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Abstract Media Common Avg. Code Size

. . S Type File System (C lines)
Traditional file system development is difficult. Stack- ["Hard Disksl UES, FES, EXT2ES 5,000-20,.000
able file systems promise to ease the development of file [Network  TNES 6.000—30,000

systems by offering a mechanism for incremental develop- [CD-ROM | HSES, 1ISO-9660 3,000—6,000
ment. Unfortunately, existing methods often require writ- Floppy PCFS, MS-DOS 5,000—6,000
ing complex low-level kernel code that is specific to a sin-
gle operating system platform and also difficult to port.
We propose a new languad8$T, to describe stackable
file systems. FiST uses operations common to file system
interfaces. From a single description, FiST’s compiler-pro performance is poor due to the extra context switches these
duces file system modules for multiple platforms. The genjile systems must incur. These context switches can affect
erated code handles many kernel details, freeing devedopePerformance by as much as an order of magnitude[26, 27].
to concentrate on the main issues of their file systems. Stackable file systeffd®] promise to speed file system
This paper describes the design, implementation, andevelopment by providing an extensible file system inter-
evaluation of FiST. We extended file system functionalityface. This extensibility allows new features to be added
in a portable way without changing existing kernels. Weincrementally. Several new extensible interfaces have bee
built several file systems using FiST on Solaris, FreeBSDproposed and a few have been implemented[8, 15, 18, 22].
and Linux. Our experiences with these examples shows th& improve performance, these stackable file systems were
following benefits of FiST: average code size over otherdesigned to run in the kernel. Unfortunately, using these
stackable file systems is reduced ten times; average deveitackable interfaces often requires writing lots of comple
opmenttime is reduced seven times; performance overhead kernel code that is specific to a single operating system

Table 1:Common Native Unix File Systems and Code Sizes for
Each Medium

of stacking is 1-2%. platform and also difficult to port.
More recently, we introduced a stackable template sys-
1 Introduction tem called Wrapfs[27]. It eases up file system development

by providing some built-in support for common file system

File systems have proven to be useful in enriching systen@ctivities. It also improves portability by providing kerh
functionality. The abstraction of folders with files comtai  templates for several operating systems. While working
ing data is natural for use with existing file browsers, textWith Wrapfs is easier than with other stackable file systems,
editors, and other tools. Modifying file systems becamedevelopers still hayg to write kernel C code and port it using
a popular method of extending new functionality to users.the platform-specific templates.
However, developing file systems is difficult and involved. In previous approaches, performance and portability
Developers often use existing code for native in-kernel filecould not be achieved together. To perform well, a file sys-
systems as a starting point[15, 23]. Such file systems arem should run in the kernel, not at user level. Kernel code,
difficult to write and port because they depend on many ophowever, is much more difficult to write and port than user-
erating system specifics, and they often contain many linekevel code. To ease the problems of developing and port-
of complex operating systems code, as seen in Table 1. ing stackable file systems that perform well, we propose a
User-level file systems are easier to develop and port behigh-level language to describe such file systems. There
cause they reside outside the kernel[16]. However, theiare three benefits to using a language:



1. Simplicity: A file system language can provide fa-  Our focus in this paper is to demonstrate how FiST sim-
miliar higher-level primitives that simplify file system plifies the development of file systems, provides write-once
development. The language can also define suitableun-anywhere portability across UNIX systems, and re-
defaults automatically. These reduce the amount ofluces stacking overhead through file system specialization
code that developers need to write, and lessen theifhe rest of this paper is organized as follows. Section 2 de-
need for extensive knowledge of kernel internals, al-tails the design of FiST, and describes the FiST language,
lowing even non-experts to develop file systems. fistgen, and Basefs. Section 3 discusses key implemen-

2. Portab|||ty A |anguage can describe file Systems us_tation and portablllty details. Section 4 describes sdvera
ing an interface abstraction that is common to Oper_example file SyStemS written USing FiST. Section 5 evalu-
ating systems. The language compiler can bridge thé@tes the ease of development, the portability, and the perfo
gaps among different Systems’ interfaces. From a sininance of our file systems. Section 6 surveys related work.
g|e description of a file System' we could generate f||eF|na”y, Section 7 concludes and eXploreS future direction
system code for different platforms. This improves
portability considerably. At the same time, however,
the language should allow developers to take advan
tage of system-specific features.

2 Design

o FiST is a high level language providing a file system ab-
3. Specialization: A language allows developers to cus- graction. Figure 1 shows the hierarchy for different file

tomize the file system to their needs. Instead of havingyy stem apstractions. At the lowest level reside file sys-
one large and complex file system with many featuresegmg native to the operating system, such as disk based and
that may be configured and turned on or off, the com-netyork based file systems. They are at the lowest level
piler can produce special-purpose file systems. Thig)ecause they interact directly with device drivers. Above
improves performance and memory footprint becaus,aive file systems are stackable file systems such as the
specialized file systems include only necessary COde'exampIes in Section 4, as well as Basefs. These file sys-

Thi d ibes the desi 4impl . tems provide a higher abstraction than native file systems
Is paper describes the design and implementation 0lfJecause stackable file systems interact only with other file

FiST, aFile _System Translatdanguagg for stackable_ file systems through a well defingdtual file system interface
systems. FiST lets developers describe stackable file SyfVFS)[ll]. The VFS providesirtual nodes(vnodes), an

tems_ at a high Ievt_al, using operations common to file SYSabstraction of files across different file systems. However,
tem interfaces. With FiST, developers need only describg .. ihase levels are system specific

the core functionality of their file systems. The FiST lan-

guage code generatdistgen generates kernel file system FiST Language

modules for several platforms using a single description. . Stackable (VFS) File Systems

We currently support Solaris, FreeBSD, and Linux. Basefs templates ~ (lofs, cryptfs, aclfs, unionfs, etc.)
To assist fistgen with generating stackable file sys- Low-Level File Systems (UFS, NFS, etc.)

tems, we created a minimal stackable file system template_
called Basefs. Basefs adds stacking functionality missing'9ureé 1:FiST Structural Diagram. Stackable file systems, in-
from systems and relieves fistgen from dealing with man)/:IUd'ng Bas_,efs, are at t_he VFS Igvel, ar_ld are above I_ow-hmel
platform-dependent aspects of file systems. Basefs doesg[stgms. FiST descriptions provide a higher abstractian that
. o . provided by the VFS.

not require changes to the kernel or existing file systems.
Its main function is to handle many kernel details relating At the highest level, we define the FiST language. FiST
to stacking. Basefs provides simple hooks for fistgen toabstracts the different vnode interfaces acdifferentop-
insert code that performs common tasks desired by file syserating systems into a single common description language,
tem developers, such as modifying file data or inspectindecause it is easier to write file systems this way. We found
file names. That way, fistgen can produce file system codehat while vnode interfaces differ from system to system,
for any platform we port Basefs to. The hooks also allowthey share many similar features. Our experience shows
fistgen to include only necessary code, improving perforthat similar file system concepts exist in other non-Unix
mance and reducing kernel memory usage. systems, and our stacking work can be generalized to in-

We built several example file systems using FiST. Ourclude them. Therefore, we designed the FiST language
experiences with these examples shows the following berto be as general as possible: we mirror existing platform-
efits of FIST compared with other stackable file systemsspecific vnode interfaces, and extend them through the
average code size is reduced ten times; development timeiST language in a platform independent way. This al-
is reduced seven times; performance overhead of stackinigws us to modify vnode operations and the arguments they
is less than 2%, and unlike other stacking systems, there igass in an arbitrary way, providing great design flexibil-
no performance overhead for native file systems. ity. At the same time, this abstraction means that stackable



file systems cannot easily access device drivers and control The one place where such a check should be made is in

for example, block layout of files on disks and the existingthe lookup routine that is used to find a file in a directory.

