Parametric Optimization of Storage Systems

A RESEARCH PROFICIENCY EXAM PRESENTED
BY
ZHEN CAO
STONY BROOK UNIVERSITY
Technical Report FSL-16-01

January 2016



Abstract

Computers are consuming more than 10% of world’s energy use, and this amount is still growing every
year. This means that even a small percentage improvement in the performance and energy efficiency of
computer systems could have a significant impact world wide. Many production systems are I/O bound,
spending large amount of time waiting for file system and storage operations. All these facts motivate the
need for optimizing storage systems—the slowest part of computing systems. Most modern storage systems
come up with a large number of tunable parameters. Previous work has shown that tuning even a small subset
of those parameters can improve the performance and energy efficiency by a as much as 9.4x. Manually
tuning storage systems is impractical due to the huge number of valid configurations and the difficulty of
evaluation all of them; moreover, many metrics are sensitive to the environment, which means that tuning
results in one environment are not easily applicable to other environments. Even domain experts cannot
explain and predict all the behaviors of storage systems. This significant complexity all but eliminates the
possibility of applying any white-box optimization techniques or attempting to model the system accurately.

In this report we describe the tuning of storage systems parameters as the problem of finding a global
optima in a high-dimensional search spaces. We propose to develop a black-box auto-tuning technique for
storage systems. We argue that tuning techniques that work in other fields do not fit well in our case due to
inherent properties of our problem (e.g., non-numeric parameters, huge search space, parameter dependence,
environment sensitivity). By investigating various techniques, we found that Meta-Heuristics (MH) and
Reinforcement Learning (RL) techniques are the most promising ones for our problem. We discuss these
techniques in detail in this report. All of these techniques can be generally characterized by a trade-off
among exploration, exploitation, and history information—the three key MH features for finding the global
optimum in high-dimensional spaces. Although traditional supervised Machine Learning (ML) techniques
requires a large and high-quality training dataset and thus are generally inapplicable, we argue that they still
can serve as good supplements to our search algorithms. The long-term goal of our project is to develop
hybrid auto-tuning algorithms, based on any helpful techniques, that are general enough to automatically
and quickly optimize any storage systems for various goals—as well as quickly adapt re-tune a system in
response to changes in the environment. Through our preliminary results, we show the promise of MH
techniques in finding the near-optimal configuration accurately and efficiently, and also the possibility of
using ML techniques as a supplement. We close this report by describing our future plans.
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Chapter 1

Introduction

Modern storage systems are often characterized by multiple connected hardware units with different soft-
ware running various user application workloads. They have a large number of tunable parameters at each
layer that can affect performance, energy, and more. Often, these systems are deployed with default settings
that directly come from vendors mostly due to two reasons: (1) it is nearly impossible for administrators to
know the impact of every parameter across multiple layers; (2) vendors’ default configurations are trusted to
be “good enough.” However, we have shown that the default configurations of storage systems are usually
sub-optimal, and only by tuning a tiny subset of parameters, we were able to improve the power- and perfor-
mance efficiency by a factor of 1.5-9.4x [318]. By 2013, computers were consuming more than 10% of the
world’s energy use, and this number is expected to continue growing [97]. Having such a huge base, a small
percentage of improvement on energy or performance efficiency would mean a lot. We choose to focus on
storage systems as they are the slowest computer components (at least a million times slower than CPUs).
As Moore’s law has slowed down, it becomes even more important to squeeze every bit of performance
out of deployed storage systems. We model tuning storage systems as the problem searching for the best
configuration in the given space. However, finding near-optimal configurations is challenging for several
reasons:

e The search space is huge. While some parameters are merely boolean, many are integers that can
take on thousands or even billions of values. For a storage system with NFS, and only considering a
subset of 18 useful parameters (NFS version, r/wsize, a/sync, no_/wdelay, etc.), we counted that the
total number of possible parameter permutations already exceeds 10!,

o Good configurations are sensitive to the environment. Here environment refers to both the hardware
and the workload, and we follow this definition throughout this report. Among all parameters, some
are important to optimize, while others may have insignificant impact and are a waste of effort to try.
Some parameters are highly correlated with others, and thus these dependencies need to be discovered
(and perhaps “collapsed” together). The precise set of parameters that affect the targeted metric, and
their values, depend heavily on the environment. Even a small change to one part of the environment
can deviate the storage system from its optimal outcome. This problem results in a complex, multi-
dimensional search space with many local optima, and searching for a near-optimal configuration in a
timely manner is the essence of our proposed problem.

o Evaluation is harder. Keeping the evaluation for one configuration as quick as possible is the key to
the success of optimizing systems. Within the same time limit, we may save more time for exploring
more configurations, which results in higher probability to find better ones. However, as storage
systems are the slowest parts of computer systems, evaluating one configuration for storage systems
usually takes a much longer time. To make things worse, evaluation results for storage systems are



sometimes unstable under certain workloads, which means more evaluation on the same configuration
might be needed.

The above facts make it nearly impossible to manually tune storage systems for every potential envi-
ronment. As modern storage systems become more and more complex, even those field experts or system
developers cannot fully understand the behavior of storage systems. As a result, in this report we propose
to explore and develop auto-tuning techniques that can automatically optimize storage system parameters to
find near-optimal configurations.

Many in the past proposed to solve similar problems in fields other than storage systems. White-box
optimization techniques are generally not useful in our case, as storage systems are so complex to be fully
understand. Exhaustive search or random sampling methods are not efficient enough, due to the huge search
space. Control theory cannot help because it requires data to build a model and is designed largely for linear
systems. Conversely, our space is non-linear and contains many parameters that do not even have numeric
values (e.g., file system type, disk type).

The goal of our project is to develop techniques that would be efficient in auto-tuning storage systems.
We propose to build it on the basis of a set of techniques called Meta-Heuristics (MHs) [34,215,243,369,396,
413,416], as well as Machine Learning techniques (ML) [31,244]. MH can be defined as a master strategy
that guides and modifies other heuristics to produce solutions beyond those that are normally generated in a
quest for local optimality. It is a generic term and consists of techniques including Genetic Algorithms (GA),
Simulated Annealing (SA), and more. MH algorithms have been widely applied in various areas. Most MH
algorithms are nature-inspired as they have been developed based on the successful evolutionary behavior
of natural systems. Reinforcement Learning (RL) is one type of ML technique inspired by behaviorist
psychology; it is concerned with how agents ought to take actions in an environment so as to maximize
some notion of a cumulative reward. One simple form of RL is Q-Learning, which maintains the history
of previous moves and uses them to guide future moves. Supervised ML techniques require a long training
phase and the quality of the results depends heavily on the amount and quality of the training data, which
is either unavailable or difficult to generate for large spaces. However, we find that they still can serve as
a good supplement tool for our search algorithm. We find that all search algorithms have three important
properties: exploration, exploitation and history. Exploration means randomly searching the space to avoid
getting stuck in local optima, while exploitation means finding better solutions in the neighborhood area.
History is the amount of cached results from previous searches that is used in future searches. The essence
of many search techniques is the trade-off among these three properties. Through our preliminary results, we
have shown that MH have the ability to search large spaces of storage system parameters efficiently and find
the near-optimal configuration in a given environment. We also prove that ML techniques have the potential
in aiding our search process. Based on the premise of MH and ML algorithms, we propose to develop our
own auto-tuning technique that will work well for storage systems. It will be able to automatically “rank”
the parameters and eliminate the less important ones to reduce the search space exponentially. It should also
contain some stopping criteria that can realize near-optimal configurations have been found and stop running
the algorithm in a smart way so as to save on resources.

We describe the main contributions of our project as follows:

o Investigate various techniques. We do not limit ourselves in just one technique. We plan to inves-
tigate and explore many types of MH techniques, or even other promising non-meta-heuristic opti-
mization techniques, such as Reinforcement Learning (RL). We are trying to understand the essence
of each technique, i.e., why they are able to find the near-optimal quickly or why they are not working
well in certain cases. Base on the knowledge we acquire, we plan to develop and propose our own
auto-tuning algorithm specifically for storage systems.

e Our technique is supposed to be general. The ultimate goal of our project is to develop an auto-
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tuning module (e.g., for Linux) that works for any storage system and any optimization goals, such
as performance, energy consumption, etc., and in the end eliminate the need for anyone to hand-tune
storage systems ever again.

e We will produce valuable data-sets and make it public online. We conducted our experiments
in the following way. For every workload, we tried every configuration exhaustively and collected
various metrics, such as performance and energy. By doing this we are able to simulate all types of
techniques on these collected data-sets. We are collecting a set of 9 parameters and totally 24,888
unique configurations (per workload). We have finished 2 different workloads and it already took us 6
months. We will continue filling these valuable data-sets with new results (in a MySQL database), and
this process will continue for several years. We will make our data-sets available online periodically
to benefit the research community.

The rest of this report is organized as follows. Section 3 surveys related work. Section 2 provides
background knowledge. We formally describe our experimental settings in Section 4. In Section 5 we show
our current preliminary results. We discuss our future plans in Section 6 and conclude in Section 7.



Chapter 2

Background

In this chapter we describe the background knowledge required for our project. We start with a detailed
description of our optimization problem in Section 2.1, emphasizing several main challenges. In Section 2.2
we give a brief introduction to conventional optimization techniques. We argue that many such techniques
are not applicable in our case. Section 2.3 provides a high-level overview of the three key properties in
any optimization algorithms. We mainly consider Meta-Heuristics (MH) and Machine Learning (ML) in this
project, which seem to be promising for auto-tuning storage systems. We introduce the main concepts of MH
and several popular MH techniques in Section 2.4 and the basic ideas in Machine Learning in Section 2.5.
In Section 2.6 we provide a summary of the background Section by comparing all the discussed techniques
in terms of several key properties.

2.1 Problem Statement

In this section we formally describe our optimization problem in detail. Computers are ubiquitous nowadays;
as of 2013 they are responsible for 10% of the world’s energy consumption [97]. Having such a huge
base, even a small improvement on the performance or energy efficiency would save a lot. Among all
the components of computers, the storage subsystem is usually the slowest one, and often “blamed” as
the bottleneck of many different applications. Therefore, we feel it is quite important to optimize storage
systems. Meanwhile, storage systems are usually deployed with default configurations provided by vendors,
due to: (1) it is impossible for the system administrators to know the exact impacts of every system parameter
under every workloads; and (2) the default configurations are believed to be “good enough.” However, our
previous work has shown that even by exploring and modifying a small subset of storage system parameters,
we were able to improve its performance or energy efficients by a factor of 1.5-9.4x [318]. If we increase
the size of the set of parameters that we are tuning, we may be able to achieve even better improvements.
This makes our efforts of optimizing storage systems quite promising. However, it is not easy to accomplish
this, due to several intrinsic properties of storage systems.
Our search space for storage systems has several unique and challenging properties:

o Explosive size. Modern storage systems are very complex and easily come with hundreds or even
thousands of tunable parameters, and this makes it impossible to explore even a small fraction exhaus-
tively and impractical to collecting data for a portion of such a huge space. Even human experts or
file system developers cannot know the exact impact of every parameter and thus have no idea how to
optimize them. In Table 2.1 we list several examples of the search space for storage systems. Local
Storage V1 and V2 are the subset of storage system parameters that we are currently exploring in
our experiments. They contain the 7 and 9 most important parameters, respectively, which we picked



based on our experience in storage systems. With only 9 parameters, the search space already con-
tains 24,888 unique configurations. For only one workload, it takes more than one month of clock
time to cover each configuration just once. When we start taking NFS into consideration, the number
of unique configurations explodes to 1.2 x 10?2, which makes it impossible to finish the exhaustive
search within a human lifetime. IBM’s General Parallel File System (GPES) is a parallel, distributed,
shared-disk file system [308]. It contains more than 100 tunable parameters, and we plan to use it to
prove the accuracy and effectiveness of our auto-tuning techniques later in our project.

System #Total | #Useful #Unique Example
Type Params. | Params. | Useful Configs. Useful Params.
Local Storage V1 7 7 2,074 file system type, inode size, journal options
Local Storage V2 9 9 24,888 Local Storage V1 + I/O scheduler, disk type
Local Storage + NFS 52 18 1.2 x 10%2 r/wsize, a/sync, no_/wdelay, NFS version
GPFS [308] 100+ 307" 1040 pagepool, maxMBpS, worker1Threads

Table 2.1: Example search spaces for storage systems

e Discrete and non-numeric parameters. Modern storage systems usually come with a large set of
parameters. Among them, some can take arbitrary integer values, while many others are discontinuous
and can only take limited number of values. Some parameter do not even have numerical values. This
problem makes the gradient information for the objective function(s) unavailable, and prevents us from
applying most gradient-based optimization techniques (e.g., Nelder-Mead Simplex Method [249]).

e Non-linearity. In physics and other sciences, a nonlinear system, in contrast to a linear system, is
a system which does not satisfy the superposition principle; the output of a nonlinear system is not
directly proportional to the input [399]. Figure 2.1 shows the average operation latency of GPFS by
only changing the value of the parameter pagepool and setting all the others to default. Exp.1 starts
from pagepool size of 32MB to 2GB and each time double the value. The pagepool size of Exp.2
ranges from 32MB to 128MB with a step size of 8MB. Clearly the average latency, which is a good
metric of the system performance, is not directly proportional to the pagepool size. In fact, through
our experiments, we’ve seen many more parameters with similar properties. This indicates that storage
systems are highly nonlinear, which also prevents us from applying several conventional optimization
approaches.

e Multi-modality. In statistics, a multi-modal distribution is a continuous probability distribution with
two or more modes. For a storage system, the search space resulting from its parameters also contains
multiple peaks, which makes our optimization work challenging, as the optimization algorithm has to
avoid getting stuck in local optima [172]. To make things worse, our search space is very large, sparse,
and irregular, which makes it even more challenging to reach the global optimum.

The environment where the storage system is running on can also have large impact on performance
and energy efficiency. In this report, we use the term environment to refer to the running workload and the
underlying hardware where the system is deployed.

Modern storage systems are facing diverse user applications, or workloads, from traditional Web servers
to big data processing—and from high-performance computing to virtual desktop infrastructure. Moreover,
the performance of storage system configurations depends heavily on the specific workload. Our previ-
ous work proved the critical importance of workloads: they drive storage systems to very different states,
requiring different optimizations [50, 188,201, 203,204, 318,319, 352,408]. We list several currently pop-



50 i 1 l
Exp. 1 ——
Exp. 2

o

30@ HERIRSRR & }

20

Avg. Latency (ms)
-
<

10 : : -

32 64 128 256 512 1024 2048
pagepool Size (MB)

Figure 2.1: Non-linearity property shown in the parameter pagepool of GPFS under the DATABASE workload

ular workloads in Table 2.2, which are the main focus of our future experiments. This diversity of chosen
workloads is essential to prove the generality of our work.

Storage systems can run on various types of devices: 1) traditional SATA/SAS HDDs; 2) SSDs; 3)
shingled drives; and 4) modern Non-Volatile Memory (NVM) such as Phase-Change Memory (PCM). In this
project, we use a wide range hardware components to find what hardware combinations are more optimal;
configurations for the various workloads are listed in Table 2.2. Our experiments are conducted on several
different classes of machines, which are explained in details in Section 4.

