor the stat item corresponding to the inode in its S+ tree
will contend with each other, increasing wait times sig-to update theat i ne. As the BKL is held while updat-
nificantly. On the contrary, Ext3 batches all updates to théng each inode’s access time in a path, it hurts parallelism
inodes in the journal and only when the JBD layer callsand reduces performance significantly. Als@at i ne

443 445 443 442 o0

Performance (ops/sec)

+ Q. Q, +,. Q Q + + + + Q Q
% < S, R, % N N U %, %
P T,
4

A + Q. Q. Q, Q, A, A, +
o < 3 3 %, 4, %, 2 R S 3
% S, o, 6 N K o, U, Y e e &
Ty Ry Ry, g e % % Ry Ry % %, % % %y Y

2000

1500

1000

500

Energy Efficiency (ops/kilojoule)

© & A + Q. B R % A %, t¢, &

Q kY @& +
%

QS K + + + & 8 K 4,

%, o o 8, 6 06 R B B B . %
% 2 %, % e 9 9 ke T, o Yo, 7
23 3 727 % \}52- \}5‘? 4 Q- (2 %

&

(b) Energy efficiency of file systems for the file server woddq(in ops/kilojoule)
Figure 4: Performance and energy efficiency of file systerdsutine file server workload
boosts Reiserfs's performance by this mustly in the a read-intensive workload, and does not need to update
read-intensive Web server workload. the different group’s metadata as frequently as a write-

Reducing the block-size during format generally hurtlntenswe workload would.

performance, except in XFS. XFS was unaffected thank :

to its delayed allocation policy that allocates a large con—%'3 File Server Workload

tiguous extent, irrespective of the block size; this sug-Figures 4(a) and 4(b) show that Reiserfs outperformed
gests that modern file systems should try to pre-allocatgxt2, Ext3, XFS by 37%, 43%, and 91%, respectively.
large contiguous extents in anticipation of files’ growth. Compared to the Web server workload, Reiserfs per-
Reiserfs observed a drastic degradation of:2aBerde- formed better than all others, even with thai | op-
creasing the block size from 4KB (default) to 2KB and tion on. This is because the file server workload has
1KB, respectively. We found frordebugrei serfs an average file size of 256KB (8 times larger than the
that this led to an increase in the number of internal and/\/eb server Work|oad): it does not have many small files
formatted nodes used to manage the file system namespread across different nodes, thereby showing no differ-
pace and objects. Also, the height of the S+ tree grewence between Reiserfssgi |) andno-t ai | options.

from 4 to 5, in case of 1KB. As the internal and for- Analyzing using OSprof revealed that XFS consumed
matted nodes depend on the block size, a smaller bloc54% and 12% more time ihookup andcr eat e, re-

size reduces the number of entries packed inside each Qhetively, than Reiserfs. Ext2 and Ext3 spent 6% more
these nodes, thereby increasing the number of nodes, afghe in hothl cokup andcr eat e than Reiserfs. To ex-
increasing I/0O times to fetch these nodes from the disky cise only the lookup path, we executed a simple micro-
during lookup. Ext2 and Ext3 saw a degradation f 2 henchmark that only performed open and close opera-
and 12%, respectively, bgcausg of the extra indirection§yns on 50,000 files by 100 threads, and we used the
needed to reference a single file. Note that Ext2’s 2. g5 fileset parameters as that of the file server workload
degradation was coupled with a high s_tandard vanatlortsee Table 1). We found that XFS performed 5% fewer
of 20-49%, for the same reasons explained above. operations than Reiserfs, while Ext2 and Ext3 performed
Quadrupling the XFS inode size from 256B to 1KB close to Reiserfs. As Reiserfs packs data and meta-data
improved performance by only 8%. We found using @llin one node and maintains a balanced tree, it has faster
xf s_db that a large inode allowed XFS to embed morelookups thanks to improved spatial locality. Moreover,
extent information and directory entries inside the inodeReiserfs stores objects by sorted keys, further speeding
itself, speeding lookups. As expected, the data jourlookup times. Although XFS uses B+ trees to maintain
nalling mode hurt performance for both Reiserfs andits file system objects, its spatial locality is worse than
Ext3 by 32% and 27%, respectively. The writeback jour-that of Reiserfs, as XFS has to perform more hops be-
nalling mode of Ext3 and Reiserfs degraded performancéveen tree nodes.
by 2x and 7%, respectively, compared to their default Unlike the Web server results, Ext2 performed better
ordered journalling mode. Increasing the block groupthan Ext3, and did not show high standard deviations.
count of Ext3 and the allocation group count of XFS hadThis was because in a file server workload, each thread
a negligible impact. The reason is that the Web server isvorks on an independent set of files, with little contention