structure of meta-data (inodes). To do so without FiST, the developer has to do the follow-
FiST does not require that applications be changed. Thig:

default behavior of produced code maintains compatibility . . .

with existing file system APIs. FiST does allow, however, ~ locate an operating system with available sources for

the creation of special-purpose file systems that can extend one file system ]
new functionality to applications. 2. read and understand the code for that file system and

any associated kernel code

FIST Input File 3. make a copy of the sources, and carefully modify them
to include the new functionality
Basefs Templates 4. compile the sources into a new file system, possibly
rebuilding a new kernel and rebooting the system
Stackable File System Sour ces 5. mount the new file system, test, and debug as needed

Figure 2:FiST Operational Diagram. Fistgen reads a FiST input  After completing this, the developer s left with one mod-
f!le, and with the Basefs templates, produces sources fowa nejfie( file system for one operating system. The amount of
file system. code that has to be read and understood ranges in the thou-

The overall operation of the FiST system is shown insands of lines (Table 1). The process has to be repeated for
Figure 2. The figure illustrates how the three parts of FisTeach new port to a new platform. In addition, changes to
work together: the FiST language, fistgen, and Basefs. Fildative file system are unlikely to be accepted by operating
system developers write FiST input files to implement file System maintainers, and have to be maintained indepen-
systems using the FiST languaggistgen the FiST lan-  dently.
guage code parser and file system code generator, reads!n contrast, the normal procedure for developing code
FiST input files that describe the new file system’s func-With FiST is:
tionality. Fistgen then uses additional input files, thed8ss 1. write the code in EiST once
templates. These templates contain the stacking support_’ . : )
code for each operating system and hooks to insert devel- = run fls_tgen on the input file i
oper code. Fistgen combines the functionality described 3- COMpile the produced sources into a loadable kernel
in the FiST input file with the Basefs templates, and pro- ~ Module, and load itinto a running system
duces new kernel C sources as output. The latter imple- 4. mountthe new file system, test, and debug as needed
ment the functionality of the new file system. Developers
can, for example, write simple FiST code to manipulate evelopment of the new file system. There is no need to
file data and file names. Fistgen, in turn, translates th ave kernel sources or be familiar v;/ith them; there is no
FiST code into C code and inserts it at the right place in theneed to write or port code for each platform; ,and there is
templates, along with any additional support code that MaY, 5 need to rebuild or reboot the kernel Fur,thermore the
be required. Developers can also turn on or off certain ﬁlesame developer can write Snoopfs usiné asmall numb’er of
system features, and fistgen will conditionally includeeod lines of FiST code:
that implements those features. '

Debugging code can be turned on in FiST to assist in the

Y%op: | ookup: postcal | {
if ((fistLastErr() == EPERM ||

2.1 A Quick Example: Snoopfs fistLastErr() == ENCENT) &&
$0.owner !'= %id & %id != 0)

To illustrate the FiST development process, we contrast it fistPrintf("snoopfs detected access by uid %l \

. " . . id %, to file %\n", %id, %id, $nane);
with traditional file system development methods using
simple example similar to Watchdogs[2]. Suppose a file
system developer wants to write a file system that willwarn This short FiST code inserts an “if” statement after the
of any possible unauthorized access to users’ files. Thaormal call to the lookup routine. The code checks if the
main idea is that only the files’ owner or the root user areprevious lookup call failed with one of two particular er-
allowed access. Any other user who might be attempting taors, who the owner of the directory is, who the effective
find files that belong to another user, would normally get arunning user is, and then decides whether to print the warn-
“permission denied” error code. However, the system doeing message.
not produce an alert when such an attempt is made. This This single FiST description is portable, and can be com-
new snooping file systerfSnoopfs) will log these failed piled on each platform that we have ported our templates to
attempts. (currently three).



2.2 TheFile System Model system data using theount system call. In addition,

) , . _mounted file systems may return arbitrary (even new) er-
A FiST-produced file system runs in the kernel, as seen ing, codes back to user processes.

Figure 3. FiST file systems mirror the vnode interface both Since a FiST-produced stackable file system is the caller
above and below. The interface to user processes is thgf

system call interface. FiST does not change either the sys- other file systems, it has a lot of control over what tran-
y : ' . 9 : yspires between it and the ones below through the vnode
tem call interface or the vnode interface. Instead, FiST can

. X . ~“interface. FiST allows access to multiple mounts and files.
change information passed and returned through the Inte'i?ach mount or file may have multiple attributes that FiST
faces.

_ can access. Also, FiST can determine how to apply vhode
A user process generally accesses a file system by ®XRinctions on each file. For maximum flexibility, FiST

cuting a system call, which traps into the kernel. The ker'aIIows the developer full control over mounts and files,

nel VFS then translates the system call to a vnode oper heir data, their attributes, and the functions that ogerat
tion, and calls the corresponding file system. If the latter n them; they may be created or removed, data and at-

ﬁ a FIST—pI‘OdeIJCGd f('l)e systr(]am, It may calfll ano:lher Stacﬁegributes can be changed, and functions may be augmented,
ile system below. Once the execution flow has reache eplaced, reordered, or even ignored.

the lowest file system, error codes and return values begin .
. loctls (I/O Controls) have been used as an operating sys-
flowing upwards, all the way to the user process. . : :
tem extension mechanism as they can exchange arbitrary
user proces%a infqrmt?tion bet\]/c\(leen user plrocesses.a;]nd thehkern.el, as well
SystemCall  systemcals] & as in between file system layers, without changing inter-
mount() data error codes faces. FiST allows developers to define new ioctls and de-
Interface ioctl() data User fine the actions to take when they are used; this can be used
-------------- i E el to create application-specific file systems. FiST also pro-
Y vides functions for portable copying of ioctl data between
Virtual File System (VFS user and kernel spaces. For example, our encryption file
Vhode ke oystemdaa  Kern system. (Sectlon 4.1) use_s an ioctl to set cipher !<eys. _
Traditional stackable file systems create a single linear
Interface ] and error codes. o) ;
stack of mounts, each one hiding the one file system below
(FiST—produced file sys@m it. More general stacking allows for a tree-like mount struc
ture, as well as for direct access to any layer[8, 18]. This

N

A ) \ . !
Vnode g'ee‘:';;gen”; c:;tg, interesting aspect of stackable file systems is called fan-
Interface Y efror codes. ning, as shown in Figure 4. Aan-outallows the mounted

file system to access two or more mounts below. A fan-
(Lower File Syste@ out is useful for example in replicated, load-balancing,
unifying[15], or caching file systems[22].

Figure 3:Information and execution flow in a stackable system. $0 $0
FiST does not change the system call or vnode interfaces|but
lows for arbitrary data and control operations to flow in bdth

r
rections. $l $l $2

In FiST, we model a file system as a collection of Fan-In Fan-Out
mounts, files, and user processes, all running under one
system. Severahounts mounted instances of file systems,
can exist at any time. A FiST-produced file system can A fan-in allows a process to access lower level mounts
access and manipulate various mounts and files, data adirectly. This can be useful when fast access to the lower
sociated with them, their attributes, and the functions thalevel data is needed. For example, in an encryption file sys-
operate on them. Furthermore, the file system can accessm, a backup utility can backup the data faster (and more
attributes that correspond to the run-time execution envisecurely) by accessing the ciphertext files in the lowerlleve
ronment: the operating system and the user process cufife system. If fan-in is not used, the mounted file system
rently executing. will overlay the mounted directory with the mount point.