Our preliminary results have shown that optimal configurations for different optimization goals are de-
pendent on the specific workloads and hardware. One configuration may work well under one workload,
but achieve bad results for another workload. Even a small change in hardware may also deviate the storage
system from its optimal outcome. Due to the sensitivity to the workloads and hardware, having this diversity
of hardware and workloads in our experiments become fairly valuable. It allows us to measure and com-
pare the effectiveness and efficiency of different optimization techniques and devise our own algorithm for
self-tuning storage systems.

2.2 Optimization Approaches

Optimization is everywhere in our life, from simple mathematical function optimization to complex schedul-
ing in daily activities, and from engineering problems to financial marketing. In general, all optimization
problems can be summarized formally as follows [413,416]:

& = argmin f1(X), ., f1(X), X = (21, .., 29) @1

subject to
gi(x) =0,(j =1,2,...,J)
hp(x) <0, (k = 1,2,...,K)

where fi(x), ..., f1(x) are the optimization objectives, g;(x) are equality constraints, and hj(x) are inequal-
ity constraints. When I = 1, the problem is referred to as a single-objective optimization; otherwise it is
called multi-objective. In the case of storage system optimization, z* is the global optimal configuration that
we are searching for. In this report, we mainly focus on single-objective optimization of storage systems.
Later in our project, we plan to deal with multi-objective optimization as well, which we discuss in more
details in Section 6.



Workload Description Benchmarks
Fast lookups and sequential reads of small-sized files;
Web Server concurrent data and meta-data updates into a single, Filebench [104]

growing Web log file.

Database Server

Large file management; extensive concurrency; random
reads/writes; explores the storage stack’s efficiency for
caching, paging, and I/O.

Filebench [104], SPEC
SES® 2014 [331]

File Server

Each thread explores different home directories; sequence
of create, delete, append, read, write, and stat operations;
exercising both the meta-data and data paths of the file
system.

Filebench [104]

Mail Server

Read mails (open, read whole file, and close); compose
(open/create, append, close, and fsync); delete mails; large
directory support and fast lookups.

Filebench [104]

Software Build

Mimic running Unix “make” against several tens of
thousands of files; file attributes are checked (meta-data
operations) and if necessary, the file is read, compiled,
then data is written back out to storage.

SPEC SFS® 2014 [331]

Video Data
Acquisition

Maintain a minimum fixed bit rate per stream; maintain the
fidelity of the stream; provide as many simultaneous
streams as possible while meeting the bit rate and fidelity
constraints.

SPEC SFS® 2014 [331]

Virtual Desktop
Infrastructure

Extracted from traces between the hypervisor and storage
when the VMs were running on ESXi, Hyper-V, KVM,
and Xen environments.

SPEC SFS® 2014 [331],
VMmark [363]

Big Data

(1) volume: large data set sizes; (2) velocity: high data
arrival rates, such as click streams; (3) variety: high data
type disparity, such as structured data from relational
tables, semi- structured data from key-value Web clicks
and un-structured data from social media
content [121,372].

HiBench [159], CloudSuite
2.0 [57], BigBench [121],
Bigdatabench [372]

Scientific
Computing

Mimics the critical computation and data movement
involved in computational fluid dynamics and other
“typical” scientific computation [370].

MADbench2 [216], SPEC
HPG [330], NAS Parallel
Benchmarks [248]

Table 2.2: Examples of popular workloads

In addition to classifying based on the number of objectives, there are several other ways to classify
optimization techniques. We list several of them here:

o Gradient-based vs. gradient-free: gradient-based optimization takes advantage of the gradient infor-
mation of the objective function and it is often efficient for certain problems; they often try to “walk
up” a hill to find an even better solution in a neighborhood where some good solutions are predicted
or found. Examples of this type are Hill Climbing [160, 298] and Gradient-descent methods [393].
However, sometimes the gradient information is not available, which means the derivative is hard to
compute or is not well defined due to some discontinuity in the function itself. In this case, gradient-
free methods such as Nelder-Mead Downhill Simplex method [249] can be more helpful.

e Local vs. global: the difference between local and global optimization is whether the algorithm may
get stuck in a local optima. A simple gradient-based Hill-Climbing algorithm is a good example of
local optimization. This type of algorithm works well if the search space is unimodal. However, as



discussed in Section 2.1, our search space is multi-modal, which limits us to only global optimization
algorithms. For example, if we randomly pick one configuration and re-start the Hill-Climbing process
after each iteration, it becomes a global optimization algorithm. This is often referred as Random
Restart Hill Climbing [160].

o White-box vs. black-box: white-box optimization is the set of algorithms that tries to construct a math-
ematical model describing the internal properties and structures of a system. For example, Xi et al.
applied fuzzy control theory to optimize the MaxClient parameter for Apache Web Server to achieve
minimal response time [410]. They model the relationship between the parameter and the response
time as a simple convex function. In contrast, black-box optimization assumes no a priori knowledge
of the system. It queries the system for the values of optimization functions for certain configurations
through pre-defined system interfaces. It knows nothing about the internals of the system, such as the
gradient information of the optimization functions, and it makes no assumptions about the analytic
forms for the functions. Sometimes people prefer to exploit both white-box and black-box optimiza-
tion at the same time, and we call this kind of methods as “gray-box.” White-box optimizations can be
more accurate because they better understand a system’s internal structure; on the other hand, however,
they require more understanding of complex system internals, and that information may not be easily
available if at all.

Although there are many optimization techniques, not all of them are applicable for auto-tuning storage
systems. Based on the properties of our problem described in Section 2.1, we argue that some popular and
conventional optimization methods cannot easily apply to storage systems. Note that while some of these
techniques on their own cannot solve our problems, we can still leverage them in part to improve the overall
optimization problem.

o Exhaustive Search: exhaustive search enumerates every possible combination of parameters and tries
each configuration one by one. However, as we have a huge search space and each single evaluation
of configuration takes a relatively long time for storage systems, it is generally not applicable in our
case. For example, the average running time for the mailserver workload in Filebench [104] is about 3
minutes. In our experiments, Storage V2 contains 9 parameters and totally 24,888 unique configura-
tions. This takes us around 52 clock days to exhaustively run each configuration on a single machine.
When we added in NFS, and consider only a subset of 18 useful parameters, as shown in Table 2.1, it
takes 1016 years of time to try every permutation of parameters. This is impossible to finish within a
human lifetime.

e Monte Carlo Methods: Monte Carlo methods (or Monte Carlo experiments) are a broad class of
computational algorithms that rely on repeated random sampling to obtain numerical results, and are
mainly applied in three categories of problems: optimization, numerical integration, and generating
draws from a probability distribution [106,110,155,174,292]. However, due to the huge search space,
pure random sampling would not be efficient enough, as the probability for hitting the global optimal
configuration is very low. Note that the idea of random sampling is still helpful in our optimization
problem, which we explain more in Section 6.

o White-Box Optimization: as explained above, white-box optimization techniques need to understand
the system internals, and they usually assume some a priori knowledge about the systems. They are
applicable for optimizing simple systems, for example only optimizing one parameter for the Web
server [410]. However, due to the complexity of modern storage systems, and the sensitivity of good
configurations to the environment, it is nearly impossible to fully understand their behaviors, even
for experienced file system developers and administrators. This fact makes white-box optimization
inapplicable for our problem. Our optimization method is actually a “gray-box” one. It is mainly



based on black-box optimization, which assumes no a priori knowledge of the underlying system.
However, as we already partially understand the internals of storage systems, this kind of knowledge
is also included in our optimization algorithm. That is why we call it “gray-box.”

e Control Theory: Control theory (CT) was used historically to manage linear system parameters. CT
builds a controller for a system, called the plant, so its output follows a desired control signal, called the
reference [157,197]. CT has been applied to database systems [77], storage systems [179, 198], Web
servers [76,213] and data centers [206,373-375] to provide QoS guarantees; often a small number of
parameters were optimized. Our previous work used CT in the past to model the energy consumption
and performance of computing systems [202,203]. Alas, we found CT unsuitable to solving the
problems of this proposal for several reasons. (1) CT is unstable in controlling non-linear systems;
(2) CT cannot handle non-numeric parameters; (3) CT requires a learning phase, called identification
to build a good controller, which requires having lots of data to study; (4) CT is designed to control
a small number of parameters at a set point, not to find the best fitness (e.g., throughput); and (5) CT
has variants that attempt to handle digital and non-linear systems, by segmenting the search space into
smaller subspaces, but this scales poorly.

2.3 Key Properties

After investigating several different techniques, we find that nearly all search algorithms work by maintaining
a trade-off among three properties: exploration, exploitation, and history. This trade-off instead controls the
effectiveness and efficiency of the search process. We define the three key properties as follows:

¢ Exploration is how much the technique searches the space randomly. This often includes a combina-
tion of pure and guided random search in a given neighborhood.

o Exploitation is how much the technique leverages its neighborhood. When in a certain configuration,
we try to find nearby better ones and climb them.

e History is how much data from previous generations is kept. History information can be used to guide
future exploration and exploitation.

Figure 2.2 illustrates how a simple search algorithm searches for the highest fitness peaks (e.g., best
performance) as quickly as possible. The figure greatly simplifies the real search spaces in two ways. (1) It
is 3D whereas real search spaces are many-dimensional. (2) The actual distance between sets of peaks (e.g.,
P1+P2 vs. P3+P4) can be vast.

Say you start at a random point near the front corner: the fitness (Z axis) is low. Next you make a move
to find a better area to explore. If you take step 2a, you may find yourself going in the wrong direction for
a long time. With enough exploration, however, or even a guided one, you will eventually hit on a better
fitness value than you currently have, and then be able to exploit it. If you take step 2b, you will be at the
foothill of P1: you can look in your nearby vicinity and be able to climb to the top of P1, in step 3. Next,
we look around; everything will seem lower than P1: so one important criteria is not to get stuck on local
maxima, P1. If you just exploit your local area, you may never get out of P1 to a nearby higher peak (P2),
let alone get to the highest, yet distant peak (P4). So both exploration and exploitation are needed.

With a careful balancing of exploration and exploitation, you may be able to get out of P1, go via local
minima L1, and find a path to the top of P2, a better peak than P1. To reach from P1 to P2, one needs
to (randomly) explore nearby. However, to find even higher peaks that are far away requires taking bigger
changes to reach distant areas of the search space. Exploring from P1, you can easily find yourself in dead
space. But if you find yourself near peak P3, then you can use both exploration and exploitation to climb P3;
and from there reach to P4, a higher peak than even P2.
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Figure 2.2: Simplified Terrain Figure for the Parameter Space

We can see from this simplified search process that neither exploration nor exploitation alone suffice.
The balance between these two properties largely determines the search results.

History information has been included in several search algorithms. A good example is Tabu Search
(TS), which we will introduce in details in Section 2.4.6. The ideas of the Tabu list, intensification, and
diversification all rely on the history information maintained. The Smart Hill Climbing algorithm proposed
by Xi et al. [410], also uses history to update the weights in the Weighted Latin Hypercube Sampling, so
that promising configuration are more likely to be picked for evaluation. The amount of history kept also
matters. If the algorithm stores too much history, it wastes memory and storage: thus it will need more time to
process the history and get useful information. On the other hand, if we maintain to little history, it may be of
little help in improving the search performance. As an extreme example, traditional Q-Learning algorithms
maintain all the history information in one table, which greatly limit their scalability and practicality to large
spaces.

2.4 Meta-Heuristics

This section covers a set of techniques called Meta-Heuristics(MH). We start by introducing the definition
of MH in general. From Section 2.4.2 and onwards, we cover several popular MH techniques that proved
effective in solving certain optimization problems. Our hope is that this survey of techniques can give us
insights into the essence of those techniques, and help us develop our own algorithms for storage system
optimization.

2.4.1 Meta-Heuristics

Meta-Heuristics(MH) techniques [34, 119, 128, 215, 243,369, 394,396, 413, 416] are mostly developed to
solve difficult optimization problems, for which conventional optimization algorithms are not effective or
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even not applicable at all. Most of techniques are nature-inspired as they have been developed based on the
successful evolutionary behavior of natural systems—as nature has solved many difficult problems through
billions of years of evolutionary history. People have been vague in the exact definition and scope of MH.
For example, the term heuristic has been referred to as

a technique designed for solving a problem more quickly when classic methods are too slow, or
for finding an approximate solution when classic methods fail to find any exact solution, which
is achieved by trading optimality, completeness, accuracy, or precision for speed [394].

In this report we follow Glover’s definition, who referred heuristic as “to find or to discover by trial and
error” and meta- as “beyond or higher level” [413]. Simply put, MH means techniques that would generally
outperform simpler heuristics. Glover gave a formal definition of MH as “a MH technique is a master strategy
that guides and modifies other heuristics to produce solutions beyond those that are normally generated in a
quest for local optimality” [129]. Nearly all MH techniques make some trade-off in the extent of local- and
global search. In this report, we refer these two characteristics as exploitation and exploration, respectively,
which we already discussed in Section 2.3. In the following sub-sections, we introduce and discuss several
popular MH techniques. We mainly focus on Simulated Annealing and Genetic Algorithms, as they are two
of the most popular MH techniques. We briefly cover the basics for several other MH algorithms as well.

2.4.2 Simulated Annealing

Simulated Annealing (SA) [2,27,48,183,294,358,358,403] is a meta-heuristic for approximating the global
optimum in a large search space, which is inspired by the annealing technology in metallurgy. Annealing
involves heating and controlled cooling of a material to get to the state with minimum thermodynamic free
energy. The rate of cooling determines the magnitude of decrease in the thermodynamic free energy, with
slower cooling producing a bigger decrease [403]. SA was proposed by Kirkpatrick et al. [183] in 1983 and
Cerny [48] in 1985, and it is an adaptation of the Metropolis-Hastings algorithm, which is a Monte Carlo
method to generate sample states of a thermodynamic system invented by Metropolis et al. [232] in 1953. It
has been proved that SA can be mathematically modeled using the theory of finite Markov chains [1, 2].
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Algorithm 1: Simulated Annealing

Input : initial temperature T, initial state initial(), neighborhood function neighbor(s),
cooling schedule temperature(t), number of iterations with same temperature
iteration(T'), acceptance probability distribution prob(F, F’,T'), stopping criteria
stopping(s, T, t), evaluation function evaluate(s)

Output  : final state s

1 s « initial();

2 T+ Ty,

3t 0;

4 while not stopping(s,T,t) do

5 N « iteration(T);

6 for i < 1toN do

7 s« meighbor(s);

8 if prob(evaluate(s), evaluate(s'), T) > random(0,1) then

9 ‘ 5+ s';

10 end

11 end

12 T « temperature(t);

13 t<—t+1;

14 end

15 5S¢ < S;

Algorithm 1 gives the pseudo-code for SA. As we shall see, the evaluation function is required by nearly
every MH algorithm, as one basic property for MH, and more generally, black-box optimization, is trial
and error. Note that different MH techniques usually have a different name for the output of the evaluation
functions. For consistency, throughout the report we will call this the fitness value and thus we sometimes
also refer to the evaluation function as a fitness function. In the algorithm, s is the current state and ¢ acts
as a virtual clock to guide the temperature reduction process. Besides, there are several important inputs for
SA, which control and determine the effectiveness and efficiency of the algorithm. We discuss them next.