2000 1858

1462 1518 1448

1500 140

1000

Performance (ops/sec)

500 326 328 326 329

] R J

R, R av?é @""6 o T o o R, 0%, Ty M M T, Y Tu R, R
ONEERONER ¥ %, %, Yoo o5 % Yo, % 0,

G g F Ky K 0 T T Ry

@ & 8 8 As As kK

e, R Ry R R, T T, g, Ty

> Q 6, 6, 4, 4, %, % %, % 7
- /ﬁ’(r %Af (ﬁ’% /ﬁ}' G % % % = o@//,) o%)

(a) Performance of file systems under the varmail workload(is/sec)

8000

6000

4000

2000

Energy Efficiency (ops/kilojoule)

B % %, A * *, Q. % ke W % K + + + B QK 4,

Yy e, TG, R R % % %
o Ty /&*\74 /e% Y b, Y, Y 90%

QJQ;:_ 0{5*

(b) Energy efficiency of file systems under the varmail woakldin ops/kilojoule)
Figure 5: Performance and energy efficiency of file systerdsutine varmail workload
to update a common inode. size to 2KB and 1KB, respectively. This is due to the in-
creased number of internal node lookups, which increase

We discovered an interesting result when varyingdiSk /O as discussed in Section 5.2

XFS'’s allocation group (AG) count from 8 to 128, in]))

powers of two (default is 16). XFS’s performance in- 1heno-atime options did not affect performance or
creased from 4% to 34% (compared to AG of 8). But, POWer efficiency .of any file system becguse this quk-
XFS's power efficiency increased linearly only until the 0ad is not read-intensive and had a ratio of two writes
AG count hit 64, after which the ops/kilojoule count for each read. Changing the inode size did not.have an ef-
dropped by 14% (for AG count of 128). Therefore, XFS’ fect on Ext2, Ext3, or XFS. As expected, dgtajournalllng
AG count exhibited anon-linear relationship between reduced the performance of Ext3 and Reiserfs by 10%
power-efficiency and performance. As the number ofand 43%, respectively. erteb_ack-modeJournalllng also
AGs increases, XFS's parallelism improves too, boost-Showed a performance reduction by 8% and 4% for Ext3

ing performance even when dirtying each AG at a faste@Nd Reiserfs, respectively.
rate. However, all AGs share a common journal: as the .
number of AGs increases, updating the AG descriptors -4 Malil Server

the log becomes a bottleneck; we see diminjshing returni\S seen in Figures 5(a) and 5(b), Reiserfs performed
beyond AG count of 64. Another interesting observa—the best amongst all, followed by Ext3 which differed

tion is tha_u AG count increases had a negligible ef_feq .Ofby 7%. Reiserfs beats Ext2 and XFS by 43% and 4
only 1% improvement for the Web server, but a signifi- . .) i
respectively. Although the mail server’s personality in

cant impact in file server workload. This is because the_. o , , .
: ... _FileBench is similar to the file server’s, we observed dif-
file server has a greater number of meta-data actlvme§

) . erences in their results, because the mail server workload
and writes than the Web server (see Section 3), thereb s .)
. o . allsf sync after each append, which is not invoked in
accessing/modifying the AG descriptors frequently. We ' .
. " the file server workload. Thiesync operation hurts the
conclude that the AG count is sensitive to the workload

