
Using Hints to Improve Inline Block-Layer Deduplication
Sonam Mandal,1 Geoff Kuenning,3 Dongju Ok,1 Varun Shastry,1 Philip Shilane,4 Sun Zhen,1,5

Vasily Tarasov,2 and Erez Zadok1

1Stony Brook University, 2IBM Research—Almaden, 3Harvey Mudd College,
4EMC Corporation, and 5HPCL, NUDT, China

Appears in the proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16)

Abstract

Block-layer data deduplication allows file systems
and applications to reap the benefits of deduplication
without requiring per-system or per-application modi-
fications. However, important information about data
context (e.g., data vs. metadata writes) is lost at the
block layer. Passing such context to the block layer can
help improve deduplication performance and reliability.
We implemented a hinting interface in an open-source
block-layer deduplication system, dmdedup, that passes
relevant context to the block layer, and evaluated two
hints, NODEDUP and PREFETCH. To allow upper stor-
age layers to pass hints based on the available context,
we modified the VFS and file system layers to expose
a hinting interface to user applications. We show that
passing the NODEDUP hint speeds up applications by up
to 5.3× on modern machines because the overhead of
deduplication is avoided when it is unlikely to be bene-
ficial. We also show that the PREFETCH hint accelerates
applications up to 1.8× by caching hashes for data that
is likely to be accessed soon.

1 Introduction
The amount of data that organizations store is growing
rapidly [3]. Decreases in hard drive and SSD prices do
not compensate for this growth; as a result companies
are spending more and more on storage [26]. One tech-
nique to reduce storage costs is deduplication, which al-
lows sites to store less raw data. At its core, deduplica-
tion systematically replaces duplicate data chunks with
references. For many real-world datasets, deduplication
significantly reduces raw storage usage [10, 19, 22].

Deduplication can be implemented at several layers
in the storage stack. Most existing solutions are built
into file systems [4,28,32] because they have enough in-
formation to deduplicate efficiently without jeopardizing
reliability. For example, file sizes, metadata, and on-disk
layout are known to the file system; often file systems
are aware of the processes and users that perform I/O.
This information can be leveraged to avoid deduplicat-
ing certain blocks (e.g., metadata), or to prefetch dedup
metadata (e.g., for blocks likely to be accessed together).

An alternative is to add deduplication to the block
layer, which provides a simple read/write interface. Be-
cause of this simplicity, adding features to the block

layer is easier than changing file systems. This observa-
tion is equally applicable to systems that work directly
at the block layer, such as databases and object stores.

However, a block-level deduplication system is un-
aware of the context of the data it operates on. A typ-
ical I/O request contains only the operation type (read or
write), size, and offset, without attached semantics such
as the difference between metadata and user data. Dedu-
plicating metadata can (1) harm reliability [25], e.g., be-
cause many file systems intentionally save several copies
of critical data such as superblocks, and (2) waste com-
putational resources because typical metadata (inode ta-
bles, directory entries, etc.) exhibits low redundancy.
In particular, in-line deduplication is expensive because
forming chunks (fixed or variable-length), hash calcu-
lation, and hash searches are performed before writing
data to disk; it is undesirable to expend resources on data
that may not benefit from deduplication.

To allow block-layer deduplication to take context
into account, we propose an interface that allows file sys-
tems and applications to provide simple hints about the
context in which the deduplication is being performed.
Such hints require only minor file system changes, mak-
ing them practical to add to existing, mature file systems.
We implemented two hints: NODEDUP and PREFETCH,
which we found useful in a wide range of cases.

To evaluate the potential benefits of hints, we used
an open-source block-layer deduplication system, dmd-
edup [34]. Dmdedup is meant for in-line primary-
storage deduplication and is implemented as a stack-
able block device in the Linux kernel. We evaluated our
hints under a variety of workloads and mixes of unique
vs. deduplicable data. Our results demonstrate that by
not deduplicating data that is likely to be unique, the
NODEDUP hint can speed up applications by as much as
5.3× over vanilla Dmdedup. We also show that by pre-
loading hashes for data that is likely to be deduplicated
soon, the PREFETCH hint can speed up applications by
as much as 1.8× over vanilla Dmdedup.

2 Background
Context recovery. Previous research has addressed
the semantic gap between the block layer and a file sys-
tem and has demonstrated that restoring all or part of
the context can substantially improve block-level perfor-
mance and reliability [2,18,29–31,36]. We build on this

1



observation by recovering partial file system and appli-
cation context to improve block-level deduplication.