Initial state. In most cases SA randomly picks one state from the search space as the starting point of
the algorithm. However, the effectiveness and efficiency of SA depend heavily on the choice of the starting
point. Although SA is proved to be able to find the global optimum given enough time, regardless of where
the starting point is, we cannot afford running the algorithm for an infinitely long time. We want the algorithm
to converge fast but still find a good enough configuration. In this case, if we can start from a configuration
which is far away from “bad areas,” SA is more likely to result in a better final state. This is actually part
of our future work, which we discuss more in Section 6. One simple example is to exploit some expert
knowledge. Although human experts cannot fully understand all the behaviors of storage systems, they may
have some basic ideas on what parameters and values are more likely to have large impact. These can act
as good candidates from the initial states of SA. Another idea is to run some statistical-sampling methods
before actually running SA itself. This actually allows us to get an overview of parts of the search space
and be able to choose a good start point. Much work have been done in choosing a good start point for
SA in order to accelerate its convergence time [150, 169,360]. Moreover, some statistical methods can be
applied before SA begins running, so as to start with a better state. For example, Latin Hypercube Sampling
(LHS) [227,395] has been applied in a Smart Hill-Climbing algorithm for find optimal configuration for
Web servers [410]. It is applicable in SA as well. How to choose a good start point is definitely related to the
search space itself, and we plan to investigate and try various methods to see if they work well for storage
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system optimization.

Initial temperature. The choice of initial temperature is also important, and it should encourage more
exploration. If the initial temperature is too low, then the state space cannot be explored enough, and we
might miss finding many potentially better solutions. However, it is known that too high initial temperature
may cause a long computation time or bad performance [261]. Various methods for estimating a proper
initial temperature have been proposed:

o Kirkpatrick et al. [183] suggested taking
To = (AF)max; (2.2)
where (AF')pmqz is the maximum difference of fitness values between any two neighboring states.
e Johnson et al. [169, 170] proposed to compute the initial temperature as shown in Equation 2.3.

AF

o InPo :

Ty = (2.3)
Here, AF is the estimation of the fitness value increase after a strictly positive move, which means the
neighbor state is better than the previous state. This value is estimated by randomly generating some
moves [25]. po is the initial acceptance rate that could be set.

e A more precise estimation was proposed by White [2,377].
To = Kooo?, K € [5,10] (2.4)

Here, K is a constant and 04,2 is the second moment of the fitness distribution when the temperature
is set to oo. The fitness distribution is estimated by randomly sampling a few states.

e When some methods for choosing a good initial state are already applied, people tend to start with a
relatively lower initial temperature [150, 169,360]. It has been proved that sometimes SA could be
wasting time at the highest temperatures [169]. For example, J. Varanelli chose to set T} = 0.337,
where Tj is the original estimation for the initial temperature, so as to accelerate the SA process.

e Park and Kim [261] proposed to use a simplex method to find proper parameter settings for SA, without
much human intervention. This acts like a “heuristic beyond heuristic,” as it uses one optimization
algorithm to find the parameters for another optimization algorithm.

It is not easy to find the best initial temperature for optimizing storage systems, as the proper value also
depends on the specific problem [183,261]. Some problems may convergence faster, and thus only need a
lower initial temperature; while others must have a high temperature in order to explore the space thoroughly.
We plan to experiment with various values and methods to find the best way for our problem.

Neighborhood function. A neighborhood function is defined to list all possible s’ states that can be
reached from the current s: this allows SA to limit its exploration to a desired horizon. In the case of SA, one
call to the neighborhood function returns only one neighbor state. The neighbors are produced by altering
the current state in some well-defined way; one such alteration is usually called a “move.” The moves of SA
should result in minimal alterations of the last state in order to help the algorithm keep the better parts of the
solution and change only the worse parts [403]. For example, in our project we cam simply define one move
as just altering the value of one parameter. We can even define dynamic neighborhood functions that initially
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change several parameters by a large amount; in later iterations, our function can be more conservative and
change only one parameter slightly. For our parameter space, we need to investigate how to define the neigh-
borhood of non-numeric parameters such as the I/O scheduler algorithm: one possibility is to consider their
chronological release date to approximate a rough order (assuming that newer schedulers work better). To
choose among a set of neighbors returned by the neighborhood function, we may consider a totally random
selection or one coupled with a preference to configurations that have not been explored recently.

Cooling schedule. A cooling schedule is sometimes also called an annealing schedule. It decides how
quickly the temperature of the system drops over time, until it is low enough to stop searching. The temper-
ature determines the probability of choosing a “worse” neighboring state. When the temperature is lower,
the probability of choosing a worse state is lower. If the temperature reduces too quickly, then we may not
explore the search space enough; if the cooling rate is too low, we would spend too much time on exploring
the space and not converge on a solution fast enough. Many different cooling schedules have been proposed
and compared [59,251]. We describe several of them here:

o [inear cooling schedule [183]. In a linear schedule, we have:
T =T, — St, (2.5)

where T is the initial temperature and ¢ is the pseudo time to record the number of times for tempera-
ture reduction. [ is the cooling rate and should be picked carefully. Let’s assume the final temperature
is T’y and the final time is ¢;. A good value of the cooling rate 3 should satisfy that when t — f;, we
have T' — T'. Thus, if we can set the values of ¢y and T’ in advance, it gives:

_ T =Ty

g »

(2.6)

e geometric cooling schedule [183]. A geometric cooling schedule decreases the temperature by a cool-
ing factor «, where 0 < o < 1. In this case, we have:

T(t) =Toa!, t=1,2,..,t;. 2.7

One advantage of the geometric cooling schedule over the linear one is that there is no need to pre-
define the final time ¢, as when ¢y — oo, we have T — 0. In reality, the geometric cooling schedule
is more often chosen, and a value o € [0.7,0.99] is commonly used [413].

e [ogarithmic cooling schedule [117]. In a logarithmic schedule we have:

c

T(t) = I (2.8)
where d is usually set to 1. Hajek proved that under this cooling schedule, the condition for SA con-
vergence is that c be greater than or equal to the depth, suitably defined, of the deepest local minimum
which is not a global minimum state [154]. However, due to its asymptotically slow temperature
decrease, this cooling schedule is impractical. It simply counteracts the exponential Boltzmann accep-
tance function in SA and amounts to a purely random search in the huge space [251].

o inversely linear cooling scheduling [342]. Due to slow temperature decrease rate in logarithmic cool-
ing schedule, Szu and Hartley proposed Fast Simulated Annealing (FSA), which has:

Ty
Tt) = ——
() t+1

They proved FSA with an inversely linear cooling schedule converges faster than the classical simu-
lated annealing proposed by Geman and Geman [117].

2.9
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e adaptive cooling schedule. The aforementioned four cooling schedules are all static, in the sense that
they are pre-determined and the temperature reduction process are not influenced by the actual search
process. In contrast, many adaptive cooling schedules have been proposed [7, 8, 12,309, 353]. For
example, Azizi and Zolfaghari [12] proposed a cooling schedule as shown in Equation 2.10:

T(t) = Ty — Anttre-1 (2.10)

where A is the coefficient that controls the temperature reduction rate and r;_; is the number of con-
secutive upward moves during the last temperature value.

In our project, we are not limiting ourselves to just one simple cooling schedule. We are trying and
comparing all the cooling schedules discussed in this section. This allows us to understand how different
cooling schedule would impact the optimization for storage systems and find or devise the most suitable
cooling schedule for them.

Iterations. For a given temperature, usually multiple evaluations for the fitness function are required. We
call these “multiple evaluations” as iterations. We define this value as a function of the current temperature,
as it does not need to be a fixed value during the whole algorithm. For example, we may want to increase
the number of iterations for a lower in order to fully explore the nearby space. iterations can also have
impacts on the effectiveness and efficiency of the final solution, and we need to carefully balance the choice
of iterations and the solution quality. If we have too few iterations, we may not be able to explore the search
space enough, i.e., not giving high-enough probability for worse configurations. However, if we try too
many iferations, we may spend too long time for each temperature value and thus cause SA to converge very
slowly.

Acceptance probability. The acceptance probability distribution defines the probability of accepting a
neighboring state of the current one. It takes 3 arguments: the fitness value F' of the current state s, the
fitness value F’ of one neighbor state s, and the current temperature 7. Generally there are two types of
acceptance probability distributions:

e Metropolis Criterion. In the initial version of SA [48, 183], the probability would equal to 1 when
F’ > F, which means the neighbor state is better than the current state. Most work on SA followed
this rule, though it is not essential in order for SA to work [413]. When F’ < F, we have:

y(F'—F)

prob(F,F',T) =e F8T | (2.11)

where kp is the Boltzmann’s constant and + is a real constant (for simplicity v = 1). From Equa-
tion 2.11 it is obvious that when 7' is large, the probability for accepting worse states is high. This
means that when the temperature is high, SA tends to explore the search space more and avoid getting
stuck in local optima by allowing a relatively high probability for accepting bad configurations. When
T — 0, prob — 0, which means SA tends to be in a more stable state and only do hill-climbing when
the temperature is low.

e Barker Criterion. Another acceptance criterion, which arose naturally in the context of Boltzmann
machines [1], is the Barker criterion [17] given by:
1

y(F'—F) "

].+6 kT

The meanings for the symbols in Equation 2.12 is the same as in Equation 2.11.

prob(F,F',T) = (2.12)

The acceptance probability distribution is one of the most important part of SA, as it controls how SA gets
away from local optima and explores the search space efficiently.
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Stopping criteria. It has been shown that by properly setting the parameters, SA is guaranteed to con-
verge given enough time [154], and there is a theoretical upper bound for the convergence time [237,279].
However, based on our preliminary results on SA experiments, as shown in Section 5, we feel that some
stopping criteria have to be included in the algorithm. Sometimes after running for a while, SA spend a
long time exploring the space but not improving the solution even a little bit. In this case it is difficult to
tell whether the current solution is the global best or SA just gets stuck in local optima and needs more time
for exploration. Many times we do not even allow such a long running time for SA. One simple example
is using a time-window based method. If SA fails to improve the current solution within a certain time, we
decide to stop SA. However, we definitely need more intelligent stopping criteria, in order to improve the
effectiveness and efficiency of SA.

More recently, SA has been extended to allow parallel execution of the algorithm to solve complex
optimization problems [1,111,219,280]. SA has been applied in various areas and proved efficient in solv-
ing different types of problems, including Job Scheduling Problem (JSP) [185, 359], Travelling Salesman
Problem (TSP) [1, 223, 358], graph partitioning and coloring [169, 170], University Course Timetabling
Problem (UCTP) [54, 187,200, 247], Very Large Scale Integration (VLSI) design [317,406], vehicle rout-
ing [257], portfolio selection [63], power system optimization [221], radio channel assignment [86], network
design [109, 111, 167], process mapping [256], software architecture [278]. It has even been applied to stor-
age systems for before [83, 116]. However, our work is more general and is supposed to work for various
optimization goals in storage systems.

2.4.3 Genetic Algorithms

In this section we provide a detailed introduction to Genetic Algorithms (GAs) [70, 73, 132, 163,234,324,
325,332,378]. GA is a nature-inspired algorithm and was first proposed in 1975 by Holland [163] and De
Jong [73] in 1975 to build adaptive systems. De Jong was the first to apply GA to optimization problems,
although later he argued that GA is not a really function optimizer, and that the success of GA in optimization
is in some ways incidental to adaptation. Nevertheless, GA has become quite popular in solving complex
optimization problems in various domains [132], and optimization is now the main focus and application
area for GA [119, 128].

GA actually belongs to a category of algorithms called Evolutionary Algorithms (EAs). We start by
covering some biological background that is necessary for understanding the internals of GA, as well as
other EAs. We then provide a summary and comparison of different EAs. The major part of this section
introduces GAs, including the key operators and characteristics that decide the effectiveness and efficiency
of GAs, and the theory on why GAs work. We end with the list of applications of GA in various areas.

2.4.3.1 Biological Background

We start with a brief introduction to some of the key concepts taken from Genetic Biology. We are not
intending for formal and accurate definitions for these terminologies here; this introduction is primarily
intended to help understand how GA originated and how it works. The word “genetics” originates from the
Greek word “genesis,” which means “to grow” or “to become” [325]. Genetics usually refers to the study
of genes, heredity, and genetic variation in living organisms [390]. The terminologies related to GA are as
follows:

o Chromosome. Chromosomes are strings of DNA and serves as a model for the whole organism. All
the genetic information is stored in the chromosomes [325].
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e Gene. Chromosomes are divided into several parts called genes, which encodes a functional RNA or
protein product and controls the properties of a species [388]. Each gene has its own position in the
chromosome. This position is called the locus.

e Allele. An allele is one of all the alternative forms of the same gene [382].

e Trait. A phenotypic trait, or simply trait, is a distinct variant of a phenotypic characteristic of an
organism that may be inherited, be environmentally determined or be a combination of the two [401].
One trait corresponds to one allele. Take an eye color for example. Blue is one of the traits for the
eye color, while the underlying specific gene value (string of DNAs) that directly decides the blue eye
is called an allele.

o Genome. A genome is the complete set of DNA of an individual, including all of its genes [391].

o Genotype. The genotype is part of the genetic makeup of an individual [392]. It can be a simple
description of which alleles an individual has for a certain gene, or it might be a description of alleles
for a number of genes.

e Phenotype. A phenotype is the composite of observable characteristics or traits of an individual,
and it is decided by the corresponding genotype and also the environment [400]. A genotype and a
phenotype are distinguished by the source of an observer’s knowledge: one can know about genotype
by observing DNA or genes, whereas one can know about phenotype by observing outward appearance
of an organism.

e Natural Selection. Natural selection is the differential survival and reproduction of individuals due
to differences in phenotype. It is a key mechanism of evolution, and it was popularized by Charles
Darwin [67]. The key principle of natural selection is individuals with some traits that can give these
individuals a reproductive advantage are more likely to survive [398].

e Fitness. Fitness describes the reproductive success of an individual [387]. That alleles with greater
positive effects on individual fitness will become more common over time, is actually the central thesis
for natural selection.

e Crossover. Crossover, or chromosomal Crossover is the exchange of genetic material between chro-
mosomes with same genes in the same loci, which results in recombinant chromosomes during sexual
reproduction [383].

e Mutation. In biology, a mutation is a permanent change of the alleles of one or more genes of an
individual [397].

2.4.3.2 Evolutionary Algorithms

GA belongs to a set of algorithms called Evolutionary Algorithms (EAs), which includes all generic population-
based Meta-Heuristic optimization algorithms inspired by adopting Darwinian principles [94, 385]. Nearly
all EAs can be summarized as the flowchart in Figure 2.3.