. . . 'non-journalling version of file systems: hurting Ext2 by
especially read-write and meta-data update ratios. Lastl 0% and Reiserfs-nolod by 8% as compared to Ext3 and
the block group count increase in Ext2 and Ext3 had g9 by P

small impact of less than 1% efault Reiserfs, respectively. We confirmed this by run-
' ning a micro-benchmark in FileBench which created the
Reducing the block size from 4KB to 2KB improved same directory structure as the mail server workload and
the performance of XFS by 16%, while a further reduc- performed the following sequence of operations: create,
tion to 1KB improved the performance by 18%. Ext2, append, fsync, open, append, and fsync. This showed
Ext3, and Reiserfs saw a drop in performance, for thethat Ext2 was 29% slower than Ext3. When we repeated
reasons explained in Section 5.2. Ext2 and Ext3 experithis after removing all fsync calls, Ext2 and Ext3 per-
enced a performance drop of 8% and 3%, respectivelyformed the same. Ext2’s poor performance with fsync
when going from 4KB to 2KB; reducing the block size calls is because isxt 2_sync _fi | e call ultimately in-
from 2KB to 1KB degraded their performance further by vokesext 2_wr i t e_i node, which exhibits a larger la-
34% and 27%, respectively. Reiserfs’s performance detency than thew i t e_i node function of other file sys-
clined by a 45% and 75% when we reduced the blockems. XFS’s poor performance was due to its slower

450
400
350
300
ggg 217 209 220 210 213 217 g9 215 215 217 220
150
100
50

Performance (ops/sec)

A + Q. Q. Q, Q, A, A, + + Q. Q, +,. Q Q, + + + + Q Q,
% S, N6, B, B Y YT, e, R W Th, Ry W e Te, Ty, Ty R 3

> & G G Y Y K K, %, % h B R G G 0, O, O, O, . %
e e e E T T TR R N R Ry Ry TR T T, B,

(a) Performance of file systems for the OLTP workload (in sps)

1400 1245 1242 1279 1277

1200 109

1000
800
600
400
200

Energy Efficiency (ops/kilojoule)

\ R B B R

Q Q A + Q Qe [} A A, + -+ e Q. +*, & Q. + + + + Q < kS 4, A, 4 2, A, Q. Q.

< 2 % % %, 6, % %, R, & % 2 &3 9, 9, 9, 9, <2 (53) 7, 7, 7, Y, %, R (&3
% %, ¥ G G G G Y K, K, K, s G b Ry % G %, G, U, G, b, %, %, % %, % %, B b, %
> % ™ T R K L A A 9\26*_ 0\}‘? Q@ T T, ‘1@0 °e,/,> °<9(,)) %, % v % % ’6QF %

(b) Energy efficiency of file systems for the OLTP workload gjps/kilojoule)
Figure 6: Performance and energy efficiency of file systemih&OLTP workload

| ookup operations. write performance worse than any other journalled file
Figure 5(a) shows that Reiserfs witlo- t ai | beats System, as they batch inode updates.
all the variants of mount and format options, improving |n contrast to other workloads, the performancelbf
over default Reiserfs by 29%. As the average file Sizef”e Systems increases by a factor of aroundiPwe de-
here was 16KB, th@o-t ai | option boosted the per- crease the block size of the file system from the default
formance similar to the Web server workload. 4KB to 2KB. This is because the 2KB block size better
As in the Web server workload, when the block size matches the 1/O size of OLTP workload (see Table 1), so
was reduced from 4KB to 1KB, the performance of Ext2 every OLTP write request fits perfectly into the file sys-
and Ext3 dropped by 41% and 53%, respectively. Reistem’s block size. But, a file-system block size of 4KB
erfs’s performance dropped by 59% and 15% for 1KBturns a 2KB write into a read-modify-write sequence, re-
and 2KB, respectively. Although the performance of quiring an extra read per I/O request. This proves an im-
Reiserfs decreased upon reducing the block size, the peportant point that keeping the file system block size close
centage degradation was less than seen in the Web and the workload’s I/O size can impact the efficiency of
file server. The flat hierarchy of the mail server attributedthe system significantly. OLTP’s performance also in-
to this reduction in degradation; as all files resided in onecreased when using a 1KB block size, but was slightly
large directory, the spatial locality of the meta data oflower than that obtained by 2KB block size, due to an
these files increases, helping performance a bit even witincreased number of 1/0 requests.

