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Abstract

As the Internet and the amount of data grows, the vari-
ability of data sizes grows too—from small MP3 tags
to large VM images. With applications using increas-
ingly more complex queries and larger data-sets, data
access patterns have become more complex and random-
ized. Current storage systems focus on optimizing for
one band of workloads at the expense of other workloads
due to limitations in existing storage system data struc-
tures. We designed a novel workload-independent data
structure called the VT-tree which extends the LSM-tree
to efficiently handle sequential and file-system work-
loads. We designed a system based solely on VT-trees
which offers concurrent access to data via file system
and database APIs, transactional guarantees, and con-
sequently provides efficient and scalable access to both
large and small data items regardless of the access pat-
tern. Our evaluation shows that our user-level system has
2-6.6x better performance for random-write workloads
and only a small average overhead for other workloads.

1 Introduction

Users with ever-increasing data storage requirements
use two solutions: file systems and databases. File sys-
tems are designed to store large files such as movies and
VM images. Users expect to access files sequentially at
close to disk throughput, requiring file data to be stored
on disk with minimal fragmentation. Databases, how-
ever, store large numbers of comparatively small tuples,
all indexed so that lookups and scans are efficient. Ad-
ditionally, transactional semantics are a must for appli-
cations to maintain consistent relationships between the
large numbers of tuples that databases support.

Today, users must choose between file systems and
databases. If program data does not precisely fit one
of these two options—or requires both—then develop-
ers have to carefully consider the workload to decide
which trade-off will hurt performance the least. Appli-
cations that manage both kinds of data [3,38] can do no
better than to manage data in two separate stores. For
example, media players store an index of the title and
artist information alongside a directory of media files
and Web browsers index browsing history along with a
directory of cached Web pages. If such applications also
require transactional semantics, then they must rely on
complicated procedures to treat separate file system and
database transactions as a single atomic commit [19,37].

Supporting both file system and database workloads is

difficult because there is no data structure that can effi-
ciently handle both. File systems typically use an extent-
based data structure that is optimized for accessing large
tuples (i.e., files) but is not equipped to store or search
large numbers of small tuples [10,29]. For these small-
tuple workloads, database engines rely on either of two
other data structures, B+ trees or Log-Structured Merge
(LSM) trees [21], to efficiently search and read mas-
sive indexes [33]. These three structures suffer under
workloads that do not match their strengths. Previous at-
tempts split data between (1) a file system store and (2) a
B+ tree index [12, 19,20, 39] but did not solve the prob-
lem completely. The resulting hybrid is complex [18]
and there is no general solution yet to the question of
how to determine which data should use which struc-
ture. Worse, neither of these two structures is as efficient
as an LSM-tree. A data structure which is preferred for
random updates, inserts, and deletes [4, 33].

We present the VT-tree, our novel extension to
the LSM-tree, designed to combine the performance
strengths of file systems, B+ trees, and LSM-trees. The
VT-tree’s novel stitching optimization improves on the
LSM-tree’s performance by avoiding unnecessary data
copies for sequential data. The VT-tree keeps data sorted
enough so that it does not sacrifice query performance,
but it does not get bogged down in sorting sequential
data that is already as sorted as it needs to be. As a re-
sult, our VT-tree is positioned to perform well for data-
sets of any tuple size, whether accessed sequentially or
randomly.

On top of the VT-tree, we implemented a prototype
key-value storage system called KVDB that is versatile
and serves as a general-purpose database storage en-
gine. We used KVDB to develop KVFS, our FUSE-
based [35] POSIX-compliant file system. We conducted
extensive evaluations. For most workloads, our KVDB
is anywhere from 23% faster to 6.6x faster than Lev-
elDB [16]. Compared to the in-kernel Ext4, KVFS is no
slower than 9% and as much as 2x faster.

2 Background

LSM-trees offer 1-2 orders of magnitude faster inser-
tions in exchange for 1-10x slower point queries and
scans [4]. They are useful when large data sets need
to be indexed for querying, and these queries can be
parallelized (e.g., Web searches in Bigtable [7]). LSM-
trees support inserts, updates, deletes, point queries, and
scans. Figure 1 illustrates the operation of a basic LSM-
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Figure 1: An LSM-Tree performing a compaction

tree. An in-RAM buffer called a memtable (e.g., a red-
black tree or skip list) holds recently inserted items.
When this buffer is sufficiently full, it is flushed to disk
as a single list of sorted tuples. A secondary index and
a Bloom filter are generated and stored alongside the
sorted list to accelerate future scans and point queries.
The list plus its secondary index and Bloom filter is
called an SSTable [7], as shown in Figure 1.

Point queries search for the value belonging to a key
in all SSTables starting with the most recently created
ones. Searches in SSTables not containing the key can
usually be avoided by using Bloom filters. All remaining
searches typically require only one I/O by using the sec-
ondary index to avoid a full binary search on disk. Scan
operations in an LSM-tree are used to find successors,
predecessors, or to view all tuples within a range. A scan
operation first searches each SSTable to place a cursor;
it then increments and merges the cursors so as to visit
keys across the multiple SSTables in sorted order. Dele-
tions are as fast as inserts. Deletes are performed by in-
serting a deletion marker. If a search through an SSTable
encounters a deletion marker matching the sought-after
key, the system returns a “does not exist”” indicator.

As more tuples are inserted, the memtable is repeat-
edly filled and serialized into an SSTable on disk. As
the number of tuples inserted increases, the number of
on-disk SSTables increases too. Since queries must typi-
cally search through most or all of the SSTables, queries
slow down as more tuples are inserted. Therefore we
limit the number of SSTables to a function of the num-
ber of tuples inserted to bound lookup and scan latency.

Figure 1 shows a simplified variant of the algo-
rithm [33] used by our implementation. The number of
SSTables in Figure 1 is bounded to 2 x [loga N'|. We will
use this bound as a running example, but LSM-trees can
be configured with different bounds to achieve different
read-write trade-offs. The number of SSTables in Fig-
ure 1 is bounded because each SSTable must reside in a
level, and each level can only hold 2 SSTables and each
SSTable can only hold R * 2° tuples where i is the index
of the level of the SSTable. In Figure 1 we show three
levels, 7 = 0 through ¢ = 2, with the two SSTables in

each level holding R, 2R, and 4R tuples, respectively.
After the memtable is full, we must compact to make
room in the first level for a new SSTable. We compact
the LSM-tree by merging together the two SSTables at
level ¢ = 0 into a new SSTable of size 2R and plac-
ing it in level ¢« = 1. In Figure 1 there are already two
SSTables in level ¢ = 1 so we reapply our rule to level
1 = 1 and for the same reason to level 1 = 2. After
compaction, there will be an SSTable of size 8R in level
1 = 3, and SSTables of sizes 2R and 4R in levels ¢ = 1
and ¢ = 2, respectively. Level i = 0 will be empty, al-
lowing us to serialize the memtable in RAM into level
i = 0 as a new SSTable of size R. As each tuple vis-
its each level once and is always sequentially copied
when moving between levels, a single random insertion
costs loga N sequential tuple copies. Therefore, if we
can sequentially copy B tuples in the time it takes to
perform one random I/O to the device, then we can per-
form ;B random insertions in the same time it takes
a hashtable or B-tree to perform one random insertion.
This is why LSM-trees provide such speedy random up-
dates compared to traditional in-place data structures.