An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombina-
tion (crossover), and selection. Candidate solutions to the optimization problem play the role of individuals
in a population, and the fitness function determines the quality of the solutions. Evolution of the popula-
tion then takes place after the repeated application of the above operators until some stopping criteria are
satisfied [385]. There are four major types of EAs: GA, Genetic Programming (GP) [120, 389], Evolution
Strategies [96,312,384], Evolutionary Programming [108,386], and the differences between them lie mainly
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Figure 2.3: Flow chart of an Evolutionary Algorithm

in the problem representation, evolution operators and also the goal of the algorithm. This topic is not the
main focus of this report; we just want the clarify the confusion between several similar terminologies. This
four categories of techniques differ in the following aspects:

Goal. This means that they are devised to solve different types of problems. For this reason, we believe
GA is the best fit for our project among these techniques.

Selection. The selection method decides how to choose solutions from the current generation as parents
to produce children as new candidate solutions.

Representation. The way all these Evolutionary Algorithms work is to encode information into a
pre-defined format, which mimics the concept of chromosomes in Biology.

Recombination. This is also known as crossover. It is the main method of the algorithm to generate
new candidates for solutions by combining the good parts of previous ones.

Mutation. This is to add some degree of randomness into the algorithm, and randomly change part of
one current solution to get a new candidate.

Based on these five concepts, we briefly summarize the differences of the four aforementioned techniques in
Table 2.3.

2.4.3.3 Simple Genetic Algorithm

Here we discuss several important aspects of GAs by using a Simple Genetic Algorithm (SGA) as an exam-
ple, which is the basic form for all types of GAs. There are many other variants of GAs [325], and we will
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Technique Goal Representation Selection Recombination Mutation
Originally for
adaptive systems,
now mainly for
Genetic theoritical and . . . 1-point crossover
. . Fix-length bit Fitness- . .
Algorithms real optimization strin roportional (and many Bit-flip mutation
(GAs) problems; works g prop others)
for both discrete
and continuous
parameters
Find computer
Genetlc' programs that Variable-sized Fitness- Randomly
Programming | perform best for tree roportional Subtree exchange | change one node
(GP) a user-defined prop in the tree
tasks
Gaussian
mutation (a
) Typlcall}/ used Fix-length Interm.edza.te random valu'e
Evolution for continuous . recombination | from a Gaussian
. real-valued Uniform random R
Strategies parameter (average of two distribution is
S vector
optimization [94] parents) added to each
element of the
vector)
Originally
developed to
simulate Deterministic
Evolutionary evol'utlon asa Fixed-length (each parent will Gaussian
. learning process real-valued generate one None .
Programming . . . . mutation
with the aim of vector offspring via
generating mutation)
artificial
intelligence [94]

Table 2.3: Comparison of four major EAs

introduce them later on. Algorithm 2 presents the pseudocode for SGA. Here for simplicity, the evaluation
function takes the whole population as the argument. It evaluates all the individuals in the current population
and returns a list of fitness values for each individual. ¢ is the generation number, and in the end the algorithm
returns the best individual in the last generation.
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Algorithm 2: Simple Genetic Algorithm

Input : Initial population initial(), population size population_size(P,t), elitism method
elitism(P, F'), selection method selection(P, F'), crossover method crossover(si, s2),
mutation method mutation(s), mutation rate muatation_rate(), stopping criteria
stopping(), evaluation function evaluate(P)

Output : Best individual s

1 P« initial();

2 F « evaluate(P);

3t 1;

4 while not stopping() do

5 p_size < population_size(P,t);

6 P’ + empty_list();

7 P’.append(elitism(P, F));

8 while size(P') < p_size do

9 parenty, parenty < selection(P, F');

10 childy, childy < crossover(parenty, parents);
1 if mutation_rate() > random(0, 1) then
12 ‘ childy < mutation(childy);

13 end

14 if mutation_rate() > random(0, 1) then
15 ‘ childy < mutation(childs);

16 end

17 P’.append(childy);

18 P’ .append(childs);

19 end

20 P+ P,

21 F «+ evaluate(P);

22 t+—t+1;

23 end
24 sy < Plmaz_index(F)];

As we see from Algorithm 2, GAs have several important features that are directly taken from Genetic
Biology. These terminologies actually have similar meanings, and this is how GAs mimic the process of
nature evolution. The idea is that evolution has been proved successful in producing us humans and other
advanced creatures on Earth, then why not exploit these tried-and-true techniques for complex optimization
problems?

Next we describe the important features in GAs in details. To help relate these concepts to our problem
domain, we will use examples from storage systems.

Gene. A gene represents one single configuration parameter, such as the file system type and disk type in our
Storage V2 (see Table 2.1). A specific value of a gene is an allele. Depending on the type of corresponding
parameters, genes can take on different forms [310]:

e Binary. Binary genes can be encoded as 1 single bit in the chromosome.

e Non-ordered discrete. This type of genes can take on more than 2 alleles, but a limited number of
alleles. Here non-ordered means that the alleles of the same gene are not comparable. One example
of this category is the file system type: there’s no logical ordering of, say, XFS vs. Btrfs vs. Ext4.
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e Ordered discrete. Similar with the previous type of genes, ordered discrete type can take on a limited
number of alleles. In this case, however, the alleles of the same gene can be compared. One example
is the block size.

o Real-valued. We put all the other parameters, which can take on any integer and real numbers into this
category. One example of this category is the fcp_keepalive_time in Linux.

Chromosome. In our problem, a chromosome corresponds to a single configuration. A configuration is
defined as a precise series of parameters (genes). A chromosome can be as long and complex as needed
to encode more parameters. Normally in GAs, chromosomes are represented as fixed-length bit strings,
meaning that all configurations have the same number of parameters. One specific problem that arises
when applying GAs to optimizing storage systems is that many file systems have options unique to just that
file system. For example, the notail mount option is unique to Reiserfs and has a significant performance
impact [318]. Such options make sense only for the file systems that support them, and this may cause
some invalid configurations within our search space, which is regarded as a potential source of difficulty for
applying GA to real optimization problems [286].

Fitness. In GAs, each configuration is evaluated for its fitness in a given environment. In our problem, fit-
ness can take on various forms, such as I/O throughput, CPU speed, energy used, and complex cost functions
thereof [204]. As long as the values returned by the fitness function are comparable by a GREATER-THAN
relation, they can be defined as the fitness. If we were to model the multi-dimensional parameter space of a
complex storage system and project it as a 3D figure, the fitness landscape would be a very sparse terrain.
The landscape would have a few clustered peaks with several local maxima. These clusters would be sepa-
rated by vast stretches of “dead” spaces. This actually makes our optimization more challenging, as we need
to avoid spending too much time in those dead spaces and get to the global optima quickly.

Population. Population refers to the set of unique configurations (chromosomes) being evaluated. The
larger the population, the more configurations can be evaluated. Individual members of a population can be
evaluated in parallel. A population can grow or shrink over time.

Generation. The fitness of each population member is evaluated in the given environment. This is called
one single generation. GAs produce the next generation by applying the pre-defined genetic operators on
the individual members of the current generation.

Initialization. GAs usually take an initial population as the algorithm input. The quality of the initial popu-
lation has a large impact on the convergence time and final results of GAs. For choosing an initial population,
it is often assumed that initialization of GAs should be random when GAs were first proposed [119]. Later,
various methods on how to pick the initial population were proposed, and they can be generally classified
into three categories:

e Sampling. Rees and Koehler [283] used the theoretical model proposed by Vose [366] to demon-
strate that sampling without replacement is preferable when the population size is relatively small.
Reeves [119] suggested that more sophisticated statistical sampling methods, which can cover the
search space more uniformly, are more advantageous than purely random sampling.

e [Including good solutions. It has been shown that including good solutions obtained from other heuris-
tic techniques can help GAs find better solutions more quickly [4, 175]. Bramlette [38] used the best
of n randomly chosen individuals as the initial population for GAs. Whitley et al. [379] iteratively
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Figure 2.4: Configuration connectivity figure of Storage V2.

used best solutions from previous runs as a basis for altering the chromosome representation during
restarts.

e Domain knowledge. Grefenstette [148] first proposed to incorporate problem-specific knowledge into
the GAs, including seeding the initial population. Schultz and Grefenstette [311] and Gordon [142]
applied GAs in learning decision rules, and showed the effectiveness of choosing an initial population
with domain-specific knowledge. In case of a changing environment, Ramsey and Grefenstette [282]
proposed case-based initialization. It includes strategies, which were learned under similar environ-
ments, into the new initial population for GAs.

However, these specialized initialization methods have the possibility of inducing premature convergence,
which means most chromosomes in the population have similar allele values; applying crossover methods to
similar chromosomes only results in another similar chromosome, and new areas of the search space are left
unexplored [119,175,199].

Certainly, how to initialize the population is important for optimizing complex storage systems. Our
initial experiments showed that this could lead to wasted time exploring poor choices. To make things
worse, we found that sometimes, certain file systems were rarely explored.

In Figure 2.4 we present the connectivity figure of the whole Storage V2 search space. Each node in the
figure represents one single configuration from Storage V2. Each edge represents whether two configurations
can be reachable from each other with just changing the value of one parameter. We can see that file systems
such as Ext3 and Ext4 not only have many possible configurations to explore, but are also very well connected
to each other and other file systems. It means that a uniform random set of configurations is likely to
bias towards these well-connected file systems. Conversely, file systems such as Reiserfs and Btrfs are
poorly connected and hence much harder to reach via mutation; those file systems rarely got explored in
our experiments when we used a random initialization, even if they produced superior performance. As one
simple work-around for this problem, we experimented by initializing our population and allocating each
file system a proportional share of the slots. This allowed weakly connected file systems to be explored to
some extent. We plan to investigate other methods as well, such as statistical sampling methods and domain
knowledge.

Population size. Another aspect of the population is its size. A smaller population would result in inade-
quate exploration of the space, while a larger population will induce high computation costs. Goldberg first
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proposed a theory on how large the population size should be, and claimed that it grows exponentially with
the length of the chromosome [133, 140]. However, experimental results from Grefenstette [147] and Schaf-
fer et al. [304] suggested that the population size proposed by Goldberg’s theory is not necessary, and they
proved that population sizes as small as 30 are adequate in many cases. J. Alander suggested that a value
between n and 2n, where n is the length of the chromosome, is optimal for several application scenarios.
Reeves [285] tried to answer the question regarding the minimum population size for a meaningful search to
take place, and suggested that at the very least, the population size should be large enough so that every point
within the search space should be reachable from the initial population by crossover only, which means that
every possible value of each parameter should at least appear once in the initial population. This argument
actually aligns with our discussion of the sampling initialization method, and Latin Hypercube Sampling
(LHS) [395,410] is a simple qualified example of such sampling methods. Goldberg et al. also discussed the
refinements for the population size in the existence of noises and fitness variances [135,137].

All the methods discussed above use a fixed value for the population size throughout the experiment.
However, people have found that the population sizing requirements for GAs is problem-dependent and
is sometimes hard to estimate before the actual algorithm is run. Instead, many adaptive methods have
been proposed and proved to achieve better results than those static methods [62,89,211]. Also, adaptive
methods make life easier for users by eliminating the population size parameter. Example works on adaptive
population sizing include schema-variance based [328,329], GAVaPS [9], competing subpopulations [306,
307], SAGA [161], parameter-less [66,156,207,210,265,266], APGA [14], PRoFIGA [95,357]. Details of
these methods are beyond the scope of this report.

Selection. Once the fitness of a population is evaluated, a selection process begins to choose individuals for
birth. One of the key properties of GAs is their ability to reinforce better configurations: better configurations
in this generation live on and multiply in the next generation; and those that did poorly, are discarded. This
is also the principle for most selection methods: they decide based on the fitness of individuals. There are
three commonly applied categories of selection mechanisms [13,119, 136,235,303]:

e Proportionate selection. This category includes the Roulette-wheel selection proposed in the original
version of GAs [163], stochastic remainder selection [36,41], and stochastic universal selection [16,
149]. All these methods choose individuals for reproduction based on the probability distribution
calculated from the fitness of all individuals, as summarized in Equation 2.13. They differ in the form
of the probability distribution, specifically in the assignment of the coefficients m;. For example,
when m; = 1 for any j, it becomes the Roulette-wheel selection mechanism.

fi
P =
e Ranking selection. Ranking selection was proposed by Baker [15] and improved by Grefenstette and
Baker [149]. Instead of being calculated from the fitness values directly, this category of selection
mechanisms decide the candidate individuals based on the rank of fitness values among the whole
population. Although some information is lost, this technique has the advantage of eliminating the
need for re-scaling, as shown in Equation 2.13; it thus reduces the computation costs for the selection
phase [119].

o Tournament selection. The tournament selection mechanism was proposed by Brindle [41] and later
applied and improved by Goldberg et al. [138], Miihlenbein [241] and Suh and Van Gucht [338]. It
chooses a set of k individuals from the current population, compares their fitness, and pick the best one
for parenthood. It has similar properties as linear ranking selection when k = 2 [119]. One potential
advantage of the rournament selection over the other two categories is that it only needs a preference
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between a group of k fitness values. This broadens the approach for defining fitness functions, and
makes GAs suitable for more types of optimization goals.

Other selection methods include non-linear ranking selection [234], Boltzmann selection [225], (1 + A\)-
selection [313,314], Boltzmann tournament selection [134,217] and entropy-Boltzmann selection [196].

Elitism. A concept related to the selection phase is elitism, which refers to the mechanism that the best
or the top-ranked few chromosomes of the current population are directly “copied” into the new population,
while the rest of the new population are produced by applying one of the selection methods. This is the same
term as the reproduction shown in Figure 2.3 and appears in many MH techniques in various forms. With-
out elitism, such good individuals can be lost since crossover and mutation may destroy them. Intuitively,
GAs work best when good configurations are reinforced or multiplied, allowing them to survive to the next
generation. Conversely, poorly performing configurations are removed from the population. We may even
support more complicated elitism mechanisms by assigning a lifetime variable to each elite individual. This
is a similar idea as the adaptive population sizing method proposed in GAVaPS [9]. How to assign the /ife-
time value is an open question, which may further depend on the population size, age, fitness, etc. Another
related question is how many offspring should pairs of configurations be allowed to have. We could allow
better configurations to proportionally have more offspring, but if we carry this too far, our population would
become somewhat incestuous and lack in diversity. Diversity is important to allow exploring unexplored
parts of the search space.

Crossover. Crossover refers to the process of taking two parent chromosomes and producing from them
one or more children [325]. It is sometimes called recombination. It is applied to the selected candi-
dates after the selection phase, with the hope that it creates better offspring. There are many different
types of crossover operations [71,98, 119,325]. We use Single Point Crossover (1X) as an example to ex-
plain how crossover operates on chromosomes. This is the crossover methods used in traditional Simple
Genetic Algorithms (SGAs), where two selected parent chromosomes are cut at the same corresponding
point and the subparts after the crossover point are exchanged between two parents. The crossover point
is randomly picked along the chromosome. In Figure 2.5 we use chromosomes with 5 genes as an exam-
ple, and the crossover point between gene BG and Inode Size is picked. Other crossover methods include
Two Point Crossover (2X), Multi-Point (N-Point) Crossover, Uniform Crossover (UX) [341], Multi-Parent
Crossover (MPX) [90-93, 255, 315, 327, 354, 355, 364], Crossover with Reduced Surrogate [37], Shuffle
Crossover [47], Precedence Preservative Crossover (PPX) [30,33], Ordered Crossover (OX) [69], Partially
Matched Crossover (PMX) [139], Cycle Crossover [253], etc. Crossover is one of the most important parts
in GAs, as it controls how GAs search the neighborhood space, and thus partially determines the effective-
ness and efficiency of GAs. We plan to try all the listed crossover methods here, and analyze how well they
work for optimizing storage systems. This could give us a better understanding of GAs and help us devise
crossover methods that better suit our needs.