smaller block sizes. Similar to the file server workload, 5, interesting observation was that on decreasing the
reduction in block size increased the overall performance, ; mber of blocks per group from 32KB (default) to
of XFS. 16KB, Ext2’s performance improved by 7%. Moreover,
XFS's allocation group (AG) count and the block jncreasing the inode size up to 1KB improved perfor-
group count of Ext2 and Ext3 had minimal effect within mance by 15% as compared to the default configuration.
the confidence interval. Similarly, theo- ati me op- Eplarging the inode size in Ext2 has an indirect effect
tion and inode size did not impact the efficiency of file gny the blocks per group: the larger the inode size, the
server significantly. The data journalling mode decreasedgyer the number of blocks per group. A 1KB inode size
Reiserfs’s performance by 20%, but had a minimal effectesuited in 8KB blocks per group, thereby doubling the
on Ext3. Finally, the writeback journal mode decreasedyymper of block groups and increasing the performance

Ext3's performance by 6%. as compared to the2- bg16K case. Varying the AG
count had a negligible effect on XFS’s numbers. Unlike
5.5 Database Server Workload (OLTP) Ext2, the inode size increase did not affect any other file

Figures 6(a) and 6(b) show that all four file systemsSYStem.

perform equally well in terms of both performance and Interestingly, we observed that the performance of
power-efficiency with the default mount/format options, Reiserfs increased by 30% on switching from the default
except for Ext2. It experiences a performance degradaerdered mode to the data journalling mode. In data jour-
tion of about 20% as compared to XFS. As explained innalling mode as all the data is first written to the log,

Section 5.2, Ext2’s lack of a journal makes its randomrandom writes become logically sequential and achieve

10

Option Webserver Fileserver Varmail Database

FS Type Name Perf. Pow. Perf. | Pow. | Perf. | Pow. Perf. Pow.
mount | noatime | -37%7 | -35% - - - - - -
format | blk1lk -64%7t | -65% | -34% | -35% | -41% | -41% | +98% | +100%

Ext2 blk2k -65% -65% | -8% | -9% | -17% | -18% | +136% | +13™%
isz1k -34%7t | -35% - - - - +15% | +16%
bglek | +60% 1 | +53% - - +6% | +5% +7% +7%
mount | noatime | +4% +5% - - - - - -
dtlg -27% -23% | -10% | -5% - - -11% | -13%

wrbck -63% 57% | -8% -9% -6% -5% -5% -5%
Ext3 format | blklk -34% -30% | -27% | -28% | -53% | -53% | +81% | +81%

blk2k -12% -11% - - -30% | -31% | +98% | +97%
isz1k - - - - +8% | +8% - -
bg16k - - - - -4% -5% -8% -9%
mount | noatime | +14%0 | +11% - - +5% +5% - -
notail +128% | +96% - - +2% | +28% - -
nolog - - - - -8% -8% - -
Reiserfs wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% | -43% | -42% | -20% | -21% | +30% | +2%

format | blklk -73% -70% | -74% | -74% | -59% | -58% | +80% | +80%
blk2k -51% -47% | -45% | -45% | -15% | -16% | +92% | +91%
mount | noatime - - - - - - - -
format | blklk - - +18% | +17% | +27% | +17% | +101% | +100%

blk2k - - +16% | +15% | +18% | +17% | +101% | +99%
isz1k +8% +6% - - - - - -
XFS agent8 - - -4% -5% - - - -
agcnt32 - - - - - - - -
agcnt64 - - +23% | +25% - - - -
agent128 - - +2% | +8% - - - -

Table 2: File systems’ performance and power, varying opgtjoelative to the default ones for each file system. Impneves are

highlighted in bold. At denotes the results with coefficient of variation over 40%ash signifies statistically indistinguishable

results.

better performance than the other journalling modes. efficiency and performance numbers that can be achieved
In contrast to the Web server workload, the while staying within a file system; each cell is a percent-

no- at i me option does not have any effect on the perfor-age of improvement (plus sign and bold font), or degra-

mance of Reiserfs, although the read-write ratio is 20:1dation (minus sign) compared to thefaultformat and

This is because the database workload consists of only 1@ount options for that file system. Dashes denote results

large files and hence the meta-data of these small numbéhnat were statistically indistinguishable from defaulte W

of files (i.e., stat items) accommodate in a few formattedcompare to the default case because file systems are often

nodes as compared to the Web server workload whickeonfigured with default options.

consists of 20,000 files with their meta-data scattered Formatand mount options represent different levels of

across multiple formatted nodes. Reiserfe- t ai | op- gptimization complexity. Remounting a file system with
tion had no effect on the OLTP workload due to the largenew options is usually seamless, while reformatting ex-

size of its files. isting file systems requires costly data migration. Thus,

5.6 Summary and Recommendations we group mount and format options together.

. . From Table 2 we conclude that often there is a better
We now summarize the combined results of our study.