Superfluous Sorting. The LSM-tree’s primary weak-
ness is that every tuple written is eventually copied
logo N times. These copies are by far the fastest way to
organize incoming random data for efficient lookups, as
evidenced by the LSM-tree’s excellent performance for
random insert workloads; but when inputs are already
sorted, they serve no purpose. As an example, to store
sorted data 16x the size of the memtable, LSM-trees
write each byte up to eight times. A traditional file sys-
tem writes a file only once and leaves it in place until the
next defragmentation. LSM-trees could be configured to
break SSTables into 2MB chunks as LevelDB [16] does,
but this is ineffective for smaller sequential runs; more-
over, configuring LevelDB to use smaller chunks incurs
fragmentation that punishes scan performance. Alterna-
tively, we could skip compacting SSTables with suffi-
cient sequentiality; this determination, however, is even
more coarse then LevelDB’s 2MB chunk approach and
quickly leaks space, leading to a costly compaction of all
SSTables. Our VT-tree closes the performance gap for
sequential workloads while preserving the LSM-tree’s
superior random insert performance.

3 Design and Implementation

For KVFS, our design goal is to provide a single stor-
age implementation that handles mixed workloads and
supports full system transactions [32] with minimal
overhead. First, we present a storage system capa-
ble of supporting both file system and database work-
loads efficiently using a single, versatile data structure:
the VT-tree. Second, we present an efficient transac-
tional architecture that avoids most double writes, is



VT-tree | Format

nmap ({parent-inode#, path-component }, inode#)
imap (inode#, inode)

dmap ({inode#, offset}, data-block)

Table 1: Three dictionary formats used within fs-schema

highly parallelizable for partitionable workloads, and
supports larger-than-RAM transactions. Applications
using KVFS can group together a sequence of POSIX
and key-value storage operations into a single atomic
transaction. Next we introduce KVFS’s architecture. We
then discuss VT-trees and our sequential optimization in
Section 3.1. We detail our transactional architecture and
extensions of FUSE in Section 3.2.
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Figure 2: KVFS Architecture

KVFS Architectural Overview. Figure 2 shows
KVES’s architecture. KVFS uses FUSE [35] to provide
a POSIX-compliant file system API for traditional ap-
plications. A user read or write request is passed on to
FUSE by the VFS. The request goes to the KVFS layer
running as a user-space daemon. KVFS translates the
request into one or more key-value operations sent to
KVDB, which implements a transactional database stor-
age engine based on the VT-tree. KVDB performs all
necessary 1/Os using a series of mmaps of a disk file
stored on a back-end Ext4 file system. The response fol-
lows the same request path but in reverse. We modified
FUSE to cache dirty writes in the kernel to avoid and
defer expensive upcalls.

When initializing KVDB, we create a schema with
one or more dictionaries, each backed by a VT-tree.
KVES defines three VT-trees in a single KVDB schema,
called fs-schema, which supports file system operations.
The three dictionary formats, also shown in Table 1, are:
(1) nmap for namespace entries, similar to dentries;
here, the path-component of a file and its parent direc-
tory’s inode number form the key, and the value is the
file’s inode number. (2) imap for storing inode attributes;
and (3) dmap for the files’ data blocks.

The two-table design separates meta-data (path-
names) from the data (objects). Our current implemen-
tation can be adapted to other indexing forms (photo
cache, music cache, mail tags, etc.) [31,39]. KVFS
can store any external meta-data associated with a file
by creating a new dictionary format within the same

KVDB schema. KVEFES also provides a key-value inter-
face directly to KVDB using sockets; this is useful for
databases and applications that process random-access
workloads. KVEFS supports access to both the POSIX
and key-value interface in the same system transaction.
For example, an application like iTunes [2] could use a
transaction to atomically save an MP3 file, add its title
and artist information to a music library, and index it to
be searchable by a Spotlight-like indexing system [3].

3.1 VT-Tree Sequential Optimizations

An LSM-tree with our extensions for efficient sequen-
tial insertions and large tuples is called a Variable-
Transmission tree (VI-tree). A VT-tree can be tuned to
behave like a log-structured file system (LFS) and avoid
writing more than once—or to behave like a LSM tree,
and guarantee bounds on the number of seeks required
to perform a scan. Intermediate configurations are possi-
ble, to trade off seek and scan performance for repeated
write performance. Thus, a VT-tree can span the entire
continuum from an LSM-tree to an LFS.

Stitching: pay-as-you-go merging for LSM-trees.
Section 2 explained how LSM-trees copy already sorted
data multiple times to sort it anyway. Figure 3 shows
how VT-trees use stitching to avoid these superfluous
copies when performing a merge. VT-trees are stored
on a log-structured block device ®. We merge SSTables
@ and @ into @. For each SSTable, Figure 3 shows the
secondary indexes in RAM as well as the list of tuples
on disk divided into blocks, pointed at by the secondary
index entries. This example’s secondary index contains
both the lowest and highest key in each block; our actual
implementation stores only the lowest key.

The first step in stitching is to identify blocks in SSTa-
bles @ and @ that do not overlap with any other block.
The secondary index entries pointing at these blocks
are marked with C as they are merely (c)opied over (in
RAM) to construct the secondary index for @. Such
blocks that are included in the resulting SSTable are
called stitched. The two blocks that do overlap (dotted
line) are read in from disk, merged, and then written out
in sorted order to the fill. New secondary index entries
(marked with N) are made to point to the merged blocks
in the fill. Such blocks that are included in the resulting
SSTable are called merged. Thus we finish constructing
the secondary index for @. Figure 3 shows how stitching
allows the VT-tree to merge only blocks that overlap and
stitch non-overlapping blocks, thus avoiding the super-
fluous copying induced by traditional LSM-tree merging
for already sorted runs of tuples.

The example in Figure 3 stitches all non-overlapping
blocks. However, this can induce fragmentation. Frag-
mentation can waste space and harm scan performance.
Fragmentation wastes space because every time we
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Figure 3: Stitching Example

merge an overlapping block, the original blocks in the
source list (e.g., the blocks pointed at by (4, 6) and (5, 7)
in @ and ®, respectively) are no longer pointed at by
any secondary index after @ is constructed. As indicated
by being X-ed out in Figure 3, they become holes: lost
space. To reclaim this lost space, VT-trees are stored on
a log-structured block device so that an LFS-style de-
fragmenter can be run to reclaim lost space. We discuss
our defragmentation policy further below.

