Remote Debugging with Controllable Overhead

A Thesis Proposal Presented
By
Sean Callanan

Technical Report FSL-08-02

Mar 7, 2008

Abstract

Remote devices, a category that includes smart-phones and consumer-level wireless routers as
well as servers in a datacenter and consumer PCs, are becoming an increasingly relevant target
for debugging. In particular, with operating systems like Mac OS X, Linux, and Windows Mobile
being used in the most recent generation of smart-phones, the OS platform for smart-phones
has become essentially the same as that for the workstations used to develop their software.
Also, consumer wireless routers are increasingly using Linux as the basis of their software stack.
This suggests that it should be possible to create a debugging model for errors that appear in
deployment.

However, two obstacles make debugging these devices interactively a challenge. First, for
consumer devices the user interface itself frequently lacks even the most rudimentary debugging
support, such as a shell prompt. As an aggregate, servers in a datacenter have remote manage-
ment infrastructure, but this is only designed for high-level status monitoring. Second, even if the
user interface includes such support, the user lacks the expertise to use a debugger effectively. As
a result of these two factors alone, an interactive debugger is ineffective except in a development
environment. Some form of asynchronous debugging — that is, inserting debugging code and
logging its results — is necessary.

In this thesis proposal, we confront the problems with asynchronous debugging in these con-
texts. Specifically, we address the following issues: completeness, efficiency, and versatility. Com-
pleteness means having access to as much information as possible about the execution of the pro-
gram being debugged. We solve the completeness problem by modifying the GNU compiler to
produce instrumented versions of programs, exposing full information about every control-flow
and data-flow event. Efficiency means doing this with predictable impact on runtime perfor-
mance and code size — a particular concern on devices with constrained CPU, network, and
storage resources. We solve the efficiency problem by guaranteeing constant overhead and only
keeping instrumented versions of functions that are currently being debugged on the device.
Versatility means allowing the developer of the software to control what is being debugged. We
solve the versatility problem by providing a central server or distributed server infrastructure
that records the debugging requirements for the code and interacts with devices in the field, pro-
viding them with necessary code and handling the logs they produce.

We present our existing work on efficient instrumentation, and then go on to propose a system
that addresses the above issues in a coherent, extensible manner, making it possible to debug even
widely-distributed devices with ease. The solutions we design will be applicable not only to
simple networked devices like cellular phones and wireless routers, but to any computer systems
whose users are incapable of debugging the software on their own.

This work was partially made possible thanks to a Computer Systems Research NSF award (CNS-0509230) and a
NSF CAREER award in the Next Generation Software program (EIA-0133589).

Contents

List of Figures
1 Introduction

2 Instrumentation and Debugging

2.1 Compiler-based Instrumentation
21.1 ModificationstoGCC o

212 Existingplug-ins L
Verbose Dump Plug-in.

Graphical Inspection of GIMPLE Code.

Call Trace Plug-in.

2.1.3 Making Plug-ins from Existing Functionality

Transformations in Python.

Library call error detection.

Interface profiling. o L.

215 Conclusion e

22 Debugging
2.2.1 Operating system and hardware-assisted debugging

The Solaris modular debugger.

Hardware counter overflow profiling.
Hardware-assisted memory profiling.
222 Binary modification L o o

Kerninst.
223 Compiler-assisted debugging
gprof . . oo e
224 Fixedtracepoints
Lockmeter.
Linux Trace Toolkit.