Context recovery can be achieved either by introspec-
tion or via hinting. Introspection relies on block-layer
intelligence to infer file-system or application opera-
tions. The benefit of introspection is that it does not
require any file-system changes; the disadvantage is that
a successful implementation can be difficult [33, 35].
In contrast, hinting asks higher layers to provide small
amounts of extra information to the deduplication sys-
tem. Although file systems and perhaps applications
must be changed, the necessary revisions are small com-
pared to the benefits. Furthermore, application changes
can be minimized by interposing a library that can de-
duce hints from information such as the file or program
name, file format, etc. In this work, we use hinting to
recover context at the block layer.

Dmdedup. We used an open-source block-layer dedu-
plication system, dmdedup [34], to evaluate the benefits
of hints. Dmdedup uses fixed-size chunking and relies
on Linux’s crypto API for hashing. It can use one of
two metadata back ends: inram and cowbtree; the
former stores the metadata only in RAM (if it is battery-
backed), and the latter writes it durably to disk. Others
also proposed a soft-update based metadata backend [5].

Figure 1 depicts dmdedup’s main components and its
position in a typical setup. Dmdedup rests on top of
physical block devices (e.g., disk drives, RAIDs, SSDs),
or other logical devices (e.g., dm-crypt for encryption).
It typically requires two block devices to operate: one a
data device that stores actual user data, and a metadata
device that keeps track of the organizational information
(e.g., the hash index). In our experiments, we used an
HDD for data and SSD for metadata. Placing metadata
on an SSD makes sense because it is much smaller than
the data itself—often less than 1% of the data—but is
critical enough to require low-latency access. To up-
per layers, dmdedup provides a conventional read/write
block interface. Normally, every write to a dmdedup in-
stance is hashed and checked against all existing data;
if a duplicate is detected, the corresponding metadata
is updated and no data is written. New non-duplicate
content is passed to the data device and tracked in the
metadata. Since only one instance of a given block is
stored, multiple files may be affected if it gets corrupted.
Therefore, dmdedup can be run over RAID or a replica-
tion system to minimize the risk of data loss.

Internally, dmdedup has five components (Figure 1):
(1) the deduplication logic that chunks data, computes
hashes, and coordinates other components; (2) a hash
index that tracks the hashes and locations of all currently
stored chunks; (3) a mapping between Logical Block
Numbers (LBNs) visible to the upper layers and the

Dmdedup Block Device

Application

File System

Deduplication logic

Hash
Index

LBN
Mapping

Space Manager

Chunk Store

Data DeviceMetadata Device

Figure 1: Dmdedup high-level design.

Ext2 Ext3 Ext4 Nilfs2
% of writes that are metadata 11.6 28.0 18.9 12.1
% of unique metadata writes 98.5 57.6 61.2 75.0

Table 1: Percentage of metadata writes and unique metadata
in different file systems.

Physical Block Numbers (PBNs) where the actual data
is stored; (4) a space manager that tracks space on the
data device, maintains reference counts, allocates new
blocks, and reclaims unreferenced data; and (5) a chunk
store that saves user data to the data device.

3 Potential Hints
Bypass deduplication. Some writes are known a pri-
ori to be likely to be unique. Applications might gener-
ate data that should not or cannot be deduplicated. For
example, some applications write random, compressed,
or encrypted data; others write complex formats (e.g.,
virtual disk images) with internal metadata that tends to
be unique [8]. HPC simulations often generate massive
checkpoints with unique data, and high-resolution sen-
sors produce unique data streams.

Attempting to deduplicate unique writes wastes CPU
time on hash computation and I/O bandwidth on main-
taining the hash index. Unique hashes also increase the
index size, requiring more RAM space and bandwidth
for lookup, insertion, and garbage collection.

Most file system metadata is unique—e.g., inodes
(which have varying timestamps and block pointers), di-
rectory entries, and indirect blocks. Table 1 shows the
percentage of 4KB metadata writes (unique and over-
all) for several file systems, using Filebench’s [7] File-
server workload adjusted to write 4KB blocks instead of
1KB (so as to match the deduplication system’s chunk
size). About 12–28% of the total writes across all file
systems were metadata; in all cases at least 57% of the
metadata was unique. Ext3 and Ext4 have more meta-
data duplicates than Ext2 and Nilfs2 (43% vs. 1–25%), a
phenomenon caused by journaling: Ext4 initially writes
metadata blocks to the journal and then writes the same
blocks to their proper location on the disk.