Information (both data and control) generally flows be- An overlay mount hides the lower level file system. This
tween user processes and the mounted file system througian be useful for some security applications. For example,
the system call interface. For example, file data flowsour ACL file system (Section 4.2) hides certain important
between user processes and the kernel viarhed and  files from normal view and is able to control who can ma-
write system calls. Processes can pass specific filaipulate those files and how.

Figure 4:Fanning in stackable file systems



2.3 TheFiST Language operation, or even a portion of a vnode operation. Rules

. . . . allow developers to control the behavior of one or more file
The FiST language is a high-level language that uses f||(§ stem functions in a portable manner. The FiST rules sec-

syst(_am fegtures common_t_o several operating systemg. H)(gn is the primary section, where most of the actions for the
provides file system specific language constructs for sim

o , . ) produced code are written. In this section, for example, we
plifying file system development. In addition, FiST lan- an choose to change the behaviouol i nk to rename
guage constructs can be used in conjunction with additiona[ e target file, so it might be restored later. We separated
C code to offer the full flexibility of a system programming the declaratio’ns and rules sections for programming ease:
language familiar to file system developers. The ability togy

it te C and FiST code is reflected in th | st evelopers know that global declarations go in the former,
integrate & and Fis 1 code 1S refiected In the general StiUCy 4 5 ctions that affect vnode operations go in the latter.
ture of FiST input files. Figure 5 shows the four main sec-

" f a FiST inout fi Additional C Code includes additional C functions that
lons ofa Fis T inputtiie. might be referenced by code in the rest of the file system.

% We separated this section from the rules section for code
1| C Declarations modularity: FiST rules are actions to take for a given vnode
% ] function, while the additional C code may contain arbitrary
2| FiST Declarations code that could be called from anywhere. This section pro-
9o vides a flexible extension mechanism for FiST-based file
3 ('):'/;T Rules systems. Code in this section may use any basic FiST prim-
2 itives (discussed in Section 2.3.1) which are helpful irntwri
4 Additional C Code ing portable code. We also allow developers to write code

. . . that takes advantage of system-specific features; this flexi
Figure S:FiST Grammar Outline bility, however, may result in non-portable code.

The FiST grammar was modeled after yacc[9] input The remainder of this section introduces the FiST lan-
files, because yacc is familiar to programmers and the purguage primitives, the various participants in a file system
pose for each of its four sections (delimited by “%%®) (such as files, mounts, and processes), their attributes and
matches with four different subdivisions of desired file-sys how to extend them and store them persistently, and how to
tem code: raw included header declarations, declaration&ontrol the execution flow in a file system. The examples
that affect the produced code globally, actions to perform'n Section 4 are also helpful because they further illustrat
when matching vnode operations, and additional code.  the FiST language.

C Declarations (enclosed in {% %} ") are used to in-
clude additional C headers, define macros or typedefs, lisf 31 FisT Syntax
forward function prototypes, etc. These declarations are
used throughout the rest of the code. FiST syntax allows referencing mounted file systems and

FiST Declarations define global file system properties files, accessing attributes, and calling FiST functions.
that affect the overall semantics of the produced code ani#ount references begin withvf s, while file references
how a mounted file system will behave. These propertiesise a shorter “$” syntax because we expect them to appear
are useful because they allow developers to make commamore often in FiST code. References may be followed by
global changes in a simple manner. In this section we dea name or number that distinguishes among multiple in-
clare if the file system will be read-only or not, whether or stances (e.g$1, $2, etc.) especially useful when fan-out
not to include debugging code, if fan-in is allowed or not, is used (Figure 4). Attributes of mounts and files are speci-
and what level (if any) of fan-out is used. fied by appending a dot and the attribute name to the refer-

FiST Declarations can also define special data structuregnce (e.g.$vfs. bl ocksi ze, $1. narme, $2. owner,
used by the rest of the code for this file system. We can deetc.) The scope of these references is the current vnode
fine mount-time data that can be passed with the mount(Zunction in which they are executing.
system call. A versioning file system, for example, can be There is only one instance of a running operating sys-
passed a number indicating the maximum number of vertem. Similarly, there is only one process context executing
sions to allow per file. FiST can also define new error codesghat the file system has to be concerned with. Therefore
that can be returned to user processes, for the latter to ud=iST need only refer to their attributes. These read-only at
derstand additional modes of failure. For example, an entributes are summarized in Table 2. The scope of all read-
cryption file system can return a new error code indicatingonly “%” attributes is global.
that the cipher key in use has expired. FiST code can call FiST functions from anywhere in the

FiST Rules define actions that generally determine thefile system, some of which are shown in Table 3. The scope
behavior for individual files. A FiST rule is a piece of code of FiST functions is global in the mounted file system.
that executes for a selected set of vnode operations, for oriEhese functions form a comprehensive library of portable



Global Meaning to access the file a$0. user and $0. gr oup, respec-
%Dblocksize native disk block size tively. The expiration time is accessed$@. expi r e.

%gid | effective group ID Theper vnode declaration defines new attributes for
EAJD_aQESEe native page size files, but those attributes are only kept in memory. FiST
Of’f_"d procests:{_ID ds s o also provides different methods to define, store, and access
Joame current time (seconds since epoch) additional attributes persistently. This way, a file system
Youid effective user ID developer has the flexibility of deciding if new attributes

need only remain in memory or saved more permanently.
For example, an encrypting file system may want to store

routines useful in writing file systems. The names of thesean encryption key, cipher ID, and Initialization Vector IV

functions begin with “fist.” FiST functions can take a vari- for each file. This can be declared in FiST using:

able number of arguments, omit some arguments Wher?i

suitable defaults exist, and use different types for each ar

Table 2: Global Read-Only FiST Variables

| ef ormat SECDAT {

char key[ 16]; [* cipher key */
gument. These are true functions that can be nested and int cipher; I* cipher 1D */
may return any single value. char iv[16]; /* initialization vector */
: ' h
Function M eaning
fistPrintf print messages Two FiST functions exist for handling file formats: fist-
fistStrEq string comparison SetFileData and fistGetFileData. These two routines can
fistMemCpy | buffer copying similar store persistently and retrieve (respectively) additidite
fistLastErr get the last error code system and file attributes, as well as any other arbitrary
f!stSetErr set the return error cpde . data. For example, to save the cipher ID in a file called
fistReturnErr | return an error code immediately . key, use:
fistSetloctlData| set ioctl value to pass to a user process ' '
fistGetloctlData get ioctl value from a user process int cid:
fistSetFileData | write arbitrary data to a file I* set cipher 1D */
fistGetFileData| read arbitrary data from a file fistSetFileData(". key", SECDAT, cipher, cid);
fistLookup find a file in a directory . . .
fistReaddir read a directory The aboye FiST function will pr(_)duce kernel code to
fistSkipName | hide a name of a file in a directory open the file named.’key” and write the value of the
fistOp execute an arbitrary vnode operation ~ cid” variable into the “cipher” field of the “SECDAT" file

format, as if the latter had been a data structure stored in
Table 3: A sample of FiST functions used in this paper the*. key” file.

Each mount and file has attributes associated with it Flnally, t_he_ mechan_|sm for adding new attributes to

. X ) , mounts is similar. For files, the declaratiorpier _-vnode

FiST recognizes common attributes of mounted file sys- " o ) ' :
. . while for mounts it isper _vf s. The routines fistSetFile-

tems and files that are defined by the system, such as ﬂB} , : .