Another important parameter in crossover methods is crossover probability, which controls the amount
of crossover operations that will be performed. Usually it is set to a relatively high value to search more
of the neighborhood region. However, if set too high, it may cause GAs to waste much time on exploring
unpromising regions of the solution space. And it is also good to not set it to 100% to allow some individuals
from the old generation to directly survive into the next generation [325]. The crossover probability can also
be adaptively adjusted during the process of GAs [37,332].

Mutation. After crossover, mutation is often performed on the new chromosomes. If crossover controls
how GAs search the neighborhood regions, mutation avoids GAs from getting trapped in a local optimum
and lets GAs explore other regions of the entire search space. Mutation acts as an insurance policy against
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|
FS BG ! Inode Size Mount Option Journal Option
|
Parent 1 NilFS2 8 - atime order=strict
Parent 2 NilFS2 256 - noatime order=relaxed
|
|
|
Child 1 NilFS2 8 - noatime order=relaxed
Child 2 NilFS2 256 - atime order=strict

Figure 2.5: 1-Point Crossover

the irreversible loss of genetic material, and maintains genetic diversity in the population [325]. Most mu-
tations are small and allow the population to randomly explore in the immediate neighborhood. In nature,
mutations often follow the power law: most are small but a few can be large [21,250]. Large mutations are
important to allow a population to explore well outside its immediate neighborhood. If a mutation yields
poorer fitness, that member will likely not survive to the next generation; but if by some chance it stumbled
upon an even better neighborhood to explore, then such a large mutation could win and carry over a benefi-
cial mutation to future generations. There are many different forms of mutation corresponding to different
types of chromosome representation. For binary encoding, mutation can be bit-flipping, interchanging and
reversing, etc. However, traditional mutation methods have to be modified in order to be applied in our
project, as it is difficult to encode parameters of storage systems as bit strings. One simple method would be
randomly changing the allele of a gene into other alleles of the same gene. We illustrate an example of this
in Figure 2.6, where we randomly mutate the gene File System from Ext4 to Ext3.

An important parameter in mutation is the mutation probability, which decides how often parts of chro-
mosomes are mutated. If GAs mutate too little, they will not explore the search space enough and may miss
higher peaks; if one mutates too much, GAs actually devolve into nearly pure random search and move away
from known good fitness peaks. Mutation probability can be fixed as well as dynamically-adjusted [332].

Stopping criteria. Similar with Simulated Annealing, we need some stopping criteria for GAs as well. A
lot of work was done on finding proper stopping criteria for GAs [10, 11, 145,233,297,300]. Usually people
would employ three types of stopping criteria for GAs [300]:

e an upper limit on the number of generations;
e an upper limit on the number of fitness evaluations; or
o the probability of achieving significant changes in the following generations is excessively low.

These simple criteria may not be adequate for optimizing storage systems, and as our project progresses, we
plan to devise more complicated stopping criteria based our experiment results.
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l Ext4 1 32 ‘ 256 ‘ atime journal=writeback

Ext3 32 256 atime journal=writeback

Figure 2.6: Example of mutation operations in GAs

2.4.3.4 Theories on GAs

It is still being hotly debated that why and how GAs work. Though many theories have been proposed to
explain the essence of GAs, none of them provides more definite answers [119,242,287,288,367,402].

Holland first proposed the Schema Theorem [163,402] to explain the power of GAs. Here, schema is a
template that identifies a subset of strings with similarities at certain string positions. For example, for binary
bit strings of length 4, “1**1” represents a schema where the first and the last bits are 1. The number of fixed
positions in the chromosomes are called order. The Schema Theorem states that short, low-order schemata
with above-average fitness increase exponentially in successive generations. However, it holds under the
assumption of a genetic algorithm that maintains an infinitely large population, which is rarely practical
in real applications. Due to sampling error in the initial population, genetic algorithms may converge on
schemata that have no selective advantage [402].

Other proposed theories on how GAs work include the Building Block Hypothesis [132], Markov pro-
cesses [72] and the Dynamical System Model [287].

2.4.3.5 Variants of GAs

One possible limitation of traditional GAs is premature convergence. It means a non-optimal genotype takes
over a population resulting in every individual being either identical or very similar, and the consequence is a
population which does not contain sufficient genetic diversity to evolve further [119,199,325]. Many variants
have been proposed to overcome this drawback of Simple Genetic Algorithms, such as Parallel Genetic
Algorithms [143, 144, 240, 268], Distributed Genetic Algorithms [22], Hybrid Genetic Algorithms [324],
Adaptive Genetic Algorithms [161], and Fast Messy Genetic Algorithms [138,325]. Here we briefly mention
two types of Parallel Genetic Algorithms, the Island Model Genetic Algorithm [380] and Niching Genetic
Algorithm [218]. In a parallel implementation of an Island Model, each machine executes a genetic algorithm
and maintains its own subpopulation for search. The machines work in concert by periodically exchanging a
portion of their populations in a process called migration. Niching Genetic Algorithms are particularly useful
when the search space is multi-modal and one likes GAs to be able to identify several peaks simultaneously.
A niche can be thought of as one of the peaks and a species is a collection of population members well suited
for a particular niche. This actually extends traditional genetic algorithms to domains that require the location
and maintenance of multiple solutions, especially machine learning and some multi-objective optimization
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problems. We are interested in these two variants of GAs, because we already encountered the premature
convergence problems in our experiments, and the idea of subpopulation in these two variants perfectly
aligns with the nature of our problem, where different file systems may have totally different features and
thus different behaviors. It might be a good idea to treat them in a slightly different way.

2.4.3.6 Applications of Genetic Algorithms

GAs have been widely applied to various areas, including the bin-packing problem [100, 101, 190, 284,
326], graph partitioning [44, 162, 171,220, 271, 345, 365], quadratic assignment problem [5, 84, 107, 164,
344,346], Job-shop Scheduling Problem (JSP) [29, 52, 53,69, 75, 82, 102, 141, 269], Travelling Salesman
Problem (TSP) [139,146,193,240,291,333], to real applications like water resource management [302,376],
transport system [33,49,347,407], set-related problems [3,18,55], steiner tree problem [158,175,368], neural
networks [23,184,238,305,381], feature selection [194,195,252,323], VLSI Design [28,60,205,226], High-
Performance Computing (HPC) [19], power system optimization [152], software engineering [45,151,191],
security [64, 65, 168], and computer system design [20, 51, 74,212, 349]. GAs have also been applied to
storage area before [79, 114, 180], although previous works limit themselves to a single objective and were
optimizing a relatively smaller search space. Our work is more general, targeting at any optimization goals
that can be measured, and we are optimizing a much larger and more complicated space.

2.4.4 Differential Evolution

Differential Evolution (DE) [40, 68,274,275, 334-336, 362] is a vector-based evolutionary algorithm, and
can be considered as a further development of genetic algorithms. DE is mostly useful when applied to
multidimensional real-valued functions. The fact the DE does not use the gradient information of the problem
being optimized greatly extends the areas that DE can be applied to, especially the problems with fitness
functions that are not even continuous or are noisy and change over time.

One big advantage of DE compared with GA is that it required fewer parameters, as shown in Algo-
rithm 3. In most cases, there are two important features that will have huge impacts on the results of DE:

e donor vector: Generating the donor vector is actually the mutation operation in DE. In the original
version of DE, we have . .
V=X, + F(Xpy — X0y (2.14)

where X, , Xy, and X, are randomly picked from the current population. F' € [0, 2] is often referred
as the differential weight. There are many other ways to generate the donor vector, such as replacing
the base vector with the best individual in the current population.

e crossover probability: The crossover probability determines whether to do crossover at the current
index. Usually, the actual crossover can be carried out in two ways, binomial and exponential.

DE has been applied to various areas [272], including function optimization, DNA microarrays, neural
network, data mining, etc.

One possible limitation of DE is that it requires all the parameter to be real-valued, while we have many
binary, discrete, and non-numeric parameters in storage systems. We have to modify the original DE in order
to apply to our problem.
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Algorithm 3: Differential Evolution

Input : Initial population initial(), donor vector donor(), crossover probability
crossover_prob(), stopping criteria stopping(), evaluation function evaluate(P)

Output : Best individual Xy

1 P« initial();
2 while not stopping() do
3 P’ + empty_list();
4 foreach f € Pdo
5 7 < donor(P);
6 fori%lto]?]do
7 if crossover_prob() > random(0,1) then
H
s | X'l « Yl
9 else
H
10 | X'l « X[il:
11 end
12 end
%
13 if evaluate(i)_<> evaluate(X') then
14 ‘ P’ .append(X');
15 else
16 ‘ P’.append(i);
17 end
18 end
19 end

20 }a + Plmaz_index(evaluate(P))];

2.4.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [56, 87, 181, 182, 260, 322] is a MH technique with a population of
candidate solutions. In PSO, one single candidate solution is called a particle, and the population of solutions
is called a swarm. Each particle starts with an initial velocity, and particles can communicate with each other
during the search process. The pseudo-code of PSO is shown in Algorithm 4.

Similar to other MH techniques, PSO also has several parameters that can impact the algorithm results.
The swarm size can be computed following the formula [260]:

swarm_size = int(10 + 2y/n) (2.15)

where 7 is the parameter dimension. However, this formula is based on only an empirical result. w, ¢, @4
from Algorithm 4 are the constant parameters set by users. They have large impact on the behavior and
efficacy of PSO [260].

Note that in line 22 of Algorithm 4, the algorithm updates the particle’s position according to the best
position that this particle has ever reached as well as the known global best solution. This may cause the
algorithm to get stuck in some local optima [262]. One simple improvement would be to replace the global
known best position with the best known position of a sub-swarm around the current particle.

PSO has been applied to various areas since been proposed [273], including bio-medical, VLSI design,
network design, graphics and visualization, etc.
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Algorithm 4: Particle Swarm Optimization

Input : initial particle initial_particle(), initial velocity initial velocity(), stopping criteria
stopping(), evaluation function evaluate(X ), the population size swarm._size(),
parameter dimension n, constants w, ©p, @4

QOutput : final state @

1 swarm_list < empty_list();
2 particle_best_list < empty_list;
3 velocity_list < empty_list;
4 swarm_size < swarm_size();
5 ? < null;

for i from 1 to swarm_size do

6

7 X} « initial_particle();

8 swarm_list.append(X);

9 particle_best_list.append (fi) ;

10 Vi « initial_velocity();

1 velocity_list.append(V});

12 if evaluate(x}) > evaluate(g) then

13 | e« xi;

14 end

15 end

16 while not stopping() do

17 for i from 1 to swarm_size do

18 for d from 1 ton do

19 rp < random(0,1);

20 rq < random(0,1);

21 P} « particle_best_list[i];

22 ‘T,d> A W‘T,c; + oprp(Pid — X1,d) + 9097'9(§1> - T,d>);
23 end

2 X X+ Vi

25 if evaluate(X}) > evaluate(p;) then
26 particle_best list[i] < Xi;

27 if evaluate(x}) > evaluate() then
28 | g X

29 end

30 end

31 end

32 end

2.4.6 Tabu Search

Tabu Search (TS) [122,124-126, 129, 343] is a Meta-Heuristic technique for solving complex optimization
problems, designed to guide traditional local search processes to escape the trap of local optimality. TS has
obtained optimal and near-optimal solution in a wide variety of applications, such as the vehicle routing
problem [351], the Travelling Salesman Problem (TSP) [118], VLSI design [301], neural network [320], etc.

Traditional local search processes take a potential solution to the problem and check its immediate neigh-
bors in the hope of finding an improved solution. They have a tendency to become stuck in suboptimal re-
gions [343]. TS relaxes the rules of local search mainly in two aspects. First, some worsening moves can be
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accepted if no improving move is available. Second, tabu lists are maintained to discourage the search from
coming back to previously visited solutions. The fabu list, or more specifically the heavy use of maintained
history, is one of the main differences of TS compared with many other Meta-Heuristic techniques. As we
mentioned in Section 2.3, history is one of the three most important characteristics of any global search
technique.

Algorithm 5: Tabu Search

o 0 NN N R W N -

e
AW DN =D

Input : initial state initial(), neighborhood function neighbor (s), stopping criteria stopping(),

evaluation function evaluate(s), the size of tabu list tabu_size()

Output  : final state s
s < initial();

Sf < S;

tabu_list < empty_list();
tabu_list.append(s);
while not stopping() do

neighbor_list < neighbor(s);
§ <= argmaTneighbor list.contains(s')and not tabu_list.contains(s’) [evaluate(sl)];
tabu_list.append(s) if tabu_list.size() > tabu_size() then
‘ tabu_list.delete Last();
end
if evaluate(s) > evaluate(sy) then
‘ Sr — S;
end

end

In Algorithm 5 we show a typical template of TS. As we can see, a fabu list is used to record recently

evaluated individuals and prevent the search process from visiting them again in the near future. In most
cases, additional elements have to be included in TS in order to make it fully effective. Here we introduce
two most important ones.

o [ntensification. The main idea of intensification is exploring more thoroughly the portions of the search

space that seem promising to ensure that the best solutions in these areas are found [119]. It is based
on intermediate-term memory, compared to the tabu list as short-term memory. One typical approach
for intensification is to restart the search from the currently known best solution.

Diversification. The main purpose of diversification is to force the search process into previously
unexplored regions of the space, and it is usually based the use of long-term memory. It records the
total number of iterations that various parameter values were involved in explored solutions. There
are two major diversification techniques [119]: restart diversification and continuous diversification.
Restart diversification restarts the search process from a solution consisting of rarely used parameter
values. Continuous diversification guides the search process directly into unexplored areas without
restarting the search process. When deciding which neighbor state to access next, instead of only using
the fitness values, continuous diversification adds a small term (directly or inversely) proportional to
the frequencies of the parameter values, and uses the sum of these two to guide the search. In this way,
unexplored states have a relatively higher probability to be selected.

These two concepts are actually similar to the ideas of exploration and exploitation which, along with his-
tory, are the three main characteristics of all MH techniques. We will discuss this topic in more detail in
Section 2.3
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TS has been applied to various areas, including the Traveling Salesman Problem (TSP), graph partition-
ing, scheduling problems, network topology design, etc. [122].