. selection of parameters than the default ones. A care-
We then offer advice to server operators, as well as de; . : .
. ful choice of file system parameters cuts energy use in
signers of future systems.

half and more than doubles the performance (Reiserfs
Staying within a file system type. Switching to a dif- with no-tai | option). On the other hand, a careless
ferent file system type can be a difficult decision, es-selection of parameters may lead to serious degradations:
pecially in enterprise environments where policies mayup to 64% drop in both energy and performance (e.g.,
require using specific file systems or demand extensivéegacy Ext2 file systems with 1K block size). Until Oc-
testing before changing one. Table 2 compares the powdober 1999 mkfs.extused 1KB block sizes by default.

11

File systems formatted prior to the time that Linux ven-
dors picked up this change, still use small block sizes:
performance-power numbers of a Web-server running on
top of such a file system are 65% lower than today’s de-
fault and over 4 times worse than best possible.

Server| Recom. F§ Ops/Sec | Ops/Joule
Web x-iszlk |1.08-9.4< |1.06—7.5¢
File r-def 1.0-1.% | 1.0-2.0x
Mail r-notail | 1.3-5.8< | 1.3-5.7%
DB x-blk2k 2-2.4x 2-2.4x

Given Table 2. we feel that even moderate improve-Table 3: Recommended file systems and their parameters for

ments are worth a costly file system reformatting,
cause the savings accumulate for long-running servers.

Selecting the most suitable file system.When users
can change to any file system, or choose one initially,
we offer Table 3. For each workload we present the
most power-performance efficient file system and its pa-
rameters. We also show the range of improvements in
both ops/sec and ops/joule as compared to the best and
worst defaultfile systems. From the table we conclude
that it is often possible to improve the efficiency by at
least 8%. For the file server workload, where the de-
fault Reiserfs configuration performs the best, we ob-
serve a performance boost of up ta 2s compared to
the worst default file system (XFS). As seen in Figure 5,
for mail server workload Reiserfs witho-tail im-
proves the efficiency by 30% over default Reiserfs (best
default), and by & over default XFS (worst default). For
the database workload, XFS with a block size of 2KB
improved the efficiency of the system by at least two-
fold. Whereas in most cases, performance and energy
improved by nearly the same factor, in XFS they did not:
for the Webserver workload, XFS with 1K inode sizes
increased performance by a factor of 9.4 and energy im-
proved by a factor of 7.5.

Some file system parameters listed in Table 2 can be
combined, possibly yielding cumulative improvements.
We analyzed several such combinations and concluded
that each case requires careful investigation. For exam-
ple, Reiserfs'siot ai | andnoat i e options, indepen-
dently, improved the Webserver's performance by 149%
and 128%, respectively; but their combined effect only
improved performance by 155%. The reason for thisg

pe-our workloads. We provide the range of performance and
power-efficiency improvements achieved compared to the bes
and the worst default configured file systems.

e File size: If the workload generates or uses files
with an average file size of a few 100KB, we rec-
ommend to use fixed sized data blocks, addressed
by a balanced tree (e.g., Reiserfs). Large sized files
(GB, TB) would benefit from extent-based balanced
trees with delayed allocation (e.g., XFS). Packing
small files together in one block (e.g., Reiserfs’s tail-
packing) is not recommended, as it often degrades
performance.

Directory depth: Workloads using a deep directory
structure should focus on faster lookups using intel-
ligent data structures and mechanisms. One recom-
mendation is to localize as much data together with
inodes and directories, embedding data into large in-
odes (XFS). Another is to sort all inodes/names and
provide efficient balanced trees (e.g., XFS or Reis-
erfs).