N . ata and fistGetFileData can be used to access any arbi-

name, owner, last modification time, or protection modes rarv persistent data. for both mounts and files

FiST also allows developers to define new attributes ancTi yp ' '

optionally store them persistently. Attributes are acedss ) )

by appending the name of the attribute to the mount or file2-3-2 Rules for Controlling Execution and Informa-

reference, with a single dot in between, much the same way tion Flow

that C dereferences structure field names. For example, thg he previous sections we considered how FiST can con-

native block size of a mounted file system is accessed agy| the flow of information between the various layers. In

$vfs. bl ocksi ze and the name of a file 0. nane. this section we describe how FiST can control the execu-
FiST allows users to create new file attributes. For €X+ion flow of various operations using FiST rules.

ample, an ACL file system may wish to add timed access ST does not change the interfaces that call it, because

to certain files. The following FiST Declaration can define ,cp changes will not be portable across operating systems

the new file attributes in such a file system: and may require changing many user applications. FiST

per_vnode { therefore only exchanges information with applications us
int user; /* extra user */ ing existing APIs (e.g., ioctls) and those specific applica-
I nt group;  /*extra group */ tions can then affect change.

A u e hang . .
et expire,  /haccess expirafion ime The most control FiST file systems have is over the file

system (vnode) operations that execute in a normal stack-
With the above definition in place, a FiST file system able setting. Figure 6 highlights what a typical stackable
may refer to the additional user and group who are allowed/node operation does: (1) find the vnode of the lower level



mount, and (2) repeat the same operation on the lower The general form for a FiST rule is:

vnode.
int
{
int error;
vnode_t *l ower_vp = get_lower(vp);

fsnamegetattr(vnode_t *vp, args..)

/* (1) pre-call code goes here */

/* (2) call same operation on lower file system */
error = VOP_GETATTR(| ower _vp, args..);
/* (3) post-call code goes here */

return error;

1)

Table 4 summarizes the possible values that a FiST rule
can have.Callsetdefines a collection of operations to op-
erate on.Optypefurther defines the call set to a subset of
operations or a single operatidpart defines the part of the
call that the following code refers to: pre-call, call, post
call, or the name of a newly defined ioctl. Finalode
contains any C code enclosed in braces.

%callset : optype : part {code}

Call Sets

Figure 6:A skeleton of typical kernel C code for stackable vnode
functions. FiST can control all three sections of every wafuthc-
tion: pre-call, post-call, and the call itself.

The example vnode function receives a pointer to th
vnode on which to apply the operation, and other argu
ments. First, the function finds the corresponding vhode g

op to refer to a single operation

ops to refer to all operations

readops| to refer to non state changing operations
writeops| to refer to state changing operations

Operation Types

all all operations
tdata operations that manipulate file data
name | operations that manipulate file names

the lower level mount. Next, the function actually calls the
lower level mounted file system through a stancda@®_*

macro that applies the same operation, but on the file sys
tem corresponding to the type of the lower vnode. The

The rest of the operation types specify one of the
following vnode operations: create, getattr, I/stat,
1ink, lookup, mkdir, read, readdir, readlink, rename,
rmdir, setattr, statfs, symlink, unlink, and write.

macro uses the lower level vnode, and the rest of the argy

Call Part

ments unchanged. Finally, the function returns to the calle|
the status code which the lower level mount passed to th
function.

There are three key parts in any stackable function thqtiocﬂ

FiST can control: the code that may run before calling
the lower level mount (pre-call), the code that may run af-
terwards (post-call), and the actual call to the lower level

mount. FiST can insert arbitrary code in the pre-call and

post-call sections, as well as replace the call part itsigtf w
anything else.

precall | part before calling the lower file system
Eeall the actual call to the lower file system
postcall | part after calling the lower file system
name of a newly defined ioctl

Table 4:Possible Values in FiST Rules

2.3.3 Filter Declarationsand Filter Functions

FiST file systems can perform arbitrary manipulations of

By default, the pre-call and post-call sections are emptythe data they exchange between layers. The most useful

and the call section contains code to pass the operation @"d at the same time most complex data manipulations in
the lower level file system. These defaults produce a filed stackable file system involve file data and file names. To
system that stacks on another but does not change behafanipulate them consistently without FiST or Wrapfs, de-
ior, and that was designed so developers do not have t¢elopers must make careful changes in many places. For
worry about the basic stacking behavior—only about theirexample, file data is manipulated in read, write, and all

changes.

For example, a useful pre-call code in an encryption fil
system would be to verify the validity of cipher keys. A
replication file system may insert post-call code to repeal

e

of the MMAP functions; file names also appear in many
places: lookup, create, unlink, readdir, mkdir, etc.

FiST simplifies the task of manipulating file data or file
pames using two types f(ifters. A filter is a function like

the same vnode operation on other replicas. A versioningnix shell filters such as sed or sort: they take some input,
n

file system could replace the actual call to remove a fil€ d produce possibly modified output.

with a call to rename it; an example FiST code for the latter.. I developers declarti | t er :_dat ain _their_FiST file, _
might be: fistgen looks for two data coding functions in the Addi-

tional C Code section of the FiST Filencode _dat a and
decode_dat a. These functions take an input data page,
and an allocated output page of the same size. Develop-
ers are expected to implement these coding functions in the
Additional C Code section of the FiST file. The two func-
tions must fill in the output page by encoding or decoding

%op: unlink:call {
fi st Renanme( $nane,

}

fistStrAdd($nane, ".unrnt'));



it appropriately and return a success or failure status .codeC macros to handle some of the FiST language, it would
Our encryption file system uses a data filter to encrypt andhave resulted in unmaintainable and unreadable code. One
decrypt data (Section 4.1). of the advantages of the FiST system is that it produces
With the FiST declaratiorii | t er : nane, fistgen in-  highly readable code. Developers can even edit that code
serts code and calls to encode or decode strings reprend add more features by hand, if they so choose.
senting file names. The file name coding functioas-( Fistgen also produces real C functions for specialized
code_nane anddecode_nane) take an input file name FiST syntax that cannot be trivially handled in C. For exam-
string and its length. They must allocate a new string andle, the fistGetloctlData function takes arguments that rep
encode or decode the file name appropriately. Finally, theéesent names of data structures and names of fields within.
coding functions return the number of bytes in the newlyA C function cannot pass such arguments; C++ templates
allocated string, or a negative error code. Fistgen insertsvould be needed, but we opted against C++ to avoid requir-
code at the caller’s level to free the memory allocated bying developers to know another language, because modern
file name coding functions. Unix kernels are still written in C, and to avoid interoper-
Using FiST filters, developers can easily produce fileability problems between C++ produced code and C pro-
systems that perform complex manipulations of data oduced code in a running kernel. Preprocessor macros can
names exchanged between file system layers. handle data structure names and names of fields, but they
do not have exact or portable C function semantics. To
. solve this problem, fistgen replaces calls to functions such
24 Fistgen as fistGetloctiData with automatically generated speciall

Fistgen is the FiST language code generator. Fistgen read@med C functions that hard-code the names of the data
in an input FiST file, and using the right Basefs templatesStructures and fields to manipulate. Fistgen generates thes
produces all the files necessary to build a new file systenfunctions only if needed and only once.

described in the FiST input file. These output files include

C file system source files, headers, sources for user lev@.5 Basefs

utilities, and a Makefile to compile them on the given plat-

form. . . . . . ,
Fistgen implements a subset of the C language parséyrapfs[27]. It prowd_es basic stacking functionality th_h
ut changing other file systems or the kernel. To achieve

and a subset of the C preprocessor. It handles condition%}. functionalitv. the k | " th toat
macros (such as #ifdef and #endif). It recognizes the begin- Is functionality, the kernel must support three features

ning of functions after the first set of declarations and theF'rSt’ in each of the VFS data struciures, Basefs requires a

ield to store pointers to data structures at the layer below.

ending of functions. It parses FiST tags inserted in Basef%econd new file systems should be able to call VFS func
explained in the next section) used to mark special place . )
(exp ) P P ons. Third, the kernel should export all symbols that may

in the templates. Finally, fistgen handles FiST variable !
(beginning with $ or %) and FiST functions (such as fist-%e n_eeded by new loadable kernel modules. The last two
requirements are needed only for loadable kernel modules.