3 Controlling Overhead
3.1 Reducing Overhead as Confidence Increases
3.1.1 Aristotle Design Overview

O 00 NI OO Ul W W

3.1.2 Monte Carlo Monitoring, 18

3.1.3 Implementation 21

314 CaseStudy: TheLinux VES 22

3.1.5 Conclusion e 23

3.2 Bounding Overhead Using Supervisory Control 23
3.21 Control-Theoretic Monitoring 24
Plantmodel.. 25

Target specification.. 26

Thelocal controller.. 26

Soundness and optimality of the local controller.. 26

The global controller.. 27

322 Design e 29
Controller Design. 29

NAP Detection. e 30

Bounds Checking. 31

Emitting registrations/deregistrations.. 31

Duplicating the sourcecode.. 32

Emitting instrumentation... 0000 32

323 Evaluation 32
Overhead Control Benchmark Results 32
Micro-Benchmark Results 34

Summary of Experimental Results 36

324 Conclusion e e e 36

3.3 Other Approaches to Controlling Overhead 37
Java-based code replication. oL 37

Context-based overhead reduction. 37

Leak detection using adaptive profiling. 37

4 Research Plan 38

ii

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
27

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1

A high-level view of a cooperative debugging system. 2

The architecture of GCC, with the intermediate representationsituses. 4
Plug-in transformation passes. oL 6
Syntax for specifyingaplug-in. L o oo 6
Syntax of paraneter.def L L 7
The verbose output for a GIMPLE statement 8
Gimple Viz displayingafile o oL 8
Call traceoutput. e 9

Architectural overview of the Aristotlesystem. 17
Reference-count correctness properties. L. 18
The MCMalgorithm. oo 20
Overhead reduction as confidence increases. 23
Plant (P) and Controller (Q) architecture. 24
State machine for the plant P of one monitored object. 25
State machine for local controller Q. 26
Timeline for local controller. 27
Overall control architecture. L oL 28
State machine for the global controller. 28
SMCO architecture for bounds checking and memory under-utilization detection. ~ 29
NAPdescription 30
menmi nst instrumentingcode Lo Lo Lo oo 31
Observed load versus desiredload 33
Aging memory areas in Lighttpd00 0. 34
Effectiveness of bounds-checking as overhead changes 35
Bounds-checking continues to be effective overtime 35
Observed NAPs increase with target overhead for the MICRO-NAP micro-benchmark. 36
Architecture of the proposed system. o L. 38

iii

Chapter 1

Introduction

In this thesis, we are proposing a new model for conducting cooperative debugging. Cooperative
debugging is a recent development in software debugging, and gives an application’s develop-
ers the ability to investigate problems in that program’s execution on many computers [29]. In
cooperative debugging, developers deliver versions of their programs that they have modified
to record information about their execution. Periodically, these programs report that information
back to the developers, who then use it to draw conclusions about the execution of the program.

Cooperative debugging is useful for a variety of technical reasons; we will discuss three of
these in detail, and also mention related work that tries to solve similar problems. We summarize
these advantages as follows:

e Cooperative debugging allows developers to examine the execution of their applications
in environments that they cannot replicate in-house. For example, the space of possible
configurations a video player may encounter is staggering: container formats, video and
audio encoding schemes, bit-rates, storage devices, and computer configurations can all
vary.

e Cooperative debugging takes the user out of the diagnosis process. Most bug report forms
rely on the user to aid in reproducing the bug by providing extensive configuration infor-
mation. Even if the user takes the time to fill out such a form and provides all relevant
information, a developer may want to get more specific information. Unless the bug is
preventing the user from doing something—in which case the user will cooperate until the
issue is resolved—it is difficult to convince the user to take time to help in diagnosing it.

e Cooperative debugging permits debugging on a scale that is impossible for all but the
largest organizations. Even if configurations are exactly identical, deadlocks and race condi-
tions may occur only extremely rarely, and developers will find it difficult to identify them
without a large database of program executions to refer to. In addition, large databases
of executions can provide compelling justification for rearchitecting large subsystems of a
program.

If we translate these advantages into economic terms, cooperative debugging reduces the
amount of resources required to achieve a given level of value from debugging by enlisting users
as testers. Furthermore, it allows on-staff QA professionals and programmers to spend their time
more effectively by indicating which bugs are encountered most often in the field.

In Figure 1.1, we present a model of flow of information through a cooperative debugging
system. We will use the various components of this model to discuss past solutions to this prob-
lem.

In cooperative debugging, the developer prepares an application’s source code normally. The

APPLICATION N\ Execurion
Source CoDE Logs

COMPILER, Data
LINKER COLLECTOR

Developer environment \ %
User environment

<&

DEepPLOYED
APPLICATION

Figure 1.1: A high-level view of a cooperative debugging system.

compiler and linker, in addition to performing their normal tasks of translating the program into
machine code and preparing it to run in the target execution environment, prepare the applica-
tion for cooperative debugging by adding instrumentation code that executes at specific points
in the application’s execution and collects information that the developer finds relevant. The
application, once shipped to consumers, compiles logs of its execution that it sends back to the
developer.