Fragmentation can also harm scan performance. In
Figure 3 every non-overlapping block was stitched.
Scanning SSTable @ would require 5 seeks. In the worst
case, a sequential read could require one seek for each
block pointed at by the secondary index. We can min-
imize fragmentation due to stitching by requiring on-
disk regions being stitched to be larger than NV blocks,
be contiguous, and not overlap. We call these regions
contiguous spans and their minimum length in blocks is
the stitching threshold. With a stitching threshold of 2,
the merge depicted in Figure 3 would have also copied
blocks (2,3) and (0,1) into the fill—even though they
are non-overlapping—because they are not part of a con-
tiguous span of length two or more. This reduces the
number of seeks to scan @ to 4 at the cost of merging
two more blocks. The stitching threshold limits stitching
to preserve a minimum level of data contiguity. It can be
dynamically changed at any time, even while merging,
based on the values of tuples being merged.

Stitching threshold. The stitching threshold repre-
sents a trade-off between maximizing the sequentiality
of tuples on disk and minimizing the number of writes.
Smaller thresholds perform fewer copies but at the cost
of requiring additional random I/O for scans.

Figure 4 compares four types of trees: read-on-
append trees (e.g., log-structured B-trees), LSM-trees,
in-place trees (e.g., B-trees), and the VT-tree. Each tree
is depicted showing the path a tuple took to its final des-
tination. Horizontal lines represent an opportunity to
sequentially copy a tuple into a larger list during com-
paction or a similar process. Only LSM-trees take ev-
ery opportunity, copying every tuple log, N times un-

VT-Tree

Read—on—append
Trees
v \
Merge \L f :
opportunitig\ / \ /
Read/scan

iteration through /

stored tuples\ 1 2 3 4 1 2 3 4
LSM-Trees In—place
; Trees
v v N \
a
iz
v/ v v,/ v
N~ VAR TN
1 2 3 4 1 2 3 4
v/ v/ v v v/ v/ v /v
12 3 4 12 3 4
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til all tuples are physically contiguous on disk (bottom
level). None of the other trees take every opportunity
to compact tuples; this allows them to potentially write
more efficiently. In-place trees directly flush each tuple
to its final location, but perform random writes. Read-
on-append trees sequentially write every tuple to disk
initially, but require random reads to scan in sorted or-
der. LSM-trees sequentially read as efficiently as in-
place trees; and, while they perform log, N writes for
each tuple, these can still be faster overall than in-place
writes that incur disk seeks. The VT-tree is thus a com-
promise between a straight LFS-based approach and a
straight LSM-tree approach: contiguous tuple sequences
smaller than the stitching threshold are compacted until
they form spans large enough to be left in place.

Quotient filters. Typically, LSM-trees use Bloom fil-
ters (BFs) to avoid IO when performing point queries
for tuples that do not exist. The VT-tree instead must
use Quotient Filters (QFs) [5]. In a typical LSM-tree,
when merging two SSTables together, all tuples are typ-
ically rehashed into a new Bloom filter. Since VT-trees
use stitching to avoid reading many of the tuples, re-
hashing is not possible without sacrificing performance.
VT-trees consequently use QFs. Unlike Bloom filters,



the entries in a QF can be rehashed into a larger QF
without requiring the original key value. Therefore we
can merge the QFs of two merging SSTables entirely
in RAM, preserving the performance gains of stitching
while also allowing for high-throughput point queries.

Defragmentation. Section 3.1 describes how VT-
trees are stored on log-structured storage. When tu-
ples are merged while their neighbors are stitched, the
merged tuples will leave holes, and these holes will
waste space as shown in Figure 4. However, the mini-
mum unit of allocation and deallocation or segment size
in our log-structured store is 8MB, and we refer to these
segments as zones. Since zones are larger than blocks,
we cannot deallocate the block without deallocating its
containing zone. Therefore to deallocate a block we
must first move other blocks in the same zone elsewhere.
The process of moving live or non-hole blocks to other
zones so a zone can be deallocated is called evacuating
the zone. The process of evacuating the under-utilized
zones in our log-structured storage to remove holes and
create free space is called defragmentation.

Evacuation works by moving tuples in an underuti-
lized zone A into other zones and then freeing the now
empty zone A. (1) We select an underutilized zone; next
(2) we determine the length of the first contiguous span
of tuples in this zone; then (3) we use first-fit allocation
to find a suitable new location for this span in another
zone; and finally (4) we move the span to its new loca-
tion. We repeat these steps until all spans in the under-
utilized zone are moved and then free the zone. When
choosing a zone to evacuate, we prioritize first based on
the amount of unused space but also on the number of
contiguous spans. It is easier to relocate smaller spans
as it is more likely for first-fit to find them suitable new
locations. We weigh each zone by computing the ratio
of the number of tuples it contains to the number of con-
tiguous spans it contains. We compute these weights in
RAM using secondary index.

Our defragmentation method is similar to that used by
Rosenblum et. al. [26] and was designed to preserve the
on-disk sequentiality of data created by VT-tree com-
paction and to avoid overwrites which would in turn re-
quire undo-logging. Defragmentation only occurs when
the device is almost out of space. On the other hand,
compaction happens regularly as part of the LSM-tree
algorithm inherited by the VT-tree. Therefore, requiring
defragmentation only adds one infrequent extra copy in
exchange for avoiding logs /N additional copies for se-
quential data. Our current implementation operates of-
fline, defragmenting the data store while it is not in use.
Potential extensions to our defragmentor and avenues for
future work are discussed in Section 6.

3.2 Snapshots and Transactional Support

The VT-tree’s log structure allows KVDB to naturally
support snapshots [30]. A new KVDB database starts
with a single schema, containing a VT-tree for each ta-
ble. This initial schema serves as the mainline, to which
all updates are written. To create a snapshot, the main-
line schema is marked as read only, and a new schema
is created with empty VT-trees. This empty schema be-
comes the new mainline and has a dependency on the
previous mainline. When querying a table (from either
the mainline or a snapshot), the search includes SSTa-
bles in the queried schema and all dependent schemas,
in order to include the table’s complete history. Snap-
shots allow for incremental backups without taking the
database offline. Additionally, KVDB uses snapshots to
provide support for transactions.

Transaction support in KVDB. KVDB supports
ACID transactions with two modes of isolation:
(1) snapshot isolation, which guarantees that reads
within the transaction are consistent with a snapshot cre-
ated when the transaction began, and (2) serializability,
which provides the highest level of isolation [13].

Snapshot isolation (SI) is weaker than serializability
but adds less overhead and affords better concurrency.
Users can further boost concurrency by disabling con-
flict detection, if parallel transactions do not operate on
overlapping data. When a process begins a transaction,
KVDB creates a new schema for the transaction to write
to. In SI mode, KVDB also creates a snapshot. KVDB
then marks the new schema dependent on this snapshot,
to ensure isolation. Updates happening outside of the
transaction go to the new mainline schema; transaction
do not see these external updates. In SI mode, conflicts
are resolved at commit time. In case of a conflict, KVDB
sequentially scans through the conflicting data and calls
a schema-specific conflict-resolution routine.