Access pattern and parallelism: If the workload
has a mix of read, write, and metadata operations, it
is recommended to use at least 64 allocation groups,
each managing their own group and free data allo-
cation independently, to increase parallelism (e.g.,
XFS). For workloads having multiple concurrent
writes to the same file(s), we recommend to switch
on journalling, so that updates to the same file sys-
tem objects can be batched together. We recom-
mend turning offat i me updates for read-intensive
operations, if the workload does not care about
access-times.

Conclusions

was that both parameters affected the same performance
component—wait time—either by reducing BKL con- Proper benchmarking and analysis are tedious, time-
tention slightly or by reducing 1/0 wait time. However, consuming tasks. Yet their results can be invaluable for
the CPU’s utilization remained high and dominated over-years to come. We conducted a comprehensive study of
all performance. On the other hand, XF®kk2k and file systems on modern systems, evaluated popular server
agcnt 64 format options, which improved performance Workloads, and varied many parameters. We collected
by 18% and 23%, respectively—combined together toand analyzed performance and power metrics.
yield a cumulative improvement of 41%. The reason here We discovered and explained significant variations in
is that these were options which affected different codeboth performance and energy use. We found that there
paths without having other limiting factors. are no universally good configurations for all workloads,
and we explained complex behavior that go against com-
Selecting file system features for a workload. We of- mon conventions. We concluded that default file system
fer recommendations to assist in selecting the best filéypes and options are often suboptimal: simple changes
system feature(s) for specific workloads. These guidewithin a file system, like mount options, can improve
line can also help future file system designers. power/performance from 5% to 149%; and changing for-

12

mat options can boost the efficiency from 6% to 136%. [4]
Switching to a different file system can result in improve-
ments ranging from 2 to 9 times. (5]

We recommend that servers be tested and optimized
for expected workloads before used in production. En-
ergy technologies lag far behind computing speed im-
provements. Given the long-running nature of busy Inter-
net servers, software-based optimization techniques can
have significant, cumulative long-term benefits.

7 Future Work

We plan to expand our study to include less mature file 7
systems (e.g., Ext4, Reiser4, and BTRFS), as we believe[s]
they have greater optimization opportunities. We are cur-
rently evaluating power-performance of network-based
and distributed file systems (e.g., NFS, CIFS, and Lus- [9]
tre). Those represent additional complexity: protocol de-
sign, client vs. server implementations, and network soft-
ware and hardware efficiency. Early experiments com-
paring NFSv4 client/server OS implementations revealed10]
performance variations as high as .3

Computer hardware changes constantly—e.g., adding
more cores, and supporting more energy-saving features.
As energy consumption outside of the data center ex-
ceeds that inside [44], we are continually repeating ourlt?
studies on a range of computers spanning several year[siz]
of age. We also plan to conduct a similar study on
faster solid-state disks, and machines with more ad-
vanced DVFS support. [13]

Our long-term goal is to develop custom file systems
that best match a given workload. This could be bene-
ficial because many application designers and adminis-
trators know their data set and access patterns ahead ¢f4]
time, allowing storage stacks designs with better cache
behavior and minimal I/O latencies.

Acknowledgments. We thank the anonymous Usenix
FAST reviewers and our shepherd, Steve Schlosser, f0[16]
their helpful comments. We would also like to thank
Richard Spillane, Sujay Godbole, and Saumitra Bhan—[17
age for their help. This work was made possible in part
thanks to NSF awards CCF-0621463 and CCF-0937854,
an IBM Faculty award, and a NetApp gift.

References

[1] A. Ermolinskiy and R. Tewari. C2Cfs: A Collective
Caching Architecture for Distributed File Access. Tech-
nical Report UCB/EECS-2009-40, University of Califor-
nia, Berkeley, 2009.

[2] M. Allalouf, Y. Arbitman, M. Factor, R. I. Kat, K. Meth,
and D. Naor. Storage Modeling for Power Estimation. In [19)
Proceedings of the Israeli Experimental Systems Confer-
ence (SYSTOR '0%aifa, Israel, May 2009. ACM.