2.4.7 Other Meta-Heuristic Techniques

There are many other MH techniques which have been proved successful in various optimization domains.
We briefly cover them here. Ant Colony Optimization is based on the foraging behavior of social ants [80,
81]. Bee Algorithms are a set of algorithm based on the foraging behavior of bees, and include Honey Bee
Algorithm (HBA) [246], Virtual Bee Algorithm (VBA) [414], Bees Algorithm [270], Honey Bee Mating
Optimization (HBMO) [153], and Artificial Bee Colony (ABC) [176-178]. Harmony Search(HS) is inspired
by the improvisation process of musicians [115]. Firefly Algorithm (FA) is developed based on the flashing
patterns and behavior of fireflies [415,417,418]. Cuckoo Search (CS) is based on the brood parasitism of
some cuckoo species [112,371,419,420]. Artificial Immune Systems are inspired by the characteristics of
the immune system of mammals [26, 103, 350]. Bacterial Foraging Optimization is inspired by the social
foraging behavior of bacteria such as Escherichia coli [263]. Cross-Entropy Method is a generalized Monte
Carlo method, based on rare-event simulations [296]. Memetic Algorithms (MA) are synergy of evolutionary
or any population-based approaches with separate individual learning or local improvement procedures for
problem search [166, 189,231,239, 254]. Scatter Search (SS) derives its foundations from earlier strategies
for combining decision rules and constraints, with the goal of enabling a solution procedure based on the
combined elements to yield better solutions than one based on only the original elements [123, 127, 130,
131,222]. Although there are many different MH techniques, we find they actually all work by maintaining
a trade-off among exploration, exploitation, and history, as we discussed in Section 2.3. This trade-off is
critical in guiding the search for the global optima. Nevertheless, we plan to study many of these MH
alternative and leverage their best properties in this project.

2.5 Machine Learning

As we enter the era of big data, Machine Learning (ML) has becoming more popular in the last few decades.
We can define ML as a set of methods that can automatically detect patterns in data, and then use the discov-
ered patterns to predict future behavior, or to perform other kinds of decision making under uncertainty [244].
Generally, there are three types of ML techniques: Supervised Learning, Unsupervised Learning, and Rein-
forcement Learning. We discuss each next.

2.5.1 Supervised Learning

Supervised Learning is sometimes also called predictive learning, and its goal is to learn the mapping from
the inputs X to outputs y, based on a labeled set of input-output pairs D = {(X}, yl)}fil D is often
referred as a training set consisting of N training examples. In the training set, each input x; is usually
a multi-dimensional vector, and the elements in the vector are called features or attributes. Depending on
whether the output y is categorical or real-valued, supervised learning can be further classified into two
categories, classification and regression.

o Classification. In classification we have y € {1, ..., C'}, where C is the number of possible classes. For
example, in the application of spam email filtering, emails are classified into two classes: spam or not
spam. Important classification algorithms include Naive Bayes Classifier, Support Vector Machines,
Decision Trees, and Neural Networks.

e Regression. Regression is similar to classification except that y is continuous. Usually the estima-
tion target is a function of the independent variables called the regression function. Commonly used
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regression models include Linear Regression, Polynomial Regression, Ridge Regression, and Lasso
Regression.

2.5.2 Unsupervised Learning

Unsupervised Learning (or descriptive learning) is another main type of Machine Learning, where the dataset
is unlabeled: D = {(ff)}fil The goal of Unsupervised Learning is often to find certain patterns existing
on the dataset; that is why it is also called knowledge discovery. Unsupervised Learning is arguably more
typical of human and animal learning behaviors. It is also more widely applicable than supervised learning,
since it does not require a human expert to manually label the data [244]. Approaches of Unsupervised
Learning include:

o Clustering. Clustering is the process of grouping a set of objects in such a way that objects in the
same group are more similar to each other than to those in other groups, according to certain criteria.
Here the groups are called clusters. Common clustering algorithms include Hierarchical Clustering,
K-means Clustering, Distribution-base Clustering, and Density-based clustering [58].

o Latent Variable Model. A latent variable is a variable which is not directly observable and is assumed
to affect other observable variables (i.e., manifest variables). A Latent Variable Model is a statistical
model that relates a set of manifest variables to a set of latent variables. Some of the most widely-
applied models are factor analysis model, item response theory model, and generalized linear mixed
models.

2.5.3 Reinforcement Learning

Reinforcement Learning (RL) [289, 340] is an area of machine learning inspired by behaviorist psychology,
concerned with how software agents take actions in an environment so as to maximize the defined cumulative
rewards. Most RL algorithms can be formulated as a model consisting of:

e A set of environment states, .S
e A set of agent actions, A; and
e A set of scalar reinforcement signals.

Generally there are two categories of RL techniques: (1) Model-based RL, which builds an exact model
of the environment; and (2) Model-free RL, which learns a policy without any model. Here policy refers to
the rules that define how the agent will take actions, and the optimal policy leads to the sequence of actions
resulting in the maximum cumulative rewards.

We will mainly discuss model-free RL here, as for our project, the system is usually so complex that it is
nearly impossible to learn an accurate model. Note that sometimes GAs are also considered as one type of
RL [173]; GAs also search in the space of actions in order to find one that performs well in the environment.

Reinforcement Learning is closely related to Markov Decision Processes (MDPs) [229]. In practice, for
most conventional RL algorithms, the environments are formulated as MDPs. In the domain of MDPs, if the
rewards for each state are given, then there are two types of algorithms searching for the optimal policy.

o Value Iteration. The idea behind it is that the immediate reward from each state is not the “true value”
of that state. One state may have low initial rewards, but it is on the path to a high-reward state.
The “true value” is sometimes also called the utility, and is calculated by the initial reward plus the
expected discounted reward if the agent took optimal moves from that point on. The value iteration
algorithm first assigns each state a random value; then updates the utility for each state based on the

32



utilities of its neighbor states until no values changes. It has the drawback of slow convergence. Also,
it learns the utilities, which are not necessary. What really matters is finding the optimal policy.

e Policy Iteration. Unlike value iteration, policy iteration directly learns the optimal policy. It first
creates a random policy and computes the utilities of each state under that policy; then it modifies
the current policy by using the updated utilities. It continues this process until the policy no longer
changes.

In practice, sometimes the reward for each state is not given ahead of time, which means the agent
does not have expert domain knowledge about the environment. RL is proposed to deal with this situation.
Actor-critic Learning and Q-Learning are two of the most popular model-free RL algorithms, and they
corresponds to policy iteration and value iteration, respectively. For example, Q-Learning assigns each state-
action combination an estimated value, called a Q-value. After the agent visits each state and received the
actual rewards, it updates the Q-values of that state.

Another interesting fact in Q-Learning is that it also maintains a trade-off between exploitation, explo-
ration, and history. In the early stages of execution, when the agent knows little about the environment, it will
explore the space and try unknown actions. When it interacts enough with the environment, it will choose
the actions that it knows will receive the most rewards. However, the algorithm has to give the agent enough
chances to explore states with lower Q-values, even after running for a long time. Usually the Boltzmann
distribution is used to achieve this. The probability of selecting the highest Q-value action will increase
over time, but the chance of taking actions with lower Q-values will never become zero. Conventional Q-
Learning algorithms maintain a lot of history information by storing all the rewards they received from the
environment. Originally they use a table to store the learned data; but this becomes impractical when the
possible states and actions are numerous. Function approximation is sometimes used to replace the table for
Q-Learning in order to solve complex problems [276].

2.6 Summary

In this section we summarize the aforementioned techniques by explicitly discussing how they fit into our
unified framework of exploration, exploitation, and history.

Actually others have also attempted to unify several search techniques. De Jong argues that all Evolu-
tionary Algorithms (EAs) follow the similar pattern where:

e a population of constant size m is evolved over time,
e the current population is used as a source of parents to produce n offspring, and
o the expanded population is reduced from m + n to m individuals.

In addition to the choices of m and n, an EA must also specify a method for selecting the parents to be
used to produce offspring, and a method for selecting which individuals will survive into the next genera-
tion. Eiben and Schippers [88] provide an early discussion on evolutionary exploration and exploitation and
they argue that these two properties are the two cornerstones of problem solving by search. Following this
work, Crepingek et al. [361] provide a thorough survey on existing approaches for maintaining the balance
between exploration and exploitation. They classify the proposed approaches into three categories: diversity
maintenance, diversity control, and diversity learning.

Our unified view is different from the aforementioned ones by taking history information into account.
In Table 2.4 on Page 35 we summarize all the algorithms that we investigated in terms of these three key
properties, as well as several other perspectives. As the No Free Lunch Theorem [405] states, there exists
no single, best algorithm that will outperform all others on all types of optimization problems. We hope to
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investigate various techniques to help us better understand how to search effectively and efficiently for the
best configurations, and how to maintain a good balance among exploration, exploitation, and history. Our
ultimate goal is to devise an algorithm that can optimize any storage systems for various goals.
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Algorithm Origin Individual Population | Exploration Exploitation History
Allowing moving
to worse
Simulated Annealing neighbor states .
. . . Neighbor
Annealing | technology in State N/A based on certain . N/A
function
(SA) metallurgy acceptance
probability
distribution
Genetic
Algorithm | Natural evolution | Chromosome | Population Mutation Crossover N/A
(GA)
Tabu list;
long term
memory
Tabu Local search Solution N/A Diversification .Local'sear(':h; . used' by
Search intensification | intensifica-
tion and
diversifica-
tion.
Particle Behavioral
S\&iar.m models of bird Particle Swarm Inltlally.hlgh Velocities slow N/A
Optimiza- . velocity towards zero
. flocking
tion
Hill- . .
s Unknown Solution N/A N/A Neighbor N/A
Climbing
Random-
r;’_;itﬁft Unknown Solution N/A Restart Neighbor N/A
Climbing
Updating
Smart Restart guided by | Neighbor guided | weights in
Hill- Unknown Solution N/A Weighted Latin b}/ Weighted Welghted
Climbing Hypercube Latin Hypercube Latin
Sampling Sampling Hypercube
Sampling
- Choosing states Choosing the Up?}?:ng
. MDPs State N/A with lower state with the
Learning . Q-values
Q-values highest Q-value
for states

Table 2.4: Comparison and Summaries of MH Techniques
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Chapter 3

Related Work

The idea of auto-tuning has been investigated and applied in various areas of computer system design. Here
we start with the work on storage systems in Section 3.1. Section 3.2 will cover auto-tuning techniques
applied in other areas.

3.1 Auto-tuning in Storage Systems

Auto-tuning techniques have already been applied to several aspects of storage systems before. Gaonkar et
al. [114] apply GAs to design dependable data storage systems for multi-application environments, with the
goal of minimizing the overall cost of the system while meeting business requirements. Kimberly et al. [180]
formulate the data recovery scheduling problem as an optimization problem. They aim at finding the schedule
that minimizes the financial penalties due to downtime, data loss, and vulnerability to subsequent failures.
GAs are applied and compared with several other heuristics. GAs are also used to solve the NP-hard problem
of designing Storage Area Network (SAN) [79], which is to find the cheapest SAN that supports the specified
flows, while satisfying the port constraints, bandwidth constraints, and non-splitting of flows. From another
perspective, Xue et al. [411,412] propose an autonomic technique that learns the intensity patterns of user
workload in tiered storage systems over long time-scales using a probabilistic model. They use the model to
predict the coming workload patterns and proactively stop/start bulky internal system work. MINERVA [6],
is a suite of tools for automating storage system design, which uses declarative specifications of application
requirements and device capabilities; constraint-based formulations of the various sub-problems; and simple
bin-packing heuristics to explore the search space of possible solutions. Various machine learning algorithms
are applied in modelling the performance of the PIDX parallel I/O library and selecting appropriate tunable
parameter values [192]. Chen et al. [51] propose an approach taking a high level description of the target
workload and execution environment characteristics as inputs, and applies genetic algorithms to select high
quality I/O plans. Behzad et al. [20] present an auto-tuning system for optimizing I/O performance of HDF5
applications. The system uses a genetic algorithm to search a large space of tunable parameters and to
identify effective settings at all layers of the parallel I/O stack.

Ganger et al. [113] describe the design and implementation of “self-* storage systems,” which is self-
organizing, self-configuring, self-tuning, self-healing, self-managing systems of storage bricks. Later their
group propose to use Classification And Regression Trees (CART) models [39] to predict the performance
of storage systems under certain workloads, which they think is a key element of self-managed systems.
Although it achieves acceptable accuracy, they admit that the quality of the generated models depends highly
on the quality of the training workloads, which needs to be diverse and large enough. As we have few existing
datasets for any new workload, it becomes difficult for us to directly apply any supervised ML techniques
in solving our problem. We provide more discussion on this in Section 5.3. Conversely, GAs are applied
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in their framework to provision storage systems as well [337]. They formulate a complex fitness function
combining performance, availability, reliability, capacity, power consumption and system costs.

While these works only target one specific optimization perspective, our work is more general, and
any measurements or functions with comparable return values can be taken as our optimization goals. Our
approach is also supposed to recognize and react to the changes in the environment, which has not been
addressed in previous work. Another difference is that we are not limiting ourselves to GAs only; instead, we
are investigating a wide variety of different MH techniques, and we will come up with our own optimization
algorithms as well.

3.2 Auto-tuning in Other Areas

In this section we cover the auto-tuning techniques proposed in various domains other than storage. We
organize the text by classifying these works based their targeted systems.

General. Many theoretical projects used auto-tuning systems. Thonangi et al. [348] argue that when auto-
tuning parameters in real software systems, evaluations of configurations can be very expensive. This mo-
tivates them to propose a new adaptive search algorithm that can find good configurations under the con-
straints of high dimensionality and few experiments. Osogami et al. [258] find that the bottleneck in most
auto-tuning systems is the time taken for simulations or experiments. To address this, they propose a novel
tuning algorithm that evaluates only the necessary neighborhood configurations and evaluates them only
with the necessary accuracy. Filieri et al. [105] argue that the difficulty of modeling computer systems as
dynamic systems arise from the fact that computer systems are usually non-linear, with varying workloads
and heterogeneous components, which also make traditional control theory not applicable. To solve this,
they propose a methodology that automatically builds suitable system models, which are continuously up-
dated to compensate for changes in the execution environment, and then use those models to synthesize a
controller. Coker et al. [61] claim that future-generation self-adaptive systems are designed to optimize for
multiple interrelated, difficult-to-measure, and evolving quality properties. To address this complexity, they
suggest the research community pursue the application of stochastic search techniques, such as hill climbing
or genetic algorithms, that incorporate an element of randomness.

Web Servers. Menascé et al. [230] and Liu et al. [209] have some early work on online optimization
of Web server performance, but their work is limited in that it either needs to modify the source code or
requires an accurate analytical model of the targeted system. Later, a fuzzy controller was applied to enable
automating parameter tuning of Web servers, which employs rules incorporating qualitative knowledge of the
tuning parameters [78]. Raghavachari et al. [277] use purely random search to find the optimal configuration
of Web servers. Liu et al. [208] applied Newton’s Method, Fuzzy Control, and Saturation-Based Heuristic
Optimization to find the optimal value of the parameter MaxClients for Apache Web server. Following
that work, Xi et al. [410] propose a Smart Hill-Climbing Algorithm for black-box optimization of Web
servers; this is actually a hybrid method combining traditional Hill-Climbing algorithm and Latin Hypercube
Sampling. Osogami and Kato [259] propose the Quick Optimization via Guessing (QOG), which guesses
the performance of candidate configurations based on previous evaluations of similar configurations, and
picks the most promising one for the next measurement. Beltran et al. [24] compare the tuning complexity
of Multi-threaded and Hybrid Web servers, and they argue that the hybrid architecture outperforms the multi-
threaded one, not only in terms of performance, but also in terms of its tuning complexity and its adaptability
over different workload types. A Reinforcement Learning approach is also applied in auto-configuration of
Web servers [42].
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Architecture. Reinforcement Learning (RL) is used by Ipek et al. [165] to enhance the scheduling of
requests in the memory controller. They define a finite set of memory controller states and potential actions
and use RL to train the memory controller Diegues and Romano study the problem of automatically tuning
the policies used to regulate the activation of the fallback path of Intel TSX processors, and present a solution
that combines a set of lightweight reinforcement learning techniques designed to operate in a workload-
oblivious manner. Peled et al. [264] argue that for some workloads, memory access patterns follow semantic
locality rather than conventional spatio-temporal locality, and they introduce a context-based memory pre-
fetcher, which approximates semantic locality using RL.