Chapter 2

Instrumentation and Debugging

We discuss existing approaches to compilation in Section 2.1 and debugging on the target ma-
chine in Section 2.2.

2.1 Compiler-based Instrumentation

All modern compilers have special support for debugging. The reason for this is that the com-
piler is typically the first part of the development “toolchain” to analyze an application, and
maps programmer-generated artifacts to executable code. In order to fix problems with the exe-
cutable code, developers must determine the relationship between the portion of the executable
that failed and the artifacts that it was generated from. Consequently, most compiler store a map-
ping from artifacts to executable code; this mapping is typically known as debugging information.

Compilers typically insert debugging information into data packets that reside alongside the
code they describe [37], or into separate sections of a binary file [21]. This debugging information
documents several aspects of the source-executable mapping;:

Line information: The compiler records which ranges of lines in the assembly code correspond
to particular lines of the original source code. The DWAREF format [21] also includes column
information, to identify assembly instructions that correspond to individual portions of
complex explanations, such as the individual clauses in a f or statement.

Variable information: The compiler saves information about the local variables for a function,
as well as the location of static and global variables. This information includes whether the
variables are allocated on the stack or in registers, how they can be extracted, and what type
they are. For variables that move between the stack and registers, DWAREF allows compilers
to emit location lists.

Function descriptions: To facilitate calling of functions and stack unwinding (see Section 2.2,
compilers can emit function signatures that specify how functions should be called and
where their code resides.

The usage model for debugging information is very specific: debuggers use it to inspect
and manipulate program’s state when it is paused. This inspection and manipulation is either
programmer-guided or very naive, as we shall see in Section 2.2. For more sophisticated analy-
ses, particularly those that occur without pausing the software, the compiler needs to not only
add auxiliary information but also modify the application so that it performs these analyses—or
provides the data required to perform them—at run time.

In order to understand how the compiler does this, we must first explain the intermediate
representations that the compiler maintains for an application as it transforms it into executable
code. An intermediate representation is a data format (typically memory-resident) that serves as

the interface between two parts of the compiler, or to permit a user-specifiable combination of
similar components, such as optimizers, to operate on a portion of the software sequentially.

Instruction

Parser ¢~ Gimplifier ~£y<C+d Expander e Selector i

a=b+c+d; w— /N — t <b+t — (reg:r0) — add r2,r2,r0
b ,+\ 1 0 (reg:r2))) 1wz r0,24 (r30)

dd r2,r2,r0

e d aetl a r2,r2,r
Source CoDE ABSTRACT THREE- REGISTER- ASSEMBLY

SyNTax TREE ADDRESs CODE TRANSFER LANGUAGE

Figure 2.1: The architecture of GCC, with the intermediate representations it uses.

Our compiler-based instrumentation work has focused on the GNU Compiler Collection (GCC),
whose components are illustrated in Figure 2.1. We now discuss the individual intermediate rep-
resentations, and describe their respective characteristics and how each of them can be used for
debugging.

Abstract Syntax Trees: After parsing, GCC (like most compilers) represents a source file as a
collection of trees that represent the syntactic structure of each function. These trees re-
tain much of the original structure of the source file, including block information, loop
structure and nesting, and compound statements. At the abstract syntax tree layer, trans-
formations can most easily detect common programming idioms—such as use of iterators
in a loop—without performing expensive and complicated analyses. Instrumentation, like
source-level tracing, that reports information at the granularity of programmer-written code
lines is best implemented at this level. Other tools, such as Cil [16], represent code in a sim-
ilar way.

Three-Address Code: GCC converts the abstract-syntax trees into their semantic equivalents,
reducing them to assignments that take at most two values per statement and combines
them to produce a third. The assignments retain all the type information that was discov-
ered during parsing, and share the building blocks of the abstract-syntax tree representa-
tion, but are much simpler to manipulate. To represent intermediate values, GCC generates
temporary variables; additionally, it simplifies the control flow structure by constructing a
control-flow graph and replacing more sophisticated structures with conditional got os. For
optimizations, GCC developers recommend this layer, which was designed explicitly for
ease of manipulation by the programmer [35]. The reason for this is that most data-flow
and control-flow analyses use a control-flow graph representation and prefer as simple a
syntactic structure as possible because this reduces the number of side-effects that must be
considered.