[3] J. Almeida, V. Almeida, and D. Yates. Measuring the
Behavior of a World-Wide Web Server. Technical report,
Boston University, Boston, MA, USA, 1996.

13

R. Appleton. A Non-Technical Look Inside the Ext2 File

System.Linux Journa) August 1997.

T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid Disk-

Aware Spin-Down Algorithm with 1/0 Subsystem Sup-

port. InlEEE 2007 Performance, Computing, and Com-
munications Conferenc007.

] R. Bryant, R. Forester, and J. Hawkes. Filesystem

Performance and Scalability in Linux 2.4.17. Rro-
ceedings of the Annual USENIX Technical Conference,
FREENIX Track pages 259-274, Monterey, CA, June
2002. USENIX Association.

D. Capps. 10zone Filesystem Benchmarkwww.

i ozone. or g/, July 2008.

E. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. |h7th International
Conference on Supercomputjrizp03.

D. Colarelli and D. Grunwald. Massive Arrays of Idle
Disks for Storage Archives. IRroceedings of the 2002
ACM/IEEE conference on Supercomputipgges 1-11,
2002.

M. Craven and A. Amer. Predictive Reduction of Power
and Latency (PuRPLe). IRroceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST,Q#ges 237-244,
Washington, DC, USA, 2005. IEEE Computer Society.

] Y. Deng and F. Helian. EED: Energy Efficient Disk Drive

Architecture.Information Science008.

F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
Power-Hungry Disk. IrProceedings of the 1994 Winter
USENIX Conferenggpages 293-306, 1994.

E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-
Efficient Server Clusters. IRroceedings of the 2nd Work-
shop on Power-Aware Computing Systeipages 179—
196, 2002.

D. Essary and A. Amer. Predictive Data Grouping: Defin-
ing the Bounds of Energy and Latency Reduction through
Predictive Data Grouping and ReplicatioACM Trans-
actions on Storage (TOS}(1):1-23, May 2008.

] ext3.http://en.w ki pedi a. org/ w ki / Ext 3.

FileBench, July 2008. ww. sol ari si nt ernal s.
coni wi ki /i ndex. php/ Fi | eBench.

1 A. Gulati, M. Naik, and R. Tewari. Nache: Design and

Implementation of a Caching Proxy for NFSv4. Pmo-
ceedings of the Fifth USENIX Conference on File and
Storage Technologies (FAST '0®ages 199-214, San
Jose, CA, February 2007. USENIX Association.

S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kan-
demir, H. Franke, N. Vijaykrishnan, and M. J. Irwin. In-
terplay of Energy and Performance for Disk Arrays Run-
ning Transaction Processing Workloads. IEEE Inter-
national Symposium on Performance Analysis of Systems
and Softwargpages 123-132, 2003.

H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Per-
formance and Energy Consumption. Pmoceedings of
the 20th ACM Symposium on Operating Systems Princi-
ples (SOSP '05)pages 263-276, Brighton, UK, October
2005. ACM Press.

[20] N. Joukov and J. Sipek. GreenFS: Making Enterprise [34] S. Rivoire, M. A. Shah, P. Ranganathan, and

Computers Greener by Protecting Them Better.Pto-

ceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys 2008)

Glasgow, Scotland, April 2008. ACM.

[21] N. Joukov, A. Traeger, R. lyer, C. P. Wright, and [35]
E. Zadok. Operating System Profiling via Latency Anal-
ysis. InProceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI 20p&yes

89-102, Seattle, WA, November 2006. ACM SIGOPS.

[22] J. Katcher. PostMark: A New Filesystem Benchmark. [36]
Technical Report TR3022, Network Appliance, 1997.

www. net app. comftech_li brary/3022. htni .

[23] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. En-
ergy and Performance Evaluation of Lossless File Datal37]
Compression on Server Systems. Rroceedings of the
Israeli Experimental Systems Conference (ACM SYSTOR[

'09), Haifa, Israel, May 2009. ACM.

[24] D. Li. High Performance Energy Efficient File Storage
SystemPhD thesis, Computer Science Department, Uni- [

versity of Nebraska, Lincoln, 2006.

[25] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quan-
titative Analysis of Disk Drive Power Management in
Portable Computers. IRroceedings of the 1994 Winter

USENIX Conferencepages 279-291, 1994.