Databases. Duan et al. [85] propose iTuned, a portable tool that automates the task of identifying good
settings for database configuration parameters. It applies Adaptive Sampling that proactively brings in ap-
propriate data through planned experiments to find high-impact parameters and high-performance parameter
settings. It also supports online experiments in production database environments through a cycle-stealing
paradigm that places near-zero overhead on the production workload.

Networking. Ye et al. [421,422] argue that the problem of auto-tuning network configuration parameters
has several important features, including high efficiency, high dimensionality, noise, negligible configura-
tions, and globally convex. Similar features also exist in storage system optimization problem. They propose
a Recursive Random Search (RRS) algorithm to find the optimal network configuration, which is based on
random sampling and the algorithm restarts periodically with adjusted sampling space.

Virtualization. Bu et al. [43] propose CoTuner for coordinated configuration of VMs and resident appli-
cations with the goal of maximizing the system total throughput in cloud computing environment. It uses
a model-free hybrid reinforcement learning (RL) approach, with policies that include a Simplex method,
Reinforcement Learning, and system knowledge.

Distributed Systems Saboori et al. [299] apply an evolutionary algorithm called Covariance Matrix Adap-
tation (CMA) to automatically tune system parameters for performance improvement purposes. CMA uses
a multivariate Gaussian distribution to summarize the statistics of good solutions and only the parameters
of Gaussian distribution are updated at each step. Loffler et al. [212] use several Evolutionary Algorithms,
including GAs, Cuckoo Search (CS), Particle Swarm Intelligence (PSO), and a hybrid algorithm of CS and
PSO, to minimize both network and processing latency in Event-Based Systems by means of runtime migra-
tion of event detectors.

Security. Fulp et al. [64,65,168,214] apply GAs to find suitable configuration changes that form a Moving
Target Defense, where the fitness is given by the level of security inferred based on the number of security
events detected during operation. Winterrose and Carter [404] use Genetic Algorithms to pick optimal
attacker strategies against temporal platform diversity defenses, and the fitness functions take into account
game play success, exploit creation success and strategic complexity costs.

Software. Ramirez et al. [281] propose an approach to leverage GAs in the decision-making process of
automating software maintenance tasks, which enables the system to dynamically evolve reconfiguration
plans at run time in response to the changing requirements and environments.

High Performance Computing. Tikir et al. [349] propose a GA-based approach that learns memory band-
width as a function of cache hit rates per machine and predicts the performance of HPC applications.
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Energy. Mishra et al. [236] propose LEO, a probabilistic graphical model-based learning system that pro-
vides accurate online estimates of the power and performance of an application as a function of system
configuration, with the goal of minimizing energy consumption while still meeting the performance require-
ments.
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Chapter 4

Experiment Settings

In this chapter we introduce the settings of our current experiments, consisting of three parts. Section 4.1
introduces the two set of machines that we are using. Section 4.2 covers the benchmark tools. We explain
how we picked our parameter set in Section 4.3.

4.1 Hardware

We performed experiments on two machines with different hardware categorized as low-end (M1) and mid-
range (M2). We list the details of these two sets of machines in Table 4.1. We also use Watts Up Pro ES
power meters to measure the energy consumption during the experiments and store the data for future use.

Hardware M1 M2

Model Dell PowerEdge™SC1425 Dell PowerEdge™R710

CrPU Intel Xeon single-core 2.8GHz CPU x 2 | Intel Xeon quad-core 2.4GHz CPU x 2
Memory 2GB x 1 4GB x 6

250GB SATA x 1, 200GB SSD drive x
1, 147GB SAS drive x 1, 500GB SAS
drive x 1

73GB Seagate ST373207LW SCSI drive

Disk %2

Table 4.1: Details of Experiment Machines

4.2 Software

We mainly used Filebench [104,318] to generate various workloads for our experiment use. Filebench
is versatile and comes with multiple pre-configured workloads. In our current experiments we used the
following four workloads:

e Mailserver. The mailserver workload emulates a multi-threaded email server. It generates sequences
of I/O operations to mimic the behaviors of reading emails (open, read the whole file, and close),
composing emails (open/create, append, close, and fsync) and deleting emails. It uses a flat directory
structure with all the files in one single directory, and thus exercises the ability of file systems to
support large directories and fast lookups.

e Dbserver. The dbserver workload mimics the behaviors of Online Transaction Processing (OLTP)
databases. It mainly consists of random asynchronous writes, random asynchronous reads and mod-
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erate synchronous writes to the log file. It exercises the ability of large file management, extensive
concurrency and random read/write operations.

e Fileserver. The fileserver workload emulates servers that host home directories for multiple users,
and users only have access to files in their own home directories. In this workload, one thread acts as
one user, performs create, delete, append, read, write, and stat operations on a unique set of files. It
exercises both the meta-data and data paths of the targeted file system.

o Webserver. The Webserver mimics the behaviors of typical Web servers. It has a high read/write ratio,
and reads entire files (Web pages) sequentially by multiple threads (users), and each thread append to
a common log file (Web log). This workload exercises the ability for fast lookups, sequential reads of
small files and concurrent data and meta-data management.

We plan to experiment with more benchmark tools and with real applications, to evaluate the effectiveness
and efficiency of our algorithm.

Usually Filebench executes a fixed amount of workload or runs for a fixed time period, and reports the
throughput in terms of I/O operations per second. Filebench includes multi-process, multi-thread support,
asynchronous 1I/0O, configurable options for directory depths, file sizes in workload definition, and extensive
testing on variety of operating systems including FreeBSD, Linux, and Solaris.

For our experiments, we formatted and mounted storage devices with specific file systems and then ran
Filebench on it. We used Auto-Pilot [409] to setup the storage device and drive Filebench automatically.

4.3 Dataset

We are optimizing storage systems, so we naturally considered the file system type as one of the key param-
eters [318,408]. We tried the following seven file systems and their key parameters.

1. Ext2 [46] is a plain FFS [228] based file system with fixed size blocks and block groups for localizing
related files.

2. Ext3 [356] adds journaling to Ext2 and controls the order of writes carefully. Most journaling file
systems can control what to journal (data, meta-data, or both). Journaling can sometimes help and
sometime hurt performance [318].

3. Ext4 [99] adds extents support to Ext3, useful for large files.

4. XFS [321] uses B+Tree data structures to scale the number of inodes, files in a directory, and maximum
file sizes.

5. Reiserfs [290] uses balanced S+Tree data structures to manage data and meta-data into objects called
items, each with its own key. Reiserfs can also store small files at the end of files whose data blocks
are not completely filled (tail-packing).

6. Btrfs [293] is a Copy-On-Write file system developed comparable to ZFS [35,339,423]. Bufs uses
B+tree data structure and also supports checksumming and compression.

7. Nilfs2 [186] is log-structured file system [32,224,295]. It writes all data sequentially into one or more
append-only zones; eventually data has to be cleaned and moved to its final location.

We defined two set of parameters, seen in Table 2.1 on Page 5. Storage VI contains the following com-
mon file system parameters: file system type, block size, inode size, blocks per group, mount options, journal
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Ext3 - 35.49 %
Ext4 - 35.49 %
XFS -10.41 %
Ext2 - 8.87 %
Nilfs2 - 7.81 %
Btrfs - 1.16 %
Reiserfs - 0.77 %

B00RNNN

Figure 4.1: Percentage of Different File Systems in the Whole Search Space

options, and special options. Storage V2 contains all the parameters in Storage V1 and also adds the /O
scheduler and disk type. Certain combinations of parameter values could produce an invalid configuration.
For example, for Ext2, the journaling options make no sense because Ext2 does not have a journal. To handle
this, we added a value none to the existing range of parameters. Any parameter with none value is consid-
ered invalid. Since we cannot benchmark invalid configuration combinations, we give them a zero fitness
value, which ensures they are purged in an upcoming generation. Figure 4.1 shows the percentage of each
file system among all valid configurations.

Some parameters take on powers-of-2 values within permitted ranges: block size, inode size, and blocks
per group. The mount option is a Boolean to turn on/off at ime. The journal gene supports three journal-
ing modes. The special options capture parameters that are specific to certain file systems: nodatasum,
nodatacow, and compress (Btrfs); and notail (Reiserfs). We provide a details list of our parameter
space in Table 4.2.
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Parameter File System Possible Values
File System N/A Ext2, Ext3, Ext4, XFS, Btrfs, Nilfs2, Reiserfs
Block Size Extzl?g;fifgf;r,f;?s, —
Nilfs2 1,024, 2,048, 4,096
Inode Size Reiserfs, Nilfs2 N/A
Ext2, Ext3, Ext4, XFS, Btrfs Default, 128, 256, 512, 1024, 2048, 4096, 8192
Reiserfs, Btrfs N/A
BG Count Ext2, Ext3, Ext4 Default, 2, 4, 8, 16, 32
Nilfs2, XFS Default, 2, 4, 8, 16, 32, 64, 128, 256
Nilfs2 Default, order=strict, order=relaxed

Journal Option

Ext3, Ext4, Reiserfs

Default, data=journal, data=ordered, data=writeback

Ext2, XFS, Btrfs

N/A

Mount Option N/A atime, noatime
Btrfs Default, compress, nodatacow, nodatasum
Special Option Reiserfs Default, notail
Ext2, Ext3, Ext4, XFS,
Nilfs2 N/A
I/0 Scheduler N/A noop, cfq, deadline
Disk Type N/A SAS_147GB, SAS_500GB, SATA, SSD

Table 4.2: Details of Parameter Space
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Chapter 5

Preliminary Results

In this chapter we present the results from our preliminary experiments, and we also analyze the implications
and insights. We start with an introduction to our data collection process in Section 5.1. Section 5.2 focuses
on Genetic Algorithm experiments. In Section 5.3 we cover results from Machine Learning experiments.

5.1 Data Collection

We first exhaustively ran all configurations for each workload on our test machines, and stored the results in
our database for future use. We collected the throughput in terms of I/O operations per second, as reported
by filebench, as well as the running time (including setup time), and power and energy consumption. This
data collection benefits our future experiments as we can simply simulate a variety of algorithms by just
querying the database for the evaluation results for different configurations. The exhaustive run result let us
know exactly what the global optimal configurations are, so that we can better understand how our search
algorithms perform. We list the results of several workloads that we have completed in the past few months
in Table 5.1.

Environment M1-mailserver | M1-fileserver | M2-mailserver | M2-dbserver | M2-fileserver
Throughput (ops/s) 3,677 1,709 18,845 42,071 17,081
File System Nilfs2 Ext4 Ext2 Ext4 Bitrfs
Block Size 2,048 4,096 4,096 2,048 4,096
Blocks per Group 256 2 8 16 N/A
Inode Size N/A 128 256 128 8,192
Mount Options atime noatime atime noatime atime
Journal Options order=relaxed | data=ordered N/A data=writeback N/A
Special Options N/A N/A N/A N/A compress
1/0 Scheduler (deadline) (deadline) noop noop noop
Disk Type (SATA) (SATA) SSD SAS_500GB | SAS_147GB

Table 5.1: Global Optima in Different Search Spaces

As we can see, the global best configuration for the mailserver workload on machine M1 uses Nilfs,
which is actually 2.6 better than the default Ext4 configuration for most Linux systems. It is the same
with all other workloads. For example, for the fileserver workload on M2, the global optimal configuration
improves the throughput by 10.4% compared with the default. This proves our claim that default configu-
rations are often not the best, and an intelligent and efficient tuning algorithm is necessary. When we run
a different workload, fileserver, on M1, it converges on a different configuration, Ext4. This shows that the
workload is a key part of the environment and significantly impacts the search space and optimal configura-
tions. We then run the same experiments on different machine M2. Because M2 was faster than M1, we run

44



the larger Storage v2 configuration with the I/O scheduler and disk-type parameters added, totaling 24,888
valid configurations, as shown in Table 2.1). In this case Nilfs2 was no longer the best configuration for
the mailserver workload—Ext2 was. This indicates that the hardware is also part of the environment, and
can affect the performance of storage systems significantly. The fact that the performance (and many other
metrics) are sensitive to the environment (i.e., hardware and workloads) actually complicates our problem,
as it requires our auto-tuning algorithm to possess the ability of recognize and react to the changes in the
environment itself.

One surprise from the results presented in Table 5.1 is that the best configurations of the three completed
workloads all use the noop 1/O scheduler rather than the default deadline one. This proves that default
configurations are suboptimal and even common wisdom (i.e., best accepted practices) can be wrong. Also,
of the three workloads, only the mailserver picks the SSD in its best configuration; the other two selected the
SAS drive. This may indicate that for certain workloads the more expensive SSD drive does not mean better
performance than cheaper SAS drives. In future work, we plan to use more sophisticated fitness models. For
example, a fitness model that incorporates the cost of storage along with throughput may result in an even
higher probability of selecting the cheaper SAS drive over the SSD one.

This data collection process has been running for nearly one whole year, and it will continue for years
to come, as we plan to try more types of workloads and even more complex parameter spaces. The dataset
is valuable as it contains the performance and energy consumption of tens of thousands of different configu-
rations under various workloads, which provides great insights into how file systems behave under different
scenarios. As far as we know, there is no storage-related dataset of this size available online. One important,
planned future contribution of our project is that we will make the dataset public online when it is ready and
share with the research community.

5.2 Genetic Algorithms

With the exhaustive search results collected in Section 5.1, we are able to simulate various algorithms within
a much shorter time compared with actually evaluating each configuration during the experiments. For exam-
ple, within 5 minutes we can complete 50 runs of Simple Genetic Algorithms on Storage V2. This speedup
allows as to try and compare different types of algorithms, and also explore many different parameter set-
tings within the same technique (e.g., mutation rates in GA). We start with several GA simulations using the
Pyevolve library [267], which is a python library for GAs. It contains more than ten configurable parameters,
which can have significant impact on the results, as we discussed in Section 2.4.3. We list them and their
default values in Table 5.2.

Table 5.3 and Figure 5.1 show the results of GA simulations on Storage V1 under the mailserver work-
load on M1 machines. We simulate GA five times, all with the default parameter settings from Pyevolve,
except with a total number of generations set to 200.

From Table 5.3 we can see that for 3 out of 5 runs, Nilfs2 produced a better throughput than the default
Ext4 one: 2.6 better. In fact, GA actually finds the global optimal or near optimal configuration three times
(modulo small standard-deviation fluctuations). In Run 1, GA picks Ext4 but with different options that is
still 15% better than Ext4’s default options; and in Run 3, GA picks the old Ext2 file system and a throughput
16% better than that of Run 1. These results demonstrate GA’s ability to find better configuration than default
ones and reach close to near-optimal ones, but also show the fact that the optimum is not guaranteed for each
run.