Lookup) and their arguments.

Basefs is a template system which was derived from

After parsing an input file, fistgen builds internal data Generic
structures and symbol tables for all the keywords it must
handle. Fistgen then reads the templates, and generates ¥ S I;e;if;cf o
output files for each file in the template directory. For """" e
each such file, fistgen inserts needed code, excludesunused ~ _____ T _—___° Generio
code, or replaces existing code. In particular, fistgen con-
ditionally includes large portions of code that supportFiS Specific
filters: code to manipulate file data or file names. It also _
produces several new files (including comments) useful in Figure 7:Where Basefs fits inside the kernel

the compilation for the new file system: a header file for Basefs handles many of the internal details of operating
common definitions, and two source files containing auxil-systems, thus freeing developers from dealing with kernel
iary code. specifics. Basefs provides a stacking layer that is indepen-
The code generated by fistgen may contain automaticallgent from the layers above and below it. Figure 7 shows
generated functions that are necessary to support propéhis. Basefs appears to the upper VES as a lower level file
FiST function semantics. Each FiST function is replacedsystem. Basefs also appears to file systems below it as a
with one true C function—not a macro, inlined code, aVFS. All the while, Basefs repeats the same vnode opera-
block of code statements, or any feature that may not b&ion on the lower level file system.
portable across operating systems and compilers. While it Basefs performs all data reading and writing on whole
might have been possible to use other mechanisms such pages. This simplifies mixing regular reads and writes with



memory-mapped operations, and gives developers a singltevelopment of our templates. Finally, all three platforms
paged-based interface to work with. Currently, file systemssupport loadable kernel modules, which sped up the devel-
derived from Basefs manipulate data in whole pages andpment and debugging process. Loadable kernel modules
may not change the data size (e.g., compression). are a convenience in implementing FiST; they are not re-
To improve performance, Basefs copies and caches datguired.
pages in its layer and the layers below itBasefs saves The implementation of Basefs was simple and improved
memory by caching at the lower layer only if file data is on previously reported efforts[27]. No changes were re-
manipulated and fan-in was used; these are the usual coguired to either Solaris or FreeBSD. No changes to Linux
ditions that require caching at each layer. were required if using statically linked modules. To use dy-
Basefs is different from Wrapfs in four ways. First, namically loadable kernel modules under Linux, only three
substantial portions of code to manipulate file data andines of code were changed in a header file. This change
file names, as well as debugging code are not included iwas passive and did not have any impact on the Linux ker-
Basefs by default. These are included only if the file sysnel.
tem needs them. By including only code that is necessary The remainder of this section describes the implementa-
we generate output code that is more readable than codgn of fistgen. Fistgen translates FiST code into C code
with multi-nested#i f def /#endi f pairs. Conditionally  which implements the file system described in the FiST in-
including this code also resulted in improved performanceput file. The code can be compiled as a dynamically load-
as reported in Section 5.3. Matching or exceeding the perable kernel module or statically linked with a kernel. Irthi
formance of other layered file systems was one of the desection we describe the implementation of key features of
sign goals for Basefs. FiST that span its full range of capabilities.
Second, Basefs adds support for fan-out file systems na- \we implemented read-only execution environment vari-
tively. This code is also conditionally included, because i aples (Section 2.3.1) such &sii d by looking for them
is more complex than single-stack file systems, adds morg, one of the fields fromstruct cred in Solaris or
performance overhead, and consumes more memory. Atruct ucred in FreeBSD. The VFS passes these
complete discussion of the implementation and behavior o§tructures to vnode functions. The Linux VFS simpli-
fan-out file systems is beyond the scope of this paper.  fies access to credentials by reading that information from
Third, Basefs includes (conditionally compiled) supportthe disk inode and into the in-memory vnode structure,
for many other features that had to be written by hand inst r uct i node. So on Linux we find UID and other cre-
Wrapfs. This added support can be thought of as a lidentials by referencing a field directly in the inode which
brary of common functions: opening, reading or writing, the VFS passes to us.
and then closing arbitrary files; storing extended atteSut  \ost of the vnode attributes listed Section 2.3.1 are sim-
persistently; user-level utilities to mount and unmourd fil pje to find. On Linux they are part of the main vnode struc-
systems, as well as manipulate ioctls; inspecting and moo[)ure_ On Solaris and FreeBSD, however, we first perform a
ifying file attributes, and more. VOP_GETATTR vnode operation to find them, and then re-
Fourth, Basefs includes spectapsthat help fistgen lo-  turn the appropriate field from the structure that the getatt
cate the proper places to insert certain code. Insertingnction fills.
cod(_a at the beginning or the end of functions is simple, The ynode attribute “name” was more complex to imple-
but in some cases the code to add has to go elsewhergent, because most kernels do not store file names after the
For example, handling newly defined ioctls is done (injpjtial name lookup routine translates the name to a vnode.
the basefs.i octl vnode function) at the end of a C on Linux, implementing the vnode name attribute was sim-

“switch” statement, right before the “default” case. ple, because itis part of a standard directory entry strectu
dent ry. On Solaris and FreeBSD, however, we add code
3 Implementation to the lookup vnode function that stores the initial file name

in the private data of the vnode. That way we can access

We implemented the FiST system in Solaris, Linux, andit as any other vnode attribute, or any other per-vnode at-
FreeBSD because these three operating systems span tiiéute added using thper .vnode declaration. We im-
most popular modern Unix platforms and they are suffi-plemented all other fields defined using er vf s FiST
ciently different from each other. This forced us to un- declaration in a similar fashion.
derstand the generic problems in addition to the system- The FiST declarations described in Section 2.3 affect the
specific problems. Also, we had access to kernel sourcegverall behavior of the generated file system. We imple-
for all three platforms, which proved valuable during the mented the read-only access mode by replacing the call part
Thei . of every file system function that modifies state (such as
eidemann proposed a solution to the cache coherency pmoble . . N .
through a centralized cache manager{6]. His solution, heweequired  Unlink and mk_d|r) to return the error code “read-only file
modifications to existing file systems and the rest of theddern system.” We implemented the fan-in mount style by ex-




cluding code that uses the mounted directory’s vnode alsd.1 Cryptfs
as the mount point.