Register-Transfer Language: After giving optimizers the opportunity to transform the three-
address code, GCC converts it into a format that closely resembles assembly code. It de-
termines the kind of storage that each variable requires, what low-level operations must be
performed on the variables, what classes of instructions provide them, and performs reg-
ister allocation and final instruction selection based on this information. Although GCC
performs some optimizations at this level, including instruction scheduling, the implemen-
tation of RTL in GCC is so complicated and fragile that GCC programmers recommend
against using it for any kind of instrumentation.

We developed a plug-in based transformation system based on the GCC’s GIMPLE interme-
diate representation [33], which it uses for three-address code. Despite its simplicity, the GIMPLE

intermediate representation presents its own challenges during transformation development and
testing for several reasons. First, the maturity of the GCC project and the fact that many system
distributions depend on GCC to compile their system makes it difficult to get transformations
integrated into GCC until they are very mature. Second, it may not be desirable to include and
maintain transformations that do not have broad appeal in the core GCC distribution. Finally, it is
an unattractive proposition to have to distribute experimental transformations as patches against
a particular version of GCC and recompile the compiler when changes are made.

To solve these problems, we developed a plug-in system similar to that used by Eclipse [30].
Our system allows separate development and compilation of GIMPLE transformations, solving
the problems listed above and offering new features like enhanced debuggability and better ar-
gument passing. We have already developed a variety of plug-ins using our system, and have
realized two main benefits. First, we were able to take advantage of graphical debugging tools
that we describe in Section 2.1.2 as well as significantly reduced development time because we
were developing outside the GCC build system. Second, we were able to port our transforma-
tions from one version of GCC to another without changing a single line of code; once the plug-in
support was ported to the new GCC release, the plug-ins just needed to be recompiled.

In the remainder of this section, we demonstrate the simplicity and power of GCC transfor-
mation plug-ins. In Section 2.1.1, we describe the modifications to GCC that make plug-in-based
development possible. In Section 2.1.2, we describe some plug-ins that we have already built
using this infrastructure, highlighting plug-ins that are useful to transformation developers. In
Section 2.1.3, we discuss two parts of GCC that could be made into plug-ins. In Section 2.1.4, we
describe plug-ins that could be created in the future, and we conclude in Section 2.1.5.

2.1.1 Modifications to GCC

Plug-ins are built based on an Autoconf-based template [11]. The template’s confi gur e script
currently requires the headers from a built version of the GCC source code; when the plug-in
is built, the Makefiles produce a shared object file suitable for loading using the host operating
system’s dynamic loader interface.

Only minor changes need to be made to GCC to support plug-in loading. These changes
revolve around three tasks; we will discuss them below in turn. The first change is an addition
to the GCC build sequence, compiling the Libtool | t dI library [14] into GCC and linking GCC
with - export - dynam c. This allows GCC to load plug-ins, and allows plug-ins to access GCC
interfaces. The second change is the addition of an optimization pass before all other GIMPLE
transformations, and at the start and end of translation for each file. This allows plug-ins to
maintain per-file state and perform code optimizations while referring to this state. The third
change is the addition of a compiler flag that allows the user to specify plug-ins to load and
provide arguments to those plug-ins either on the command line or through files.

To add the I tdl library to GCC, we modified the top-level top-level Makefile to add build
rules for the | tdl library. Additionally, we modified the build rules for the cc1 binary to make
it compile with Libtool, export its symbols like a shared library (using the - export - dynami c
option to Libtool), and use the | t dI library to load plug-ins. The ability to export symbols from
an executable to plug-ins does not exist on every platform: Linux, Solaris, and Mac OS X support
this functionality, for instance, but Cygwin does not. A build process in which the GCC backend
code is linked as a shared library, and ccl and all plug-ins are linked against it, would have
eliminated this requirement. However, large amounts of state that is currently maintained as
globals by the backend would have to be converted to on-stack state because otherwise cc1 and
the plug-in would have differing copies of the backend’s global state.

To allow instrumentation plug-ins to run at the proper times, we added several new passes to

passes. ¢, allowing plug-ins to run at various points in compilation. We describe these in Table
2.2.

Pass Location Purpose

pre Before compilation Allows plug-ins to perform data-structure
initialization before compilation of