In serializability mode (SER), the new schema be-
haves differently from a snapshot: reads within the trans-
action see recent updates to the mainline and recent up-
dates from other committed transactions. Isolation is in-
stead provided with locking (described below). Starting
a new transaction in this mode does not freeze and re-
place the current mainline; the new schema is always
dependent on the most recent mainline.

Writing a transaction’s updates to a separate schema
ensures that they are not visible to other readers before
the transaction commits. Aborting a transaction involves
only freeing its schema, so KVDB does not need to
write undo or redo records, even for transactions that are
larger than RAM. Additionally, because each transac-
tion writes to private VT-trees, our architecture provides
good performance for parallel threads writing to separate
transactions, especially in snapshot-isolation mode.



To commit, KVDB merges the transaction schema
into the mainline by moving SSTables from the transac-
tion schema’s VT-trees to the mainline ones. The trans-
action’s SSTables are placed before the SSTables already
in the mainline VT-tree, so updates in the transaction ef-
fectively overwrite the original mainline values. Note
that VT-trees in the transaction schemas have their own
memtables, which are flushed to the on-disk structure
before the merge. Writing to a separate VT-tree as part
of transaction potentially limits the stitching opportu-
nity. However, a compaction followed by a transaction
commit allows the new data from the transaction to be
stitched with the data in the mainline schema.

Locking policy. In serializability mode, KVDB uses
strong, strict two-phase locking (SS2PL) for isolation.
Before accessing any key-value pair, a transaction takes
a shared lock for reads or an exclusive lock for writes.
The lock is held until the transaction commits or aborts.
When there is contention for a lock, the highest prior-
ity transaction proceeds first, and other transactions may
wait or abort. In case of a deadlock, the lowest priority
thread aborts. Transactions can optionally lock a range
of keys within a table ahead of time, to avoid the need to
lock a large number of keys individually. For example,
KVES transactions acquire a range lock to gain exclu-
sive access to an entire directory. By range-locking di-
rectories, KVFS can avoid having multiple transactions
simultaneously accessing the same set of files, allowing
for better partitioned workloads and improved concur-
rency. KVDB stores all range-lock reservations in a tree,
so it can efficiently check to see whether a transaction
holds a reservation for any object in the database.

Transaction support in KVFS. KVFS stores the en-
tire file system representation in a KVDB database.
Therefore, KVFS can provide system transactions using
either of KVDB’s isolation modes. When an applica-
tion opens a transaction, KVFS exposes a directory link
to the root directory that leads to the same file system
but that embeds the new transaction ID. All file opera-
tions through the link execute in the scope of the trans-
action. The transaction-begin function in KVFS’s user
library opens a new transaction and then uses chroot
to transparently redirect the application’s view of the file
system to the open transaction’s link. Child processes
inherit the chroot view, so they also participate in the
transaction (and share locks held by the parent process).
Multi-process transactions make it possible to write shell
scripts that leverage file system transactions.

When a file is accessed from two or more transactions,
the kernel page cache must not share cached data be-
tween transactions, to ensure isolation. In KVFES, trans-
actions see different inode numbers for the same file,
ensuring that the kernel page cache maintains separate

caches for each transaction. A file accessed through a
transaction has an apparent inode number composed of
the transaction ID and the actual on-disk inode number.
When the file’s cache is flushed, though, KVES uses the
on-disk inode number to send the write to KVDB. Sep-
arate caches also ensure that a transaction’s first access
to a file is never served from the kernel’s page cache, but
must go through KVFS’s file access routines, to ensure
locking using a reader-writer lock. To end a transaction,
the application need only leave the chroot and then
commit or abort. KVFS’s user library transparently ac-
complishes these steps; KVFS removes the transaction’s
directory link, invalidates its caches, and forwards the
commit or abort command to the underlying database.
KVEFS’s architecture requires no modifications to the
kernel, unlike other system transaction extensions [23,
32]. FUSE [35] provides interfaces to flush and invali-
date kernel page caches. Enabling transactions in a user
application also requires few application modifications
to insert calls to KVFS’s begin-, commit-, and abort-
transaction functions (supported by our library).

3.3 FUSE Write-Back Cache Support

FUSE [35] helped us implement KVFS quickly with-
out complex kernel coding, but it comes at a perfor-
mance cost. The kernel VFS makes an upcall to user
space to service file operations, adding two extra con-
text switches and as much as 2x overhead [24]. FUSE
avoids some of this overhead by servicing file reads di-
rectly from the kernel page cache. File writes, however,
always go directly to the user-space server—a write-
through cache. FUSE’s big-write optimization sends
128KB worth of data in one upcall, but only when ap-
plications write 128KB in a single operation to the same
file. We modified FUSE to implement a straightforward
write-back cache. The user-space upcall is deferred until
the kernel dirty-page writeback thread is called. Our en-
hancement can aggregate up to 128KB of write requests
to any number of files, instead of requiring one full up-
call for each request. To maintain POSIX compliance,
we flush a file’s dirty pages upon close. As transactions
in KVFS have private writable snapshots and use differ-
ent inode numbers to refer to the same file, the write-
back cache does not threaten our isolation guarantees.

4 Evaluation

We mainly focus on evaluating the two design goals
mentioned in Section 3. First, using micro-benchmarks
we evaluate the effectiveness of stitching, our extension
to the LSM, which is our key for achieving a unified stor-
age architecture. We continue to evaluate stitching op-
timization by comparing KVDB against LevelDB [16],
another LSM-based key-value store. Then, in Sec-
tion 4.2 we compare KVFS’s performance against Ext4,



concluding that it is practical to use KVFS. Second, with
KVDB'’s simple and efficient transactional architecture,
we show in Section 4.3 that transactions in KVFS come
with minimal overhead and are highly concurrent. We
measure the effectiveness of our defragmentation algo-
rithm, devised for VT-trees in KVFS, in Section 4.4.

Experimental Setup. We conducted experiments on
three identically configured machines running Linux
Ubuntu 10.04.3 LTS. Each machine includes a single-
socket Intel Xeon X5650 (4 cores with one hyperthread
on each core, 2.66GHz, 12MB L2 cache). The machines
have 64GB of RAM; to test the out-of-RAM perfor-
mance, we booted them with 4GB each. Each machine
has a 146.2GB 15KRPM SAS disk used as the system
disk and a 160GB SATA 1II 2.5in Intel X25-M Solid State
Drive (SSD) used to store the out-of-RAM part of the
data. We use only a 95GB partition of the SSD to mini-
mize the SSD FTL firmware interference [14]. We mea-
sured the 10-thread random-read throughput on the Intel
X-25M at 15,000 IOps, a random-write throughput of
3,500 IOps, a sequential read throughput of 245MB/sec,
and a sequential write throughput of 107MB/sec. We
dropped all the caches before running any benchmark.
For all KVDB and KVFS runs we set the stitching-
threshold to 64KB. The average file size in a general-
purpose file system is around 32-64KB [1]. To avoid
lots of copies for average sized files, we set the stitching
threshold to 64KB. All benchmarks in Sections 4.1-4.3
ran on KVDB with no defragmentation. The reported re-
sults and comparison with other systems are not affected
by this. At the end of these benchmarks, around 50%
of usable file system space was still available. Systems
with online defragmentation rarely run it when there is
plenty of space available and less fragmentation on disk.