Metadata writes are more important to overall system

2



performance than data writes because the former are of-
ten synchronous. Adding extra deduplication overhead
might increase the latency of those critical metadata
writes. Avoiding excessive metadata deduplication also
helps reliability because many file systems store redun-
dant copies of their metadata (e.g., Ext2/3/4 keeps mul-
tiple superblocks; ZFS explicitly duplicates metadata to
avoid corruption). Deduplicating those copies would ob-
viate this feature. Likewise, file system journals enhance
reliability, so deduplicating their blocks might be coun-
terproductive. A deduplicated journal would also lose
sequentiality, which could harm performance.

In summary, if a block-level deduplication system can
know when it is unwise to deduplicate a write, it can op-
timize its performance and reliability. We implemented
a NODEDUP hint that informs our system that a corre-
sponding request should not be deduplicated.

Prefetch hashes. When a deduplication system knows
what data is about to be written, it can prefetch the cor-
responding hashes from the index, accelerating future
data writes by reducing lookup delays. For example, a
copying process first reads source data and then writes it
back. If a deduplication system can identify that behav-
ior at read time, it can prefetch the corresponding hash
entries from the index to speed up the write path. We
implemented this hint and refer to it as PREFETCH. An-
other interesting use case for this hint is segment clean-
ing in log-structured file systems (e.g., Nilfs2) that mi-
grate data between segments during garbage collection.

Bypass compression. Some deduplication systems
compress chunks to save further space. However, if
a file is already compressed (easily determined), addi-
tional compression consumes CPU time with no benefit.

Cluster hashes. Files that reside in the same directory
tend to be accessed together [12]. In a multi-user en-
vironment, a specific user’s working set is normally far
smaller than the whole file system tree [13]. Based on
file ownership or on which directories contain files, a
deduplication system could group hashes in the index
and pre-load the cache more efficiently.

Partitioned hash index. Partitioning the hash index
based on incoming chunk properties is a popular tech-
nique for improving deduplication performance [1]. The
chance of finding a duplicate in files of the same type is
higher than across all files, so one could define partitions
using, for example, file extensions.

Intelligent chunking. Knowing file boundaries allows
a deduplication system to efficiently chunk data. Certain
large files (e.g., tarballs) contain many small ones. Pass-
ing information about content boundaries to the block
layer would enable higher deduplication ratios [15].

Hint Flow

File System

Application

device−mapper

Block Layer

Data Flow

Metadata Device Data Device

dmdedup

Figure 2: Flow of hints across the storage layers.

4 Design and Implementation
To allow the block layer to be aware of context, we de-
signed a system that lets hints flow from higher to lower
layers in the storage stack. Applications and file systems
can then communicate important information about their
data to lower layers. The red arrows in Figure 2 show
how hints are passed to the block layer. We have imple-
mented two important hints: NODEDUP and PREFETCH.

Nodedup. Since deduplication uses computational re-
sources and may increase latency, it should only be per-
formed when there is a potential benefit. The NODEDUP
hint instructs the block layer not to deduplicate a par-
ticular chunk (block) on writes. It has two use cases:
(1) unique data: there is no point in wasting resources
on deduplicating data that is unlikely to have duplicates,
such as sensor or encrypted data; (2) reliability: main-
taining multiple copies of certain blocks may be neces-
sary, e.g., superblock replicas in many file systems.

Prefetch. One of the most time-consuming operations
in a deduplication system is hash lookup, because it of-
ten requires extra I/O operations. Worse, hashes are ran-
domly distributed by their very nature. Hence, looking
up a hash often requires random I/O, which is the slow-
est operation in most storage systems. Also, as previous
studies have shown [38], it is impractical to keep all the
hashes in memory because the hash index is far too large.

The PREFETCH hint is used to inform the deduplica-
tion system of I/O operations that are likely to gener-
ate further duplicates (e.g., during a file copy) so that
their hashes can be prefetched and cached to minimize
random accesses. This hint can be set on the read
path for applications that expect to access the same data
again. (Note that reads normally only need to access the
LBN→PBN index, bypassing the hash index.)

4.1 Implementation
To add support for hints, we modified various parts of
the storage stack. The generic changes to support prop-
agation of hints from higher levels to the block layer
modified about 77 lines of code in the kernel. We also
modified the OPEN system call to take two new flags,
O NODEDUP and O PREFETCH. User-space applications

3



can use these flags to pass hints to the underlying dedu-
plication block device. If the block layer does not sup-
port the flags, they are ignored. Applications that re-
quire redundancy or have a small number of duplicates
can pass the O NODEDUP hint when opening for write.
Similarly, applications that are aware of popular data
blocks, or that know some data will be accessed again,
can pass O PREFETCH when opening for read. Hashes
of the blocks being read can then be prefetched, so that
on a later write they can be found in the prefetch cache.