For the three runs that selected Nilfs2 as the best, the mount option noat ime is selected only once, but
it does not appear to impact the overall throughput. This may indicate that different parameters could have
quite different impacts on certain metrics; that some may even are unimportant that they can be eliminated
completely for future searches, which reduces the space exponentially. We will delve into this topic in
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Parameter | Population Size | Generation Sl\tj[l:tcl:i)? Mutation Rate | Crossover Rate | Elitism
[Roulette, Rank,
Range peNT geNTt Tournament, (0,100%) (0,100%)] i€N
Uniform]
Default 80 100 Rank 2% 90% 1
. s Crossover e e
Parameter | Multiprocess | Termination Sort Method Initialization
[SinglePoint,
TwoPoint, OX, ﬁﬁiﬂﬁ
Range [True, False] N/A [Raw, Scaled] Edge, .
. Proportional
CutCrossFill, Random]
Uniform]
Default False N/A Scaled SinglePoint Random

Table 5.2: List of GA Parameters and Their Defaults

#Run | Throughput| File |Block| Blocks |Inode| Mount Journal Special
ops/s System | Size |per group | Size | Options Options Options

Run 1 1,639 Extd |2,048 4 128 | noatime | data=writeback | N/A
Run 2 3,669 Nilfs2 | 2,048 256 N/A atime | order=relaxed N/A
Run 3 1,903 Ext2 | 4,096 8 512 | noatime N/A N/A

Run 4 3,677 Nilfs2 | 2,048 256 N/A atime | order=relaxed N/A
Run 5 3,669 Nilfs2 | 2,048 256 N/A | noatime | order=relaxed N/A

Default 1,420 Ext4 | 4,096 32 256 atime data=ordered N/A
Best 3,677 Nilfs2 | 2,048 256 N/A | atime | order=relaxed N/A

Table 5.3: Results of GA experiments on M1 for Mailserver workload

Section 6.

Figure 5.1a shows the average throughput of the population at the end of each generation, over 200
generations, for all five runs. The fluctuations seen are a natural outcome of the search process for GAs—
sometimes finding better while sometimes worse configurations.

Figure 5.1b is similar but instead records only the best maximum throughput found up to the given gen-
eration. The stair-step pattern represents plateaus in our search terrain with higher fitness (e.g., a better peak
in Figure 2.2). We can see that once GA finds a better configuration, it is carried over to future generations
and reinforced with the Elitism mechanism. Recording the best seen configuration so far takes little effort
and means that GAs generally get better over time.

Figure 5.1c shows the maximum throughput by clock time instead of generation number. We can see
that for Runs 1 and 3, GAs actually get “stuck” in a local optima (Ext2 and Ext4 configurations), without
ever having a chance to “jump” to the better Nilfs2 configurations. This is partially because we use a random
initialization method. As we can see from Figure 4.1, Nilfs has fewer valid configurations than Ext3 or Ext4.
When the initial population is randomly generated, Nilfs2 would have a much lower probability of being
chosen. This demonstrates the need to help the GA process along: tuning its parameters so it can explore
better areas of the search space, and perhaps [re]seeding its population according to the shape of the search
space.

Figure 5.1 also shows the importance of investigating appropriate stopping criteria. In most runs, 50
generations would have been enough—but for Run 3, we needed more than 150 generations to find the better
configuration.

To further investigate the impact of different initialization methods on the results of GAs, we conducted
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Figure 5.2: GA results for fileserver workload on M2 machines

two additional sets of experiments. Figure 5.2a shows 5 GAs runs for the fileserver workload on M2 with
random initialization; this means that each configuration in the search space has an equal chance to be picked
into the initial population. All other GA parameters are set to default as shown in Table 5.2, except that the
total number of generations is 120. Note that the global best for this environment is Btrfs (see Table 5.1.)
None of the 5 GA runs find the global optimal configuration; they all got “stuck” in a different local optima.
GA Runs 1, 2, and 5 converge to XFS configurations. GA Runs 3 and 4 do pick Btrfs configurations, they
still fail to jump to the global optimum. We then conducted a similar set of experiments, only changing the

47



£ 80 ' ' ' ' ' ! 5 sof
£ 70 g 70+ -
H] H]
g o0 3 6or Ext2 —8— |
e 50 e Ext3 —m— -
8 e Ext4 —e—
5 40 5 B)élffs ——
s

© 30 Nilfs2 E © Nilfs2 s
8 Reiserfs 5 Reiserfs
& 20 1 & 1
£ 10 . g _
6 0 [Pdea oot L .'\_-'-,«./(Q\}» Md\ﬂm 6 B O U, ISV NPWPT IR | PO |
* il = il e S el * i I, o

0 20 40 60 80 100 120 60 80 100 120

Generation Number Generation Number
(a) GA Run 5 from Figure 5.2a (b) GA Run 5 from Figure 5.2b

Figure 5.3: Number of Configurations for Each FS Type

initialization method. In this case all file system types have nearly equal proportion in the initial population.
As we can see from Figure 5.2b, 4 out of 5 GA runs successfully found the global optimal configuration.
This “fair initialization” outperforms the random initialization, as it seeds the initial population with diverse
genes.

We further illustrates the problem by comparing the proportion of configurations of each file system
during the search process. Figure 5.3a depicts GA Run 5 from Figure 5.2a. Clearly after Generation 20,
XFS configurations dominate the population, beating Ext4 configurations, which were the majority before
Generation 20. Btrfs does appear several times during this run, thanks to mutation. However, it soon becomes
extinct. Figure 5.3b shows the details of file system proportions during GA Run 5 from Figure 5.2b. In this
case, Btrfs dominates the population very quickly, beating all the other file systems. The above analysis
indicates that guaranteeing the diversity of the population in the very first stages of the search process may
be critical to the efficacy of the algorithms. We need more experiments to solidify this argument, which
will be part of our future work: to explore different parameter settings of various search algorithms and to
understand how to quickly and accurately converge to the global optimum.

Another finding from Figure 5.3 is that the Rank Selection method may not work well for certain search
spaces. It selects configurations from the current generation completely by the rank of their fitness values, no
matter how close they are. Consider the situation that Configuration A has a fitness value of 16,000 and ranks
1°t, while Configuration B has a fitness values of 15,950 and ranks 50" in the population. If Rank Selection
is applied, Configuration A will have a much higher probability of being picked than Configuration B does.
This is why one type of file system becomes dominant in the population for all GA runs in Figure 5.2. It
can easily cause the population to lose gene diversity, and get stuck in local optima. We can also conclude
from Figure 5.3 that in this particular environment most XFS configurations will outperform configurations
of other file system types except Btrfs, while most Btrfs configurations outperform the XFS ones. This may
indicate that different parameters might have different impact on the fitness. Here, the file system type seems
to be the dominating parameter. If we can prove the generality of this finding, it will largely benefit our
search algorithms, as we can directly eliminate less important parameters, and thus reduce the search space
exponentially. We provide more discussion on this topic in Section 5.4.

5.3 Machine Learning
In this section we discuss the practicality of applying Machine Learning (ML) techniques to solve our prob-

lem. We conducted experiments using the scikit-learn library [316]. We use a Decision Tree model [39] to
train on a subset of our dataset and test the accuracy of the model by making predictions on the rest of the
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dataset. We label our dataset by dividing the real-valued throughputs into several subranges. For example,
configurations with throughput values ranging from 1-10,000 belong to Category 1 and configurations with
throughput values from 10,000-20,000 are Category 2. After this conversion, each category has an equal
number of configurations.

Figure 5.4 shows the results from the mailserver dataset. As we can see, when the number of classes
becomes larger than 8, the algorithm has a poor prediction accuracy, even if half of the dataset is used for
training. This suggest that Machine Learning techniques may not be useful always to predict metrics like
the throughput with acceptable accuracy. It also supports our argument that supervised Machine Learning
techniques usually need a large and high-quality dataset for training use, while in our problem, there exist no
such datasets. However, when the number of labels drops to 2, the prediction accuracy is pretty high, even
only with 0.2% of the whole dataset. This inspires us to explore another direction of applying ML techniques
in our optimization: using ML as a supplemental tool to our search algorithm. Assume that Label 1 means
high throughput while Label 2 means low throughput. In this case, ML algorithms can tell our search process
to try more configurations with Label 1 while avoiding going into areas with lots of Label 2 configurations.

We conducted the same experiments on the dbserver data set, shown in Figure 5.5. Compared with
mailserver, dbserver generally needs more training data in order to achieve the same prediction accuracy,
which may indicate that dbserver workloads contains fewer patterns and more “randomness” than mailserver
does. This actually increases the complexity of our optimization.

5.4 Feature Selection

In this section we mainly talk about feature selection, or dimensionality reduction, which can serve as a
powerful supplemental tool to our search algorithm. If we can find out unrelated parameters and remove
them from the following search process, it will exponentially reduce our search space. We use Mutual
Information (MI) [245] to measure the dependence of each parameter to the throughput in our datasets.
MI is often used in probability theory and information theory as a measure of the mutual dependence of
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variables. For variable X and Y, MI is defined as:

1Y) =33 pla,y) log 76, (5.1)
zeX yeY
When I(X;Y) = 0, X and Y are independent. Higher I(X;Y") value indicates X and Y are more corre-
lated.

Figure 5.6 depicts the mutual information of each parameter type with the throughput for the three
workloads on M2 machines. Here we divide the real-values throughput into 6 classes. If the number of
classes is set too large, over-fitting is likely to occur. We tried values from 3 to 8, and they all produce
similar results.

From Figure 5.6 we can see that the File System type is the most important parameter for all three
workloads. It has the largest impact on the throughput, which aligns with our findings shown in Figure 5.3.
The parameter with the second highest MI depends on the specific workload. For mailserver and fileserver:
it is the Disk Type. For dbserver, however, it is the Journal Options. On the opposite side, the MI values for
Mount Option and I/O Scheduler nearly equal zero for all three workloads; this means that they are almost
independent of the throughput, and possibly we can remove them completely to reduce the search space.

As a follow-up, we fixed the file system type, and calculated the MI values of every parameter with the
throughput within each file system. The results are shown in Figure 5.7 (mailserver) and Figure 5.8 (db-
server). Surprisingly, under the mailserver workload, the I/O Scheduler turns out to be the highest correlated
parameter in XFS and Reiserfs, which has an almost zero MI value in Figure 5.6. Inode Size is the most
important one for Ext4 and Ext2; while Disk Type has the highest MI values for Ext3. This may indicate that
the importance of some parameters depends highly on the specific file systems; this makes sense, as different
file systems may be designed for fairly different goals. If the search space contains multiple file systems, we
may even come up with different search strategies to handle them.

If we can combine this kind of feature selection procedure dynamically into our search algorithm, it
should have a significant impact on the efficiency of the optimization process. However, as the MI values
are also dependent on the environment, when the environment changes, the algorithm will need to somehow
re-think its previous conclusions (e.g., add back eliminated parameters).
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Chapter 6

Future Work

Through the discussion on previous sections, we can see that optimizing storage systems is a problem with
high complexity and difficulty. Despite already having some progress, we are still far away from achieving
our ultimate goal, which is to auto-tune any storage systems with various goals. We feel the following points
are especially interesting to investigate:

e Dimensionality Reduction. As discussed in Section 5.4, it can serve as a powerful supplement tool to
our search algorithm. If we can find out unrelated parameters and remove them from the following
search process, it will exponentially reduce our search space. We showed in Figure 5.6 that some
parameters are highly correlated with the throughput, which means they could have huge impacts on
the performance of storage systems. Some others are less important, and can be possibly eliminated
from our search space. It is still unclear how general is this approach, but we believe that we are on
the right direction. When a human expert manually tunes a system, it is unlikely that he will try all
combination of parameters. He will try to tune the most important parameters first, according to his
domain knowledge. What we are doing here is letting the machine learn to find these “important”
parameters through a process of trial-and-error. In the future we will explore more feature selection
methods, and combine them with our main search algorithm.

e [nstability. During our data collection process, we found that the throughputs of many configurations
are not stable, especially for the fileserver and dbserver workload. It is still unknown whether this is
caused by the environment or the internals of some file systems. Nevertheless, it will greatly affect our
search algorithm, as nearly all conventional global search heuristics assume that the fitness values are
stable. Simply trying each configuration for more times is not a feasible solution, which significantly
adds the time taken by the search process and reduces the efficiency of our algorithm. One idea is to
associate a confidence level with each fitness value of configurations.

e Stopping Criteria. Good stopping criteria are critical for the effectiveness of our algorithm. We already
see from Section 5.2 that sometimes GAs will spend a long time searching the space without finding
any better configurations. It is really an open question of when we should stop our algorithm, and
simple criteria like sliding window based methods will not suffice. We plan to investigate various
stopping criteria proposed on all kinds of techniques, and devise our own version that works best for
storage systems.

e Workload Recognition. This is also important as we want our algorithm to sense the changes in the
environment, and restart the search process if needed. It is also an difficult research problem, as
it is unclear what features will be enough to accurately define a workload, and separate it with all
other workloads. Benchmarks such as SPEC SFS® 2014 [331] list several of these features: file size
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distribution, directory structure, I/O operation distribution, I/O size distribution, etc. We will explore
this topic in the future.

e Multi-Objective. Another direction for auto-tuning systems is optimizing for multiple objectives. It
has many applications in reality. For a distributed file system shared with many users, users may run
various application on it with quite different goals. Optimizing for one single metric may cause the
system to perform poorly in terms of other objectives. This has been a hot research topic for several
decades, and is likely to remain so. In the end we will add multi-objective support to our search
algorithm as well.

We only list several of the most important and interesting points above, and there are many more for us
to explore. Today, people attempt to optimize complex storage systems manually. This is akin to the old
days of writing and optimizing assembly programs. Modern compilers, however, largely eliminated the need
to write assembly code manually. Our vision is that every future storage system will come with a self-tuning
module that will obsolete the need to hand-tune storage systems ever again.
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Chapter 7

Conclusion

In this report we make the very first steps towards an ambitious yet promising goal of auto-tuning storage sys-
tems. We model the optimization of storage systems as the problem of searching for the global optimum in a
high-dimensional space. Our problem is characterized by its high dimensionality, the sensitivity of configu-
rations to the environment, and the difficulty of evaluation. We argue that Meta-Heuristics (MH) techniques
have the ability to solve this kind of problem by maintaining a trade-off among exploration, exploitation,
and history. Our experimental results show the promise of MH techniques in finding the global optima ac-
curately and efficiently. In addition, although Machine Learning (ML) techniques are not directly applicable
to solving our optimization tasks, we still find them helpful to supplement to our main search algorithms.
In the future, we will continue investigating various techniques, and we plan to devise a hybrid algorithm
that combines the essential properties of many search approaches, as well as techniques like dimensionality
reduction and supervised ML. Another part of our future work is to perform online tuning, where various
practical issues will arise (i.e., when to stop and when to restart optimizing when the environment changes).
Our ultimate goal is an auto-tuning module that can optimize for any storage system and for any metrics, so
that there is no need for manually tuning ever again.
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