4.1 Stitching Microbenchmark

To evaluate the performance impact of stitching,
we benchmarked the VT-tree with two synthetic
workloads: SEQUENTIAL-INSERTION and RANDOM-
APPEND. Both workloads insert 10GB of data into an
empty VT-tree. After populating a tree, we test read
throughput when scanning the inserted tuples sequen-
tially and using random point queries of known keys.
The SEQUENTIAL-INSERTION workload simulates an
application that writes large files sequentially. We sim-
ulate writing a file by inserting 16,384 4KB tuples with
sequentially increasing keys, starting from a random key
in the range [1, 264 — 1]. The workload repeats the sim-
ulated file write until it has inserted 10GB of tuples. The
RANDOM-APPEND workload models an application that
randomly selects a file and then appends a block to it
until a specific amount of data has been written, as in
Filebench’s /var/mail workload [11]. We begin with
2,040 predefined ranges in the key space. We randomly
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Figure 5: Stitching: Insertion results

select one of the ranges, insert the first tuple in the range
that has not yet been added, and repeat until all ranges
have been completely written. Each range gets 1,280
4KB tuples, for a total of 10GB of data.

Figure 5 shows insert results for RANDOM-APPEND
with four different stitching thresholds. The stitching
threshold f is given in units of 4KB (the block size).
For f = 0, tuples are written once and then stitched in
every compaction. With an f = 16,383 threshold, tu-
ples are copied from level to level as they are not part of
large enough ranges to be stitched during a minor com-
paction. Thus, tuples are appended to the fill. Eventu-
ally, they are part of a large enough range to be stitched
and only their secondary index entries are copied in sub-
sequent minor compactions (See Section 3.1). The no
compaction run shows results for a simple data structure
that writes SSTables but never compacts them, resulting
in 1,280 SSTables after inserting all the input data. The
plot shows on the y-axis how many memtable evictions
were completed at each point in time (z-axis), with each
eviction flushing the entire S8MB memtable to disk. Pe-
riods of time during which no evictions complete indi-
cate that the VT-tree was busy performing a compaction.
Lower stitching thresholds spend less time compacting
and have significantly faster insertion rates (indicated by
a steeper slope in the plot). Although the f = 0 con-
figuration never copies data, time spent compacting is
visible in the plot. Processing time is required to com-
pute the new secondary index and quotient filter, which
adds some overhead over the no compaction profile.

Figure 6 shows the trade-off for insertion performance
in the RANDOM-APPEND workload. Though lower val-
ues of f have faster insertion throughput, higher val-
ues of f result in higher read throughput when scanning
the inserted data. The extra copying that occurs when
the stitching threshold is high serves to group tuples se-
quentially, allowing for faster scans. For SEQUENTIAL-
INSERTION (not shown), stitching performed well for
thresholds less than the size of a fully inserted range
(16,384 tuples). For f = 0 and f = 15, we mea-
sured a insertion throughput of 85MB/s and 87MB/s, re-
spectively. We found that these tests were CPU-bound,
which explains why they were slightly slower than in-
serting with no compaction, which had a throughput of
91MB/s (compared to the SSD’s maximum serial write
throughput of 110MB/s). For f = 16,383, the work-
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load was unable to take full advantage of stitching, and
throughput was only 28MBY/s, less than a third of the
performance we obtained with lower stitching thresh-
olds. Moreover, we found that, for sequentially inserted
data, stitching does not affect scan performance. Read
throughput was 152MB/s, 158MB/s, and 149MB/s for
the f = 0, f = 15, and f = 16, 383 profiles, respec-
tively: between 60—-64% of the SSD’s maximum read
throughput. Without compaction, though, read through-
put was only 25MB/s. This is because a scan requires
placing cursors in 1,280 SSTables and doing random I/O
across these SSTables to read tuples in serial order. With
compaction there are only 40 SSTables to deal with.

We found that stitching does not affect point query
performance. For both workloads, point query perfor-
mance stayed within a range for all the stitching config-
urations we tested: 14,600-14,800 IOps. Even with no
compaction, throughput was 14,100 IOps. With Quo-
tient Filters (QFs) [5] and secondary indexes, most point
queries search only a single region on disk.

We also found that stitching gives the VT-tree sig-
nificantly higher insertion throughput. For RANDOM-
APPEND workloads, the VT-tree performed at least as
well as the LSM-tree, and if the user is willing to sac-
rifice scan performance, up to 2.5x faster for inser-
tions. For SEQUENTIAL-INSERTION workloads, inser-
tions were 3.1 x faster with no loss in scan performance.

SATA disk results. We ran the same RANDOM-
APPEND benchmark on a magnetic disk to show that VT-
tree and its stitching performs equally well on a mag-
netic disk. We used a 249GB 7.2KRPM SATA disk for
this purpose. The results show the same behavior seen
for the SSD in Figures 5 and 6. As expected, no com-
paction and runs with a lower stitching threshold had a
higher insertion throughput but lower scan throughput
when compared to the runs with higher stitching thresh-
olds. Insertion throughput for no compaction, f = 0,
f=7,f=15,and f = 16383 were 42MB/s, 34MB/s,
24MB/s, 16MB/s, and 10MB/s, respectively. The se-
quential write throughput of the disk is only S1MB/s.
Scan throughputs are SMB/s, SMB/s, 17MB/s, 31 MB/s,
and 56MB/s, respectively. The f = 16383 run’s scan
performance (56MB/s) was closer to that of the sequen-
tial read throughput of the disk (59MB/s), as expected.
Point query performance was the same for the all runs
and is close to the random-read throughput of the disk
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Figure 7: KVDB vs. LevelDB results

(0.7MB/s). This shows that VT-tree can be used with
the same efficiency on both SSDs and magnetic disks.