We modified dmdedup to support the NODEDUP and
PREFETCH hints by adding and changing about 741
LoC. In dmdedup, if a request has the NODEDUP flag
set, we skip lookups and updates in the hash index. In-
stead, we add an entry only to the LBN→PBN mapping.
The read path needs no changes to support NODEDUP.

On the read path in dmdedup, the LBN→PBN map is
consulted to find whether the given location is known,
but no hash calculation is normally necessary because
a previous write would have already added the block to
the hash→PBN map. If a request has the PREFETCH hint
set on the read path then dmdedup hashes the data after
it is read and puts the corresponding hash→PBN tuple
in a prefetch cache. Upon writes, our code saves exe-
cution time by checking the cache before searching the
metadata backend. When a hash is found in the prefetch
cache, it is evicted, since after the copy there is little rea-
son to believe that it will be used again soon.

We also modified some specific file systems to pass
the NODEDUP hint for their metadata and also pass the
OPEN flags to the block layer if set. For Linux’s Nilfs2,
we changed about 371 kernel LoC to mark its metadata
with hints and propagate them, along with the OPEN
flags, from the upper levels to the block layer. Similar
changes to Ext4 changed 16 lines of code; in Ext3 we
modified 6 lines (which also added support for Ext2).
The Ext2/3/4 changes were small because we were able
to leverage the (newer) REQ META flag being set on the
file system metadata to decide whether to deduplicate
based on data type. The rest of the metadata-related hints
are inferred; we identify journal writes from the process
name, jbd2.

5 Evaluation
Experimental Setup. In our experiments we used a
Dell PowerEdge R710, equipped with an Intel Xeon
E5540 2.4GHz 4-core CPU and 24GB of RAM. The
machine ran Ubuntu Linux 14.04 x86 64, upgraded to a
Linux 3.17.0 kernel. We used an Intel DC S3700 series
200GB SSD as the dmdedup metadata device and a Sea-
gate Savvio 15K.2 146GB disk drive for the data. Both
drives were connected to the host using Dell’s PERC 6/i
controller. Although the SSD is large, in all our experi-
ments we used 1.5GB or less for dmdedup metadata.

We ran all experiments at least three times and en-
sured that standard deviations were less than 5% of the
mean. To ensure that all dirty data reached stable media
in the micro-workload experiments, we called sync at
the end of each run and then unmounted the file system;
our time measurements include these two steps.

For all experiments we used dmdedup’s cowbtree
transactional metadata backend, since it helps avoid in-
consistent metadata states on crashes. Cowbtree allows
users to specify different metadata cache sizes; we used
sizes of 1%, 2%, 5%, and 10% of the deduplication
metadata for each experiment. These ratios are typi-
cal in real deduplication systems. Dmdedup also allows
users to specify the granularity at which they want to
flush metadata. We ran all experiments with two set-
tings: flush metadata on every write, or flush after every
1,000 writes. In our results we focus on the latter case
because it is a more realistic setting. Flushing after every
write is like using the O SYNC flag for every operation
and is uncommon in real systems; we used that setting to
achieve a worst-case estimate. Dmdedup also flushes its
metadata when it receives any flush request from the lay-
ers above. Thus, dmdedup’s data persistency semantics
are the same as those of a regular block device.

5.1 Experiments
We evaluated the NODEDUP and PREFETCH hints for
four file systems: Ext2, Ext3, Ext4, and Nilfs2. Ext2 is a
traditional FFS-like file system that updates metadata in
place; Ext3 adds journaling and Ext4 further adds extent
support. Nilfs2 is a log-structured file system: it sequen-
tializes all writes and has a garbage-collection phase to
remove redundant blocks. We show results only for Ext4
and Nilfs2, because we obtained similar results from the
other file systems. In all cases we found that the perfor-
mance of Nilfs2 is lower than that of Ext4; others have
seen similar trends [27].

NODEDUP hint. To show the effectiveness of
application-layer hints, we added the NODEDUP hint as
an open flag on dd’s write path. We then created a 4GB
file with unique data, testing with the hint both on and
off. This experiment shows the benefit of the NODEDUP
hint on a system where unique data is being written (i.e.,
where deduplication is not useful), or where reliability
considerations trump deduplicating. This hint might not
be as helpful in workloads that produce many dupli-
cates. Figure 3 shows the benefit of the NODEDUP hint
for Ext4 and Nilfs2 when metadata was flushed every
1,000 writes; results for other file systems were similar.
We found that the NODEDUP hint decreased unique-data
write times by 2.2–5.3×. Flushing dmdedup’s metadata
after every write reduced the benefit of the NODEDUP
hint, since the I/O overhead was high, but we still
observed improvements of 1.3–1.6×.