The only difficult part of implementing theoct | dec-
laration and its associated functions, fistGetloctlDatd an
fistSetloctiData (Section 2.2), was finding how to copy
data between user space and kernel space. Solaris al

FreeBSD use the routines copyin and copyout; Linux 2. L ;
Py Py crypting file names, Cryptfs also uuencodes them to avoid

usescopy_fromuser andcopy_t o_user. . o . :
Py Py . characters that are illegal in file names. Additional design
The last complex feature we implemented was the

fileformat FiST declaration and the functions used and important detalls are available elsewhere[26].

with it: fistGetFileData and fistSetFileData (Section 2)3.1 i ThlefF'St;T Im.pllslm%nttatlon of dC_:ryptfs _shoyvthreIT add:j
Consider this small code excerpt: ional features: file data encoding, using ioctl calls, an

using per-VFS data. Cryptfs's FiST code uses all four sec-
_ tions of a FiST file. Some of the more important code for
fileformat fmt { data structure}

fistGetFil eData( file, fmt field ouf: Cryptfs is:

Cryptfs is a strong encryption file system. It uses the
Blowfish[21] encryption algorithm in Cipher Feedback
(CFB) mode[20]. We used one fixed Initialization Vector
I(}/) and one 128-bit key per mounted instance of Cryptfs.

ryptfs encrypts both file data and file names. After en-

. . %
First, we generate a C data structure narfmet To im- . o) ude <bl owfi sh. h>
plement fistGetFileData, we opdite, read as many bytes o
from it as the size of the data structure, map these bytesi | ter: data;
; ilter:nane,;
onto a temporary vanablg of the same data strqcture typél,Octl fromuser SETKEY {char ukey[16]: }:
copy the QeS|red|e!d within that data structure intout, o, ts (char key[16]: };
close the file, and finally return a error/success statusevaluvss
from the function. To improve performance, if fileformat %op: i octl : SETKEY { -
related functions are called several times inside a vnode f?a[ffigpegmf;tlflo’at a( SETKEY, ukey, temp_buf)<0)
function, we Keep the file they refer to open until the last fi st Set Er r (EFAULT) : -
call that usesiit. el se
Fistgen itself (excluding the templates) is highly BF_set_key(&$vfs. key, 16, tenp_buf);
portable, and can be compiled on any Unix system. Theg,
total number of source lines for fistgen is 4813. Fistgen caninsi gned char gl obal _i v[8] = {
process each 1KB of template data in under 0.25 seconds 0xf e, Oxdc, Oxba, 0x98, 0x76, 0x54, 0x32, 0x10 };
(measured on the same platform used in Section 5.3). Nt cryptfs_encode_data( ;Zgztt pfgﬁt—; in,
( _

int n=0; /*blowfish variables */
4 Examples unsi gned char iv[8];
This section describes the design and implementation of ELSL?/f;gprE]LY;,p?I(??]aI ! f/;);gesi Je
several sample file systems we wrote using FiST. The ex- ~ - &($vfs. key), iv, &n,
amples generally progress from those with a simple FiST - BF_ENCRYPT);
design to those with a more complex design. Each example "eturn %pagesi ze;
introduces a few more FiST features. ;

1. Cryptis: is an encryption file system. The above example omits the call to decode data and

2. Aclfs: adds simple access control lists. the calls to encode and decode file names because they are
3. Unionfs: joins the contents of two file systems. similar in behavior to data encoding. Cryptfs defines an
ioctl named SETKEY, used to set 128-bit encryption keys.

These examples are experimental and intended to illusWe wrote a simple user-level tool which prompts the user
trate the kinds of file systems that can be written usingfor a passphrase and sends an MD5-hash of it to the kernel
FiST. We illustrate and discuss only the more importantusing this ioctl. When the SETKEY ioctl is called, Cryptfs
parts of these examples—those that depict key features stores the (cipher) key in the private VFS data field “key”,
FiST. Whenever possible, we mention potential enhanceto be used later.
ments to our examples. We hope to convince readers of the There are several possible extensions to Cryptfs: storing
flexibility and simplicity of writing new file systems using per-file or per-directory keys in auxiliary files that would
FiST. An additional example, Snoopfs, was described inotherwise remain hidden from users’ view, much the same
Section 2.1. as Aclfs does (Section 4.2.); using several types of encryp-
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tion algorithms, and defining mount flags to select among The. acl file itself is modifiable only by the directory’s

them. owner. We accomplish this by using a special ioctl. Fi-
nally, we hide. acl files from anyone but their owner. We
4.2 Adfs insert code in the beginning of lookup that returns the error

“no such file” if anyone other than the directory’s owner
Aclfs allows an additional UID and GID to share access toattempted to lookup the ACL file. To complete the hiding
a directory as if they were the owner and group of that di-of ACL files, we skip listing. acl files when reading di-
rectory. Aclfs shows three additional features of FiST: dis rectories.
allowing fan-in (more secure), using special purpose aux- Aclfs shows the full set of arguments to the fistLookup
iliary files, and hiding files from users’ view. The FiST routine. In order, the five arguments are: the directory to
code for Aclfs uses the FiST Declarations and FiST Ruledookup in, the name to lookup, the vnode to store the newly

sections: looked up entry, and the credentials to perform the lookup
fanin no: with (UID and GID, respectively).
ioct!:fronuser SETACL {int u; int g }; There are several possible extensions to this implemen-
fileformat ACLDATA {int us; int gr;}; tation of Aclfs. Instead of using the UID and GID listed
Z/% - ootl: SETACL in the . acl file, it can contain an arbitrarily long list of
/“Dip%' ?gg. 6ME;A ::{%Ji 8 user and group IDs to allow access to. Trec! file may
int u2, g2 also include sets of permissions to deny access from, per-
if (fistGetloctlData(SETACL, u, &u2) < 0 || haps using negative integers to distinguish them from ac-
. f'tSSLtGEt ! O‘EL'AﬁtTa.( SETACL, g, &g92) < 0) cess permissions. The granularity of Aclfs can be made on
el s'es{ o )i a per-file basis; for each fil&', access permissions can be
fistSetFileData(".acl", ACLDATA, us, u2); read from afile F'. acl , if one exists.
fistSetFileData(".acl", ACLDATA, gr, g2);
} .
} else 4.3 Unionfs
fistSetErr( EPERM; . . . L
} Unionfs joins the contents of two file systems similar to
%p: | ookup: postcal | { the union mounts in BSD-4.4[15] and Plan 9[17]. The
int u2, g2 two lower file systems can be considered two branches of a

' (L,L'&St LastErr() == EPERM stackable file system tree. Unionfs shows how to merge the

fistGetFileData(".acl", ACLDATA, us, u2)>=0  contents of directories in FiST, and how to define behav-

&& ! } } ior on a set of file system operations. The FiST code for
Lj&“ CetFileData(".acl”, ACLDATA, gr, g2)>=0  ynjonfs uses the FiST Declarations and FiST Rules sec-
(%id == u2 || %id == g2)) tions:

fistLookup($dir:1, $nanme, $1,

$dir: 1. owner, $dir:1.group); fanout 2;
%0
%op: | ookup: precal | { Y%op: | ookup: postcal | {
if (fistStrEgq($nane, ".acl") && if (fistLastErr() == ENCENT)
$dir.owner != %id) fistSetErr(fistLookup($dir:2, $nane));
fi st Retur nErr ( ENOENT) ; }

Y%op: readdir: postcal | {

Yop: readdir:cal | { fistSetErr(fistReaddir($dir:2, NODUPS));

if (fistStrEq($nane, ".acl"))

fi st Ski pName( $nane) : %lel ops: al | : postcal | {
} fistSetErr(fistOp($2));

}
%witeops:all:call {

When looking up a file in a directory, Aclfs first performs fistSetErr(fistOp($1)):

the normal access checks (iookup). We insert postcall
code after the normal lookup that checks if access to the
file was denied and if an additional file namealc| exists Normal lookup will try the first lower file system branch

in that directory. We then read one UID and GID from ($1). We add code to lookup in the second branch ($2)
the. acl file. If the effective UID and GID of the current if the first lookup did not find the file. If a file exists in
process match those listed in thacl file, we repeat the both lower file systems, Unionfs will use the one from the
lookup operation on the originally looked-up file, but using first branch. Normal directory reading is augmented to in-
the ownership and group credentials of #wtualowner of  clude the contents of the second branch, but setting a flag to
the directory. We must use the owner’s credentials, or theeliminate duplicates; that way files that exist in both lower
lower file system will deny our request. file systems are listed only once. Since files may exist in
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both branches, they must be removed (unlink, rmdir, ancsizes for the three platforms we implemented the file sys-
rename) from all branches. Finally we declare that all writ-tems on: Linux 2.3, Solaris 2.6, and FreeBSD 3.3. These
ing operations should perform their respective operationsesults are shown in Figure 8. For reference, we include the
only on the first branch; this means that new files are creeode sizes of Basefs and Wrapfs and also show the number
ated in the first branch where they will be found first by of lines of code required to implement Wrapfs in FiST and
subsequent lookups. Basefs.