[26] A. Manzanares, K. Bellam, and X. Qin. A Prefetching
Scheme for Energy Conservation in Parallel Disk Sys-
tems. InProceedings of the IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS

2008) pages 1-5, April 2008.

[27] R. McDougall, J. Mauro, and B. Greggsolaris Perfor-
mance and ToolsPrentice Hall, New Jersey, 2007.

[28] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-
loading: practical power management for enterprise stor-
age. InProceedings of the 6th USENIX Conference on

File and Storage Technologies (FAST 2Q0B)08.

[29] E. B. Nightingale and J. Flinn. Energy-Efficiency and

Storage Flexibility in the Blue File System. Rroceed-

ings of the 6th Symposium on Operating Systems Desig
and Implementation (OSDI 2004pages 363—-378, San

Francisco, CA, December 2004. ACM SIGOPS.

[30] A. E. Papathanasiou and M. L. Scott. Increasing Disk
Burstiness for Energy Efficiency. Technical Report 792,

University of Rochester, 2002.

[31] E. Pinheiro and R. Bianchini. Energy Conservation Fech

niques for Disk Array-Based Servers. Rroceedings

of the 18th International Conference on Supercomputing (48]

(ICS 2004) pages 68-78, 2004.

[32] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. d.oa
Balancing and Unbalancing for Power and Performance 4]

in Cluster-Based Systems. International Conference

on Parallel Architectures and Compilation Technigues

Barcelona, Spain, 2001.

[33] H. Reiser. ReiserFS v.3 Whitepapeht t p: / / web.
archi ve. or g/ web/ 20031015041320/ ht t p:
/ I nanesys. coni .

14

5] Watts up?

C. Kozyrakis. JouleSort: A Balanced Energy-Efficiency
Benchmark. InProceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD) Beijing, China, June 2007.

S. Gurumurthi and A. Sivasubramaniam and M. Kan-
demir and H. Franke. DRPM: Dynamic Speed Control
for Power Management in Server Class Disks. Pito-
ceedings of the 30th annual international symposium on
Computer architecturegpages 169-181, 2003.

M. I. Seltzer. Transaction Support in a Log-Structured
File System. InProceedings of the Ninth International
Conference on Data Engineeringages 503-510, Vi-
enna, Austria, April 1993.

SGL. XFS Filesystem Structure. htt p:

/1 oss. sgi.conl proj ects/xfs/papers/
xfs_filesystemstructure. pdf.

SPEC. SPECpowessj2008 v1.01.www. spec. or g/
power _ssj 2008/ .

] SPEC. SPECwebh99wwv. spec. or g/ web99, Octo-

ber 2005.

SPEC. SPECsfs2008.ww. spec. or g/ sf s2008,
July 2008.

The Standard Performance Evaluation Corporation.
SPEC HPC Suitewww. spec. or g/ hpc2002/ , Au-
gust 2004.

U.S. Environmental Protection Agency. Report to
Congress on Server and Data Center Energy Efficiency.
Public Law 109-431, August 2007.

J. Wang, H. Zhu, and Dong Li. eRAID: Conserving En-
ergy in Conventional Disk-Based RAID SystenEEE
Transactions on Computers7(3):359-374, March 2008.
D. Washburn. More Energy Is Consumed Outside Of
The Data Center, 2008. ww. f orrest er. conl

Rol e/ Resear ch/ Wr kbook/ 0, 9126, 47980,

00. htm .

PRO ES Power Meter. ww.

wat t supmet er s. coni secur e/ product s. php.

M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. Pnoceedings of
the 1st USENIX conference on Operating Systems Design
and Implementationl994.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and
E. Zadok. Auto-pilot: A Platform for System Software
Benchmarking. InProceedings of the Annual USENIX
Technical Conference, FREENIX Traglages 175-187,
Anaheim, CA, April 2005. USENIX Association.

OSDIR mail archive for XFShttp:// osdir. conl
m/file-systens. xfs.general/2002- 06/
nsg00071. htm .

Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache Management. In
Proceedings of the 10th International Symposium on
High-Performance Computer Architecturpages 118—
129, 2004.