4



 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

raw
filesystem

410k
1%

819k
2%

2048k
5%

4096k
10%

E
la

p
se

d
 t

im
e
 (

se
cs

)
no-hint hint-on

(a) Ext4

 0

 50

 100

 150

 200

 250

raw
filesystem

410k
1%

819k
2%

2048k
5%

4096k
10%

E
la

p
se

d
 t

im
e
 (

se
cs

)

no-hint hint-on

(b) Nilfs2
Figure 3: Performance of using dd to create a 4GB file with unique content, both with and without the NODEDUP hint, for different
file systems. The X axis lists the metadata cache size used by dmdedup, in both absolute values and as a percentage of the total
metadata required by the workload. Dmdedup metadata was flushed after every 1,000 writes. Lower is better.

 0

 5

 10

 15

 20

 25

 30

 35

 40

raw
filesystem

102k
1%

205k
2%

512k
5%

1024k
10%

E
la

p
se

d
 t

im
e
 (

se
cs

)

no-hint hint-on

(a) Ext4

 0

 10

 20

 30

 40

 50

 60

 70

raw
filesystem

102k
1%

205k
2%

512k
5%

1024k
10%

E
la

p
se

d
 t

im
e
 (

se
cs

)

no-hint hint-on

(b) Nilfs2
Figure 4: Performance of using dd to copy a 1GB file, both with and without the PREFETCH hint, for different file systems. The X
axis lists the metadata cache size used by dmdedup, in both absolute values and as a percentage of the total metadata required by
workload. Dmdedup metadata was flushed after every 1,000 writes. Lower is better.

PREFETCH hint. To evaluate the PREFETCH hint we
modified dd to use the O PREFETCH open flag on the
read path so that writes could benefit from caching
hashes. We then used the modified dd to repeatedly
copy a 1GB file with unique content within a single file
system. We used unique content so that we could mea-
sure the worst-case performance where no deduplication
can happen, and to ensure that the prefetch cache was
heavily used. We also performed studies on a locally
collected dataset of the hashes of the home directories of
a small research group. We analyzed the hashes to learn
how many duplicate blocks are seen within a file using
4KB chunk sizes, and found that 99% of the files had
unique chunks. Thus testing the PREFETCH hint with
unique content makes sense. For all four file systems,
the results were similar because most file systems man-
age single-file data-intensive workloads similarly. Fig-
ure 4 shows results for Ext4 and Nilfs2. When flushing
dmdedup’s metadata every 1,000 writes, the reduction
in copy time compared to the no-hint configuration was
1.2–1.8×. When we flushed the metadata after every
write, the copy times ranged from 16% worse to 16%
better. The improvement from hints was less significant
here because the overhead of flushing was higher than
the benefit obtained from prefetching the hashes.

Not suprisingly, the effectiveness of PREFETCH hint
depends on the deduplication ratio. For example, when
we changed the deduplication ratio to 8:1 in the above
experiment, the copy times ranged from 9% worse to
55% better depending on file system type and dmdedup
settings.

Macro workload. We modified Filebench to gener-
ate data in the form of a given duplicate distribution
instead of arbitrary data. We then ran Filebench’s
Fileserverworkload, modified to write 4KB blocks,
to assess the benefit of setting the NODEDUP hint for:
(1) file metadata writes, where we mark the metadata
blocks and the journal writes with this hint, and (2) file
data writes along with the metadata writes. We used a
unique-write workload to show the benefits of applying
the NODEDUP hint for applications writing unique data.
Figure 5 shows the maximal benefit of setting the NO-
DEDUP hint on for file metadata writes alone, and for
data and metadata writes. We ran Filebench, with the
all-unique writes being flushed after 1,000 writes. When
setting the NODEDUP hint only for metadata writes, we
saw an increase in throughput of 1–10%. When we set
the hint for both data and metadata writes, we saw an
improvement in throughput of 1.1–1.2× for Ext4, and
3.5–4.5× for Nilfs2. When we set the NODEDUP hint
for metadata only, we observed an increase in perfor-
mance but a decrease in deduplication. As calculated
from Table 1, about 7.3% of all writes in Ext4 and 3.0%
of all writes in Nilfs2 are duplicated file-system meta-
data writes. Dmdedup would save extra space by dedu-
plicating these writes if the NODEDUP hint was not set.
In other words, the hint trades higher throughput and re-
liability for a lower deduplication ratio.