There are several other issues file system semantics a 10000 -

. . : . . 3 g b % 3 & [OinFisT
especially concerning error propagation a_nd partial fail 2 o 5o a & | oo asefe
ures, but these are beyond the scope of this paper. Exte g @ over Wrapfs
sions to our Unionfs include larger fan-outs, masking thi 5 0% § o e
existence of a file in $2 if it was removed from $1, and T % 3 Y
. . . 3 N SR Y
ioctls or mount options to decide the order of lookups ani 5 | gy §Z §¢
writing operations on the individual file system branches. © %Z §é %Z
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We evaluate the effectiveness of FiST using three criteri: 14 e IM M M Y

Basefs Wrapfs Snoopfs Cryptfs Aclfs Unionfs

code size, development time, and performance. We shc
how code size is reduced dramatically when using FiS™,
and the corresponding improvements in development and
porting times. We also show that performance overhead i§igure 8:Average code size for various file systems when written
small and comparable to other stacking work. We reporin FiST, written given the Basefs or Wrapfs templates, anittevr
results based on the four example file systems described ffom scratch in C.

this paper: Snoopfs, Cryptfs, Aclfs, and Unionfs. These Figure 8 shows large reductions in code size when

were tested on three different platforms: Linux 2.3, Salari comparing FiST versus code hand-written from scratch—
2.6, and FreeBSD 3.3. generally writing tens of lines instead of thousands. We
also include results for the two templates. Size reductions
51 CodeSize for the four example file systems range from a factor of 40
to 691, with an average of 255. We focus though on the
Code size is one measure of the development effort necesomparison of FiST versus stackable template systems. As
sary for a file system. To demonstrate the savings in cod&Vrapfs represents the most conservative comparison, the
size achieved using FiST, we compare the number of linefigure shows for each file system the additional number of
of code that need to be written to implement the four exam{ines of code written using Wrapfs. The smallest average
ple file systems in FiST versus three other implementatiorcode size reduction in using FiST versus Wrapfs or Basefs
approaches: writing C code using a stand-alone version adcross all four file systems ranges from a factor of 1.3 to
Basefs, writing C code using Wrapfs, and writing the file 31.1; the average reduction rate is 10.5.
systems from scratch as kernel modules using C. In partic- Figure 8 suggests two size reduction classes. First, mod-
ular, we first wrote all four of the example file systems from erate (5—6 times) savings are achieved for Snoopfs, Cryptfs
scratch before writing them using FiST. For these exampleand Aclfs. The reason for this is that some lines of FiST
file systems, the C code generated from FiST was identicatode for these file systems produce ten or more lines of C
in size (modulo white-spaces and comments) to the handzode, while others result in almost a one-to-one trangiatio
written code. We chose to include results for both Basefsn terms of number of lines.
and Wrapfs because the latter was released last year, andSecond, the largest savings appeared for Unionfs, a fac-
includes code that makes writing some file systems easigor of 28—-33 times. The reason for this is that fan-out file
with Wrapfs than Basefs directly. systems produce C code that affects all vnode operations;
When counting lines of code, we excluded commentsgach vnode operation must handle more than one lower
empty lines, and %% separators. For Cryptfs we exclude&node. This additional code was not part of the original
627 lines of C code of the Blowfish encryption algorithm, Wrapfs implementation, and it is not used unless fan-outs
since we did not write it. When counting lines of code for of two or more are defined (to save memory and improve
implementing the example file systems using the Basefperformance). If we exclude the code to handle fan-outs,
and Wrapfs stackable templates, we exclude code that ignionfs’s added C code is still over 100 lines producing
part of the templates and only count code that is specific tgavings of a factor of 7-10. FreeBSD’s Unionfs is 4863
the given example file system. We then averaged the codines long, which is 50% larger than our Unionfs (3232

File System
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lines). FreeBSD’s Unionfs is 2221 lines longer than theirAdditional C Code section of the FiST file; the rest of the
Nullfs, while ours is only 481 lines longer than our Baséfs. support for Cryptfs is already in Wrapfs.

Figure 8 shows the code sizes feachplatform. The The average per platform reduction in development time
savings gained by FiST are multiplied with each port. If across the four file systems is a factor of seven in using
we sum up the savings for the above three platforms, wéiST versus the Wrapfs templates. If we assume that de-
reach reduction factors ranging from 4 to over 100 timesvelopment time correlates directly to productivity, we can
when comparing FiST to code written using the templatescorroborate our results with Brooks’s report that highelev
This aggregated reduction factor exceeds 750 times whelanguages are responsible for at least a factor of five in im-
comparing FiST to C code written from scratch. The moreproved productivity[3].
ports of Basefs exist, the better these cumulative savings An additional metric of productivity is comparing the

would be. number of lines of C code developed for each man-day,
given the templates. The average number of lines of code
5.2 Development Time we wrote per man-day was 80. One user of our Wrapfs tem-

plates had used them to create a new migration file system
Estimating the time to develop kernel software is very dif- called mf$. The average number of lines of code he wrote
ficult. Developers’ experience can affect this time signifi- per man-day was 68. The difference between his rate of
cantly, and this time is generally reduced with each portproductivity and ours is only 20%, which can be explained
In this section we report our own personal experiencespecause we are more experienced in writing file systems
given these file system examples and the three platformghan he is.
we worked with; these figures do not represent a controlled The most obvious savings in development time come
study. Figure 9 shows the number of days we spent develvhen taking into account multiple platforms. Then it is
oping various file systems and porting them to three differ-clearer that each additional platform increases the saving

ent platforms. factor of FiST versus other methods by one more.
100 @ = = § 3 ||OirisT
SgiveBasefs 5.3 Performance
@ giveivrapfs
10 4 MW frorscratch

To evaluate the performance of file systems written using
FiST, we tested each of the example file systems by mount-
ing it on top of a disk based native file system and run-
ning benchmarks in the mounted file system. We conducted
measurements for Linux 2.3, Solaris 2.6, and FreeBSD 3.3.
The native file systems used were EXT2, UFS, and FFS,
Basefs  Wrapfs  Snoopfs — Crypifs  Aclfs  Unionfs respectively. We measured the performance of our file sys-
Fil&ystem T ) . .
tems by building a large package: am-utils-6.0, which con-
tains about 50,000 lines of C code in several dozen small
Figure 9:Average estimated reduction in development time ~ files and builds eight binaries; the build process contains
. . . — a large number of reads, writes, and file lookups, as well
We estimated the incremental time spent designing, de- S X .
: . ! ? as a fair mix of most other file system operations. Each
veloping, and debugging each file system, assuming 8 houbr
. . enchmark was run once to warm up the cache for exe-
work days, and using our source commit logs and change

) L Cutables, libraries, and header files which atgsidethe
logs. We estimated the time it took us to develop Wrapfs . Lo .
. tested file system; this result was discarded. Afterwards,
Basefs, and the example file systems. Then we measure
i . . we took 10 new measurements and averaged them. In be-
the time it took us to develop each of these file system

i . ?ween each test, we unmounted the tested file system and
using the FiST language.