Database performance. To compare KVDB and Lev-
elDB, we tested both with three workloads: SEQUEN-
TIAL, RANDOM, and RANDOM-APPEND. All three in-
sert 10GB of tuples. The SEQUENTIAL workload inserts
the tuples in sorted order; the RANDOM workload in-
serts keys randomly using a uniform distribution. The
RANDOM-APPEND workload randomly chooses from a
set of ranges to append to, as in Section 4.1. In this
RANDOM-APPEND workload, we selected the range size
such that the average amount of data written to each
range on evicting the memtable is 512KB. We ran all
these workloads with two different tuples sizes: 64B and
4KB. For the most direct comparison of the data struc-
tures used in each database, we disabled compression
and reliability features (e.g., write logging) in the ver-
sion LevelDB we used (version 1.5). We used a 256MB
memtable for both KVDB and LevelDB; and we con-
figured quotient filters in KVDB and Bloom filters in
LevelDB to have the same false positive rate of 0.008.
Figure 7(a) shows that with small tuples, KVDB is
faster than LevelDB for all workloads except SEQUEN-
TIAL. LevelDB has optimizations for sequential inser-
tion: during a compaction, it can avoid copying a 2MB
zone if there are no keys from other zones that inter-
leave it. However, it is not practical to decrease zone
sizes because LevelDB stores a separate Bloom filter for
each zone; also, these zones are stored as separate files
in the underlying file system. As a result, LevelDB can-
not avoid copying the smaller contiguous spans that ap-
pear in the RANDOM and RANDOM-APPEND workloads:
thus KVDB is 38% faster for RANDOM and 23-53%
faster for RANDOM-APPEND. LevelDB sees a big per-
formance drop in the RANDOM-APPEND 512KB work-
load, because the average contiguous span of tuples in an



evicted memtable is less than its 2MB threshold. Ran-
dom point queries had similar performance in both sys-
tems: 13K ops/s in KVDB and 12.7K ops/s in LevelDB.
Figure 7(b) shows that KVDB outperforms LevelDB
for larger tuples. Insertion throughput is similar for SE-
QUENTIAL (KVDB is 4% faster), but KVDB is 3.2x
faster for RANDOM and 5.1-6.6x faster for RANDOM-
APPEND. With larger tuples, secondary indexes have
fewer entries, making stitching operations more effi-
cient, thus amplifying their performance advantage. As
with small tuples, we found similar point query speeds:
14.2K ops/s for KVDB and 13.6K ops/s for LevelDB.
We conclude from these results that KVDB compares
favorably with LevelDB for database workloads and is
better for file system workloads. In our small-tuple
tests, designed to show database performance, KVDB
was faster for all workloads except pure SEQUENTIAL;
for the large-tuple RANDOM-APPEND workloads, testing
file system performance, KVDB was up to 6.6 x faster.

4.2 File System Performance

KVFS uses FUSE to support POSIX operations. FUSE
syscalls require two additional context switches and
buffer copies, resulting in about 2x overhead over na-
tive file systems [24]. However, serial reads in FUSE are
comparable and at times better than native file systems.
This is due to caching and read-ahead performed at both
the FUSE kernel and the lower native file system [24].
The vanilla FUSE kernel module caches read pages, but
writes are immediately sent to the FUSE server running
in user space. Our simple write-back caching minimizes
these context switches and buffer copies on writes. We
compare KVFS’s performance with plain Ext4, FUSE-
Ext4, and FUSE-Ext4-no-wc. FUSE-Ext4 is a pass-
through FUSE mounted on Ext4 that uses our write-back
cache. FUSE-Ext4-no-wc does not use our write-back
caching. KVFS by default uses the write-back cache.
We can measure FUSE overhead by comparing FUSE-
Ext4 and FUSE-Ext4-no-wc runs against Ext4. We use
Filebench [11] for our evaluation. We compare results
for serial-read, serial-write, and random-write micro-
benchmarks in Section 4.2.1, and we benchmark with
Filebench’s real-world workloads in Section 4.2.2.

4.2.1 File System Micro-Benchmarking

KVES creates an fs-schema consisting of three VT-trees
in KVDB as described in Section 3: nmap, imap, and
dmap. We configured nmap, imap, and dmap to have
RAM buffers of sizes 6MB, 12MB, and 256MB, respec-
tively. Larger RAM buffers can improve performance,
but we must also leave enough space to accommo-
date secondary indexes and QFs. We used Filebench’s
randomread, randomwrite, singlestreamread, and sin-
glestreamwrite micro workloads. All the I/Os are done

SR SW RR | RW
Ext4 26,069 | 27,293 | 14,617 | 4,165
FUSE-Ext4-no-wc | 26,256 | 14,006 | 13,625 | 3,889
FUSE-Ext4 25,785 | 24,739 | 13,494 | 4,078
KVES 25,513 | 24,191 | 13,396 | 8,638

Table 2: Filebench micro-benchmark results (ops/s). SR: Seq.
Read; SW: Seq. Write; RR: Rand. Read; RW: Rand. write.

at 4KB size unless otherwise mentioned. Filebench’s
randomread workload reads a 30GB single file ran-
domly. The randomwrite workload performs random
writes on a pre-allocated 30GB file. The singlestream-
read workload serially reads a pre-created 30GB file
with I/O size of 16KB. The singlestreamwrite workload
sequentially starts writing to a file at offset zero.

Results. Table 2 shows that all FUSE variants, includ-
ing KVFS, have similar serial-read performance as Ext4.
Since in the serial-read workload, the file is first written
sequentially, the VT-tree does not have to sort sort data:
stitching preserves the block order, allowing fast subse-
quent serial reads. The VT-tree’s stitching optimization
avoids copying during compaction for serial writes, al-
lowing its performance to be similar to FUSE-Ext4 even
though Ext4 includes extents and delayed-allocation op-
timizations. Our write-back cache in FUSE-Ext4 pro-
vides a 43% improvement over FUSE-Ext4-no-wc, al-
lowing it to bring down the FUSE overhead from 2x to
only 9% for sequential writes. In KVFS, a random 4KB
write becomes a key-value pair insertion into KVDB.
In KVDB, these random insertions hit the disk as seri-
ally written SSTables, so KVFS’s random write perfor-
mance is better than even native Ext4. Random writes
in KVFS are at least 2x faster than Ext4 and FUSE-
Ext4. Inserting lots of pairs results in frequent merges;
and since the data is random, stitching does not help,
making KVFS’s random-write performance worse than
KVEFS’s serial-write performance, but still much better
than other file systems. Using QFs and secondary in-
dexes, KVDB achieves the SSD’s random-read through-
put for random point queries, making random reads in
KVEFS comparable to FUSE-Ext4 and Ext4.

4.2.2 File System Macro-Benchmarking

The FileServer workload performs a sequence of creates,
deletes, appends, reads, writes, and stat operations on a
directory tree. We configured the mean file size to 32KB,
mean append size to 8KB, directory width to 20, and
number of files to 400,000. Filebench pre-allocates 80%
of the files and randomly selects a file for each of the
above operations. We ran the benchmark on an SSD for
ten minutes, using ten threads, with 4KB I/O size. The
WebServer workload produces a sequence of open-read-
close calls with 100 threads on 1,000 files in a directory
tree, plus a single file-append thread with a mean append
size of 16KB for every ten read threads. For the read



FileServer | WebServer
Ext4 7,371 20,626
FUSE-Ext4 7,272 19,215
KVES 9,015 19,191

Table 3: Filebench macro-benchmark results (ops/s)

cycle, the benchmark randomly selects and reads an en-
tire file. We omit macro-benchmarks results for FUSE-
Ext4-no-wc, having shown that it has slower write per-
formance and similar read performance to FUSE-Ext4.