We also ran a similar experiment (not shown for
brevity) where Filebench generated data with a dedup
ratio of 4:1 (3 duplicate blocks for every unique one).
We set the NODEDUP hint for metadata writes only (be-
cause Filebench generated unique data on a per-write ba-

5



 0

 2.5

 5

 7.5

 10

 12.5

640k
1%

1280k
2%

3205k
5%

6410k
10%

T
h
ro

u
g
h
p
u
t 

(K
o
p
s/

s)
no-hint md-hint-on data+md-hint-on

(a) Ext4

 0

 1

 2

 3

 4

 5

640k
1%

1280k
2%

3205k
5%

6410k
10%

T
h
ro

u
g
h
p
u
t 

(K
o
p
s/

s)

no-hint md-hint-on data+md-hint-on

(b) Nilfs2
Figure 5: Throughput obtained using Filebench’s Fileserver workload modified to write all-unique content, for different file
systems. Throughput is shown with the NODEDUP hint off (no-hint); with the hint on for file system metadata only (md-hint-on);
and with the hint on for both file system metadata and data (data+md-hint on). The X axis lists the dmdedup metadata cache size,
in both absolute values and as a percentage of an estimate of the total metadata required by the workload. Dmdedup metadata
was flushed after every 1,000 writes. Higher is better.

sis whereas our hint works on a per-file basis), and com-
pared this to the case where the NODEDUP hint was off.
We saw a modest improvement in throughput, ranging
from 4–7% for Ext4 and 6–10% for Nilfs2.

6 Related Work
The semantic divide between the block layer and file sys-
tems has been addressed previously [2,6,29–31] and has
received growing attention because of the widespread
use of virtualization and the cloud, which places storage
further away from applications [9, 11, 17, 23, 24, 35].

An important approach to secondary storage is AD-
MAD, which performs application-aware file chunking
before deduplicating a backup [16]. This is similar to
our hints interface, which can be easily extended to pass
application-aware chunk-boundary information.

Many researchers have proposed techniques to
prefetch fingerprints and accelerate deduplication filter-
ing [14, 37, 38]. While these techniques could be added
to dmdedup in the future, our current focus is on provid-
ing semantic hints from higher layers, which we believe
is an effective complementary method for accelerating
performance. In addition, some of these past techniques
rely on workload-specific data patterns (e.g., backups)
that might not be beneficial in general-purpose in-line
primary-storage deduplication systems.

Studies of memory deduplication in virtualized envi-
ronments [20, 21] show a benefit of closing the seman-
tic gap caused by multiple virtualization layers. There,
memory is scanned by the host OS to identify and merge
duplicate pages. Such scanning is expensive, misses
short-lived pages, and is slow to identify longer-lived
duplicates. However, these studies found that pages in
the guest’s unified buffer cache are good sharing can-
didates, so marking requests from the guest OS with a
dedup hint can help to quickly identify potential dupli-
cates. This approach is specific to memory deduplication
and may not apply to storage systems where we identify
duplicates before writing to the disk.

Lastly, others have demonstrated a loss of potential
deduplication opportunities caused by intermixing meta-
data and data [15], showing that having hints to avoid

unnecessary deduplication might be beneficial.

7 Conclusions and Future Work
Deduplication at the block layer has two main advan-
tages: (1) allowing any file system and application to
benefit from deduplication, and (2) ease of implemen-
tation [34]. Unfortunately, application and file system
context is lost at the block layer, which can harm dedu-
plication’s effectiveness. However, by adding simple
yet powerful hints, we were able to provide the miss-
ing semantics to the block layer, allowing the dedup sys-
tem to improve performance and possibly also reliabil-
ity. Our experiments show that adding the NODEDUP
hint to applications like dd can improve performance by
up to 5.3× when copying unique data, since we avoid
the overhead of deduplication for data that is unlikely
to have duplicates. This hint can be extended to other
applications, such as those that compress or encrypt.
Adding the PREFETCH hint to applications like dd im-
proved copying time by as much as 1.8× because we
cache the hashes and do not need to access the metadata
device to fetch them on the write path. Adding hints to
macro workloads like Filebench’s Fileserver work-
load improved throughput by as much as 4.5×. Another
important note is that the effectiveness of hints depends
on both the overhead added by the deduplication system,
the nature of the data being written (e.g., deduplication
ratio), and the workload, so all factors need to be con-
sidered when choosing to use hints.

Future work. Because of the success of our initial ex-
periments, we intend to add hint support to other file sys-
tems, such as Btrfs and XFS. We also plan to implement
other hints, discussed in Section 3, to provide richer con-
text to the block layer, along with support to pass addi-
tional information (e.g. inode numbers) that can be used
to enhance hints. We also plan to add the PREFETCH hint
to Nilfs2 for segment cleaning.