For most file systems, incremental time savings are afact—he one below it, and then remounted them; this ensured
Y ' 9 that we started each test on a cold cache for that file sys-

tor of 5-15 because hand writing C code for each platforn}em' The standard deviations for our measurements were

can be time consuming, while FiST provides this as parlﬁess than 2% of the mean. We ran all tests on the same

of the base templates and the additional library code that L .
comes with Basefs. For Cryptfs, however, there are notiménaChme' a P5/90'.64MB RAM, and a Quantum Fireball
4.35GB IDE hard disk.

savings per platform, because the vast majority of the code Figure 10 shows the performance overhead of each file

for Cryptfs is in implementing the four encoding and de- . :
coding functions, which are implemented in C code in theSyStem. comp_ared 0 th? one it was based on. The '”ter_‘t of
these figures is two-fold: (1) to show that the basic stacking

2Unfortunately, the stacking infrastructure in FreeBSD isrently overhead is small, and (2) to show the performance benefits
broken, so we were unable to compare the performance of aokieg
to FreeBSD’s. Shttp://www-internal.alphanet.ch/"schaefer/mfs.html
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22.9 OMin movals (rm —rf), recursive find, and “find-grep” (find /mnt
—print| xargs gregpattern using the same file set used for
the large compile. The focus of this paper is not on perfor-
mance, but on savings in code size and development time.
Since the micro-benchmarks confirmed our previous good
results, we do not repeat them here[27].

Finally, since we did not change the VFS, and all of our
stacking work is in the templates, there is no overhead on
the rest of the system; performance of native file systems
(NFS, FFS, etc.) is unaffected when our stacking is not
used.
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Basefgs. Basefs+  Snoopfs Cryptfss. Aclfss. Unionfss.
lowefile vBasefs  vBasefs Basefs+ Basefs Basefs

system 6 Redated Work

Compareéil&ystems

Rosenthal first implemented stacking in SunOS 4.1 in the
early 1990s[19]. A few other projects followed his, in-
cluding further prototypes for extensible file systems in
Sun0S[22], and the Ficus layered file system[5, 7]. Web-

¢ conditionally includi def ioulating fil ber implemented file system interface extensions that allow
of conditionally including code for manipulating file names ;o el file servers[25]. Unfortunately, these impleme

and file _data in Bgsefs. Basefs+ _refers to Basefs with codg, i o required modifications to either existing file sysse
for manipulating file names and file data. _or the rest of the kernel, limiting their portability signif
The most important performance metric is the basiCicantly, and affecting the performance of native file sys-
overhead imposed by our templates. The overhead ogms. FiST achieves portability using a minimal stackable
Basefs over the file systems it mounts on is just 0.8-2.1%p55¢ file system, Basefs, which can be ported to another
This minimum overhead is below the 3—10% degradatiorb|atform in 1-3 weeks. No changes need to be made to ex-
previously reported for null-layer stacking[8, 22]. In add jsting kernels or file systems, and there is no performance
tion, the overhead of the example file systems due to NeWenalty for native file systems.
file system functionality is greater than the basic stacking newer operating systems, such as the HURDI[4],
overhead imposed by our templates in all cases, even fafying[13], and the Exokernel[10] have an extensible file
very simple file systems. With regard to performance, desystem interface. The HURD is a set of servers running un-
velopers who extend file system functionality using FiST ger the Mach 3.0 microkernel[1] that collectively provide
primarily need to be concerned with the performance cosh ynix-like environment. HURD translators are programs
of new file system functionality as opposed to the cost Ofinat can be attached to a pathname and perform specialized
the FiST stacking infrastructure. Forinstance, the ovathe services when that pathname is accessed. Writing transla-
of Cryptfs is the largest of all the file systems shown due toors entails implementing a well defined file access inter-
the cost of the Blowfish cipher. Note that the performancegce and filling in stub operations for reading files, cregtin
of individual file systems can vary greatly depending on thegjrectories. listing directory contents, etc.
operating system in question. Sun Microsystems Laboratories built Spring, an object-
Figure 10 also shows the benefits of having FiST cusoriented research operating system[13]. Spring was de-
tomize the generated file system infrastructure based osigned as a set of cooperating servers on top of a microker-
the file system functionality required. The comparison ofnel. It provides generic modules that offer services useful
Basefs+ versus Basefs shows that the overhead of includinfgr a file system: caching, coherency, I/O, memory map-
code for manipulating file names and file data is 4.2—4.90/¢ping, object naming, and security. Writing a file system
over Basefs. This added overhead is not incurred in Basefyr Spring involves defining the operations to be applied
unless the file systems derived from it requires file data obn the objects. Operations not defined are inherited from
file name manipulations. While Cryptfs requires Basefs+their parent object. One work that resulted from Spring
functionality, Snoopfs, Aclfs, and Unionfs do not. Com- is the Solaris MC (Multi-Computer) File System[12]. It
pared to a stackable file system such as Wrapfs, FiST'gorrowed the object-oriented interfaces from Spring and
ability to conditionally include file system infrastruceur integrated them with the existing Solaris vnode interface
code saves an additional 4% of performance overhead fag provide a distributed file system infrastructure through
Snoopfs, Aclfs, and Unionfs. a specialProxy File System Solaris MC provides all of
We also performed several micro-benchmarks which in-Spring’s benefits, while requiring little or no change to ex-
cluded a series of recursive copies (cp —), recursive reisting file systems; those can be ported gradually over time.

Figure 10:Performance overhead of various file systems for the
large compile benchmark, across three operating systems

14



Solaris MC was designed to perform well in a closely cou-7.1  Future Work

pled cluster environment (not a general network) and re—W developi t for fil " that ch
quires high performance networks and nodes. € are developing support for fre systems that change

The Exokernel is an extensible operating system thals‘izes Sth as for conjpre_ssion. The_ main complexity with
comes with XN, a low-level in-kernel stable storage supporting compression is that the file offsets at the upper

system[10]. XN allows users to describe the on-disk dat:fmd lower layers are no longer identical, and some form of

structures and the methods to implement them (along Witff?ﬁ'c'ent mapping 1S qeeded fpr operat_|ons such as ‘?‘ppe”d'
file system libraries called libFSes). The Exokernel re-iNg to a file or writing in the middle. This code complicates

quires significant porting work to each new platform, butthe templates, but m"_""es no change_to the I{:mg.uage.
then it can run many unmodified applications. We are also exploring layer collapsing in FiST: a method
The main disadvantages of the HURD, Spring, and th 0 generate one file system that merges the functionality

Exokernel are that they are not portable enough, not suf-om _several FIST descriptions, thus saving the per-layer
ficiently developed or stable, or they are not available forSta\‘/(\:/kmglJ overheads. wind NT. NT h

general use. In comparison, FiST provides portable stack-. € plan to port our system to N ?WS L as a
ing on widely available operating systems. Finally, none ofdifferent file system interface than Unix’s vnode interface

the related extensible file systems come with a high-leve‘\rr’S /O subsystem defines its file system interface. NT

language that developers can use to describe file systems'.:IIter Drivers are optional _so_ftwa_re modules that can l_ae in-
erted above or below existing file systems[14]. Their task

High level languages have seldom been used to gener-
g guag g ; to intercept and possibly extend file system functiogalit

ate code for operating system components. FiST is the fir§g le of an NT filter driver is its vi . d
major language to describe a large component of the op- NE example ot an Iiter driver s Its virus signature de-

erating system, the file system. Previous work in the aredector. It is possible to emulate file system stacking under

of operating system component languages includes a Iar{\-IT' V;]/e estir;age thaLporting Bas;_fs ]Eo TJT_Wi” take 2-3
guage to describe video device drivers[24]. months, not 1-3 weeks as we predict for Unix ports.
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