Results. As seen in Table 3, for both macro-
benchmarks, KVFS performs similar to or better than
FUSE-Ext4 and Ext4. In each iteration, the FileServer
workload includes three meta-data file operations—open
or create, delete, and stat. Examining the ops/sec for
each operation, we observed that KVFS outperforms
FUSE-Ext4 and Ext4 for these meta-data operations.
Meta-data operations are similar to random database
workloads, consisting of small tuples, and are ideal for
the VT-tree. FileServer also performs 8KB appends to
randomly chosen files, which also behave like random
writes when there are 400,000 files. For randomly read-
ing the whole file, all file systems have similar perfor-
mance. In KVFS, compactions of on-disk lists in the
VT-tree bring randomly appended data together over the
lifetime of the file. Frequent insertions of data in the file-
server workload ensure that the compactions are trig-
gered often, improving performance of subsequent se-
quential reads. The frequency of compaction is deter-
mined by the insertion rate and can also be triggered pe-
riodically, to further improve KVFS’s performance for
whole-file reads. On average, KVFS performs 18% bet-
ter than Ext4 and FUSE-Ext4. For the WebServer work-
load, KVEFS is 7% slower than Ext4 and comparable to
FUSE-Ext4. The WebServer workload is mainly read
oriented, and files are not large enough to benefit from
FUSE’s readaheads. Ext4 performs better for the read
cycle of the workload and hence better overall.

4.3 KVFS’s Transactional Performance

We used a Linux kernel compilation and related op-
erations to compare KVFS’s performance to Ext4 and
FUSE-Ext4. For KVFS, we ran the same set of oper-
ations with and without transactions to measure trans-
actional overheads. We ran transaction benchmarks in
both snapshot-isolation (KVFS-TXN-SI) and serializ-
ability (KVFS-TXN-SER) modes. In this benchmark we
include the following operations in this order:

1. txn-start: begin a transaction; used only for KVFS
when it is running in a transaction.

untar: Untar the downloaded source tarball.
removetar: Remove the downloaded tarball.

make: Run make inside the source directory.

A AN

findall: Run /bin/find on the source directory.
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6. readall: recursively read all files in the source direc-
tory reading each file and writing it to /dev/null.

7. txn-commit: commit a transaction; used only for
KVEFS when it is running in a transaction.

We ran single- and multi-threaded versions of this test,
to show that transactions are highly concurrent. The
single-threaded version performs these operations on a
Linux kernel version 3.0.1 source tarball. The multi-
threaded version operates on four source tarballs—for
versions 3.0.1, 3.1.1, 3.2.1, and 3.3.1—in four concur-
rent transactions.

Results. Figure 8 shows the result for all file systems
for operations on the single Linux kernel source. Ext4
completed the benchmark in 220s, FUSE-ext4 in 250s,
and KVFS in 240s. Here, compilation took around 52%
of the total time and readall took 40% of the time.
After compilation, there were 45,737 files left with a to-
tal size of 739MB. KVEFS performs comparable or su-
perior to Ext4 on all operations except the compilation;
KVEFS is 17% slower than Ext4. FUSE-Ext4 is also
17% slower than Ext4 for compilation. The workload
in this run fits entirely in RAM, and FUSE has a higher
overhead for CPU-bound operations. Also, for the com-
pilation workload, our FUSE write-back cache did not
help. Compilation workload has lot of meta-data oper-
ations that need to be synchronous; also after writing
to the object files, make closes them immediately. As
we start make on a cold cache, the write-back cache is
empty initially. Our write-back cache requires writing
back the dirty blocks of a file to its user-level file sys-
tem when that file is closed. This is because the FUSE
kernel module frees the internal file handle on a close
request. So, for small object files getting created dur-
ing compilation, the FUSE write-back cache saves lit-
tle. KVES-TXN-SI completed in 241s, almost no over-
head compared to the KVFS run with no transaction.
This is because the time spent in txn—-start is neg-
ligible and t xn—commit took only 0.28s to complete.
txn-start involves taking a snapshot and creating
new writable schemas. txn-commit requires mov-
ing the SSTables from the transaction’s private snapshot
to the mainline schema and removing the entry for the
snapshot directory from the kernel cache. As described
in Section 3.2, these are quick operations in KVFS. The
transaction in serializability mode shows an overhead of



Ext4 | KVFS | KVFS-TXN-SI | FUSE-Ext4
453 | 514 491 571

Table 4: Parallel Linux kernel compilation results

Time (sec)

10% when compared to KVFS running without transac-
tions. As serializability needs to maintain strong isola-
tion guarantees, these overheads mainly come from the
range-lock tree and deadlock-avoidance checks.

Table 4 shows the results for the second benchmark.
In each run, the benchmark picks a file system and runs
all operations (untar, removetar, make, ..., readall) in par-
allel on four Linux kernels. KVFS performed 11% bet-
ter than FUSE-Ext4 and 13.4% slower than Ext4. Hav-
ing four Linux kernel sources forces the workload out
of RAM. KVES achieved better throughput as four par-
allel compilations produced more randomness, suitable
for KVFS’s faster random writes (see Section 4.2.1). For
running transactions in KVES, the SI mode is best suited
as these operations do not have conflicting requests. The
KVFS-TXN-SI run completed in 491s, 4.5% faster than
without transactions. We ran each of these four bench-
marks in separate transactions in SI mode. All the trans-
actions worked in their own snapshot directory without
stepping over each other and they commit their changes
at the end. These snapshots had their own VT-tree with a
smaller private cache. Thus, concurrently running trans-
actions can perform better than the run without transac-
tions. Our evaluation of SI-mode transactions in KVDB
showed that running a multithreaded partitionable work-
load in separate transactions can increase throughput by
67%. This micro-benchmark uses only writes compared
to all the operations performed in KVFS-TXN-SI. Due
to lock-contention, writes benefit more from KVFS’s
transactional architecture. Also, as the benchmark ran
at the KVDB layer, it had no FUSE overhead. We omit
these results for brevity.

4.4 Defragmentation in KVFS

Log-structured systems face the issue of fragmentation;
KVFS, which uses VT-trees, is no exception. We have
devised a defragmentation algorithm described in Sec-
tion 3.1. We measured the effectiveness of our defrag-
mentation algorithm using Filebench’s fileserver write-
only workload. We run this benchmark twice: once with
a stitching threshold of 64KB and once without stitch-
ing. From our analysis, omitted here, having smaller
threshold like 64KB results in higher fragmentation.
Filebench supports configuring the number of iterations
it performs. We configured it the same between the two
runs to ensure that the amount of data inserted in these
two runs is the same. This benchmark inserts into KVFS
around 38GB of dmap pairs representing the file data
blocks. There will be no fragmentation if the workload
is either completely random or sequential. Fileserver’s
random and large, random-append writes ensures that
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we stitch some small amount of data and copy the rest,
resulting in a worst-case-like fragmentation.