Acknowledgments. We thank the anonymous FAST
reviewers for their useful feedback. This work was made
possible in part thanks to EMC support and NSF awards
CNS-1251137 and CNS-1302246.

6



References
[1] L. Aronovich, R. Asher, E. Bachmat, H. Bitner,

M. Hirsch, and S. Klein. The design of similar-
ity based deduplication system. In Proceedings of
the Israeli Experimental Systems Conference (SYS-
TOR), 2009.

[2] L. N. Bairavasundaram, M. Sivathanu, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. X-
RAY: A non-invasive exclusive caching mecha-
nism for RAIDs. In Proceedings of the Annual In-
ternational Symposium on Computer Architecture
(ISCA), pages 176–187, Washington, DC, USA,
2004. IEEE Computer Society.

[3] R. E. Bohn and J. E. Short. How much
information? 2009 report on American con-
sumers. http://hmi.ucsd.edu/pdf/HMI_

2009_ConsumerReport_Dec9_2009.pdf, De-
cember 2009.

[4] J. Bonwick. ZFS deduplication, November
2009. http://blogs.oracle.com/bonwick/

entry/zfs_dedup.

[5] Zhuan Chen and Kai Shen. Ordermergededup:
Efficient, failure-consistent deduplication on flash.
In 14th USENIX Conference on File and Storage
Technologies (FAST 16), Santa Clara, CA, Febru-
ary 2016. USENIX Association.

[6] A. Clements, I. Ahmad, M. Vilayannur, and J. Li.
Decentralized deduplication in SAN cluster file
systems. In Proceedings of the USENIX Annual
Technical Conference, 2009.

[7] Filebench. http://filebench.sf.net.

[8] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. A file is not a
file: understanding the I/O behavior of Apple desk-
top applications. In Proceedings of the 23rd ACM
Symposium on Operating System Principles (SOSP
’11), Cascais, Portugal, October 2011. ACM Press.

[9] X. Jiang and X. Wang. “Out-of-the-box” mon-
itoring of VM-based high-interaction honeypots.
In Proceedings of the International Conference on
Recent Advances in Intrusion Detection (RAID),
2007.

[10] K. Jin and E. Miller. The effectiveness of dedu-
plication on virtual machine disk images. In Pro-
ceedings of the Israeli Experimental Systems Con-
ference (SYSTOR), 2009.

[11] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Geiger: monitoring the buffer
cache in a virtual machine environment. In Pro-
ceedings of the International Conference on Archi-
tectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 14–24, New
York, NY, USA, 2006. ACM Press.

[12] T. M. Kroeger and D. D. E. Long. Design and im-
plementation of a predictive file prefetching algo-
rithm. In Proceedings of the Annual USENIX Tech-
nical Conference (ATC), pages 105–118, Boston,
MA, June 2001. USENIX Association.

[13] G. H. Kuenning, G. J. Popek, and P. Reiher. An
analysis of trace data for predictive file caching in
mobile computing. In Proceedings of the Summer
1994 USENIX Technical Conference, pages 291–
303, June 1994.

[14] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise, and P. Camble. Sparse index-
ing: Large scale, inline deduplication using sam-
pling and locality. In Proceedings of the Seventh
USENIX Conference on File and Storage Tech-
nologies (FAST ’09), 2009.

[15] Xing Lin, Fred Douglis, Jim Li, Xudong Li,
Robert Ricci, Stephen Smaldone, and Grant Wal-
lace. Metadata considered harmful . . . to dedupli-
cation. In Proceedings of the 7th USENIX Confer-
ence on Hot Topics in Storage and File Systems,
HotStorage’15, pages 11–11, Berkeley, CA, USA,
2015. USENIX Association.

[16] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-
S. Wang. ADMAD: Application-driven meta-
data aware de-duplication archival storage system.
In Proceedings of the International Workshop on
Storage Network Architecture and Parallel I/Os
(SNAPI), 2008.

[17] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian.
POD: Performance oriented I/O deduplication for
primary storage systems in the cloud. In 28th Inter-
national IEEE Parallel and Distributed Processing
Symposium, 2014.

[18] Michael Mesnier, Feng Chen, Tian Luo, and Ja-
son B. Akers. Differentiated storage services. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages
57–70, New York, NY, USA, 2011. ACM.

[19] D. Meyer and W. Bolosky. A study of practi-
cal deduplication. In Proceedings of the Ninth
USENIX Conference on File and Storage Tech-
nologies (FAST ’11), 2011.

[20] Konrad Miller, Fabian Franz, Thorsten Groeninger,
Marc Rittinghaus, Marius Hillenbrand, and Frank
Bellosa. KSM++: Using I/O-based hints to make
memory-deduplication scanners more efficient. In
Proceedings of the ASPLOS Workshop on Runtime
Environments, Systems, Layering and Virtualized

7



Environments (RESoLVE’12), London, UK, March
2012.

[21] Konrad Miller, Fabian Franz, Marc Rittinghaus,
Marius Hillenbrand, and Frank Bellosa. XLH:
More effective memory deduplication scanners
through cross-layer hints. In Proceedings of
the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 279–290, San Jose, CA,
2013. USENIX.

[22] N. Park and D. Lilja. Characterizing datasets for
data deduplication in backup applications. In Pro-
ceedings of the IEEE International Symposium on
Workload Characterization (IISWC), 2010.

[23] D. Reimer, A. Thomas, G. Ammons, T. Mum-
mert, B. Alpern, and V. Bala. Opening black
boxes: Using semantic information to combat vir-
tual machine image sprawl. In Proceedings of the
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), Seattle,
WA, March 2008. ACM.

[24] W. Richter, G. Ammons, J. Harkes, A. Goode,
N. Bila, E. de Lara, V. Bala, and M. Satya-
narayanan. Privacy-sensitive VM retrospection. In
Proceedings of the USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud), 2011.

[25] David Rosenthal. Deduplicating devices consid-
ered harmful. Queue, 9(5):30:30–30:31, May
2011.

[26] J. Rydningcom and M. Shirer. Worldwide hard
disk drive 2010-2014 forecast: Sowing the seeds
of change for enterprise applications. IDC Study
222797, www.idc.com, May 2010.

[27] Ricardo Santana, Raju Rangaswami, Vasily
Tarasov, and Dean Hildebrand. A fast and slip-
pery slope for file systems. In Proceedings of the
3rd Workshop on Interactions of NVM/FLASH with
Operating Systems and Workloads, INFLOW ’15,
pages 5:1–5:8, New York, NY, USA, 2015. ACM.

[28] Opendedup, January 2012. www.opendedup.

org.

[29] M. Sivathanu, L. N. Bairavasundaram, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Life
or death at block-level. In Proceedings of the
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 379–394, San
Francisco, CA, December 2004. ACM SIGOPS.

[30] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Improving
storage system availability with D-GRAID. In Pro-
ceedings of the USENIX Conference on File and
Storage Technologies (FAST), pages 15–30, San

Francisco, CA, March/April 2004. USENIX Asso-
ciation.

[31] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-smart disk systems. In Pro-
ceedings of the USENIX Conference on File and
Storage Technologies (FAST), pages 73–88, San
Francisco, CA, March 2003. USENIX Association.

[32] Kiran Srinivasan, Tim Bisson, Garth Goodson, and
Kaladhar Voruganti. iDedup: Latency-aware, in-
line data deduplication for primary storage. In Pro-
ceedings of the Tenth USENIX Conference on File
and Storage Technologies (FAST ’12), San Jose,
CA, February 2012. USENIX Association.

[33] Sahil Suneja, Canturk Isci, Eyal de Lara, and Vas-
anth Bala. Exploring VM introspection: Tech-
niques and trade-offs. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, 2015.

[34] V. Tarasov, D. Jain, G. Kuenning, S. Mandal,
K. Palanisami, P. Shilane, and S. Trehan. Dmd-
edup: Device-mapper deduplication target. In Pro-
ceedings of the Linux Symposium, pages 83–95,
Ottawa, Canada, July 2014.

[35] Vasily Tarasov, Deepak Jain, Dean Hildebrand,
Renu Tewari, Geoff Kuenning, and Erez Zadok.
Improving I/O performance using virtual disk in-
trospection. In Proceedings of the USENIX Work-
shop on Hot Topics in Storage and File Systems
(HotStorage), June 2013.

[36] Eno Thereska, Hitesh Ballani, Greg O’Shea,
Thomas Karagiannis, Antony Rowstron, Tom
Talpey, Richard Black, and Timothy Zhu. Ioflow:
A software-defined storage architecture. In Pro-
ceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages
182–196, New York, NY, USA, 2013. ACM.

[37] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A
similarity-locality based near-exact deduplication
scheme with low RAM overhead and high through-
put. In Proceedings of the USENIX Annual Tech-
nical Conference, 2011.

[38] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the Data Domain deduplication file
system. In Proceedings of the Sixth USENIX Con-
ference on File and Storage Technologies (FAST
’08), 2008.

8