Results. The run with stitching finished inserting
38GB of data in 855s. After inserting all the data, the
total number of used zones was 9,477. But the number
of required zones was only 4,864—a 47% space waste
due to fragmentation. After scanning through all the
lists, our algorithm determined that it can reclaim 4,483
zones. The remaining 130 zones were either used by the
lists at the top or by the disk-backed secondary indexes
and QFs. Before running our defragmentation (DF) al-
gorithm, we ran a range query in our KVDB, to read all
the dmap pairs in sorted order. As the data is sorted only
within each list and not across lists, this operation needs
to perform more work than sequentially reading all the
lists. This can be worse if there is any fragmentation
due to stitching. This operation took around 331s, read-
ing at 117MB/s; we compare figure after DF. As our DF
considers the sequentiality of existing data before mov-
ing it around, it should improve the performance of the
range operation. DF required moving around 4.8GB of
data from the candidate zones to the rest of the zones.
Our DF algorithm reclaimed all 4,483 zones in only 96s
with a rate of 51.4MB/s. We sequentiality read the data
from one zone and writes it to the new sequentially. Be-
cause we use first fit, these writes may not be contigu-
ous. We achieve an acceptable throughput of 51.4MB/s
considering that the data needs to be read from and be
written to different locations. The range query oper-
ation after the DF took only 238s, an improvement of
29%. The run without stitching inserted 38GB of data in
1,982s, which is 2.3 x slower; however, this run resulted
in no fragmentation. The same range query took 228s
to read the entire data back. Considering the DF time
taken for the run with stitching, the run without stitching
is still 2x slower. Also, the degradation in range-query
performance is only 4%. We concluded that in KVDB,
stitching plus an occasional DF gives a better insertion
throughput with negligible loss in read performance.

5 Related Work

Write-optimized databases. GTSSL [33] uses an
LSM-tree variant [21] with a multi-tier extension.
GTSSL supports ACID transactions, but does not sup-
port snapshots and transactions larger than RAM, useful
for a transactional file system [32]. GTSSL also lacks
the VT-tree’s sequential optimizations. VT-trees can be
easily extended to support multi-tier storage. Anvil [17]
is a modular framework for applications to use different
data layouts. Many of its disk formats resemble LSM-
trees and could benefit from the VT-tree design. Cas-
sandra [8] and Hbase [9] also lack these sequential op-
timization and their Java-based implementation hinders
performance by 2-5x [33].



Log-structured file systems. Log-structured file sys-
tems (LFS) [26] write the changes to a circular log and
do not overwrite the file data on disk. LFSs require that
all keys in their data structure reside in RAM to avoid
disk I/0 boundedness [36]. This works well for file
systems that deal with large 4KB pages, but becomes a
performance bottleneck for smaller tuples. KVFS, how-
ever, was designed to support smaller and larger tuples
efficiently. KVFS behaves like an LFS for file-system
workloads and like an LSM for database workloads, per-
forming equally well on both types of workloads.

Transactional file systems and OSes. Amino [39]
uses ptrace to interpose file system operations, to en-
force transactions; ptrace introduces high overheads.
Valor [32] adds in-kernel logging for write-ordering and
locking to provide a transactional file interface. Valor
supports long-lived transactions and transactions larger
than RAM. QuickSilver [28] is one of the first to incor-
porate transactions into the OS, but each component had
to support two-phase commit and rollback. TxOS [23]
detects conflicts and uses data versioning at the vir-
tual file system layer to achieve transaction-like behav-
ior. TxOS does not support transactions larger than
RAM. TxF [37] uses the existing transactional manager
in NTFS. TxF does not operate on a log-structured file
system and instead uses a traditional transactional archi-
tecture. Therefore, when data is overwritten, TXF writes
it twice and must gather undo images using reads. All
these transactional file system interfaces either add high
overhead, require complex kernel changes, or require a
complete redesign. KVFS, conversely, supports long-
lived and larger-than-RAM transactions, requires no ker-
nel modifications, introduces negligible overhead, and
uses a simpler design.

File system meta-data indexing. FFS’s optimizations
for directory lookups and insertions are simple but do
not scale as well as B-trees. XFS [34], ReiserFS [25],
Ext3, and Btrfs [22] use the better B+ trees to index
path names. Perspective [27] offers a user-friendly
distributed file system based on MySQL. BeFS [12]
and HFaD [29] focus on multiple indexes for the same
file, using traditional B+ trees. Randomly written B+
trees can be fairly inefficient, even for SSDs [31, 33].
TokuFS [10] is a prototype file system based on fractal-
trees. It is designed to support many, small, partial or
unaligned writes, by converting a read-modify-write op-
eration to a single write or an insert. In VT-tree, up-
dates are already treated as inserts and it is easy to incor-
porate support partial writes as TokuFS. TokuFS, how-
ever, does not perform well for large sequential writes,
and does not provide a transactional file system inter-
face [10]. Spyglass [15] partitions namespace meta-data
into smaller KD-trees [6] that fit in RAM; it writes up-
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dated KD trees in new locations and links them to previ-
ous versions to increase update throughput. The authors
admittedly avoid tree compaction [15], which is often
required [7]; they also do not specify asymptotic per-
formance or compare against other write-optimized in-
dexes. The VT-tree, however, scales well when indexes
exceed RAM and works well for any type of hard-to-
partition indexed data (e.g., dedup, Web search index).

6 Conclusions

Our main goal was to build a transactional storage sys-
tem that supports both file system and database work-
loads efficiently. Our VT-tree performs well for both
highly sequential and highly random workloads, as well
as any mixes thereof. Our stitching feature improves
sequential and file-system workloads’ performance, but
increases fragmentation; our defragmentation technique
allows us to balance these two conflicting needs. We de-
signed an efficient transactional architecture with neg-
ligible overhead for single asynchronous transactions—
that can improve highly concurrent performance by up
to 67%. Transactions requiring strong isolation incur
only a 10% overhead. We designed a simple write-back
caching for FUSE that allows KVFES to better compete
with in-kernel file systems. Our KVFS performance is
comparable and sometimes superior to Ext4, showing
KVFS’s wide practicality. Finally, KVFS provides snap-
shots and low-overhead concurrent transactions, and it
leverages FUSE’s caches without violating consistency.

Future work. Stitching can cause file system frag-
mentation over time. We currently have an offline de-
fragmentation tool. We plan to extend it to run on-
line and also explore other DF techniques such as us-
ing LFS-style cleaning when no zone can be evacuated
to free space. Most of the framework for an online
DF is already in KVDB. Since our algorithm does not
overwrite any existing data, reads can happen in paral-
lel. KVDB'’s transactional nature with internal journal-
ing mechanism allows easy handling of crash recovery
while running defragmentation. Unless KVDB runs out
of space, new writes can continue to come in as they land
on new SSTables. Additional work KVDB would need
is a throttling mechanism—to throttle incoming writes
when their rate is higher than the DF throughput and the
system is out of usable space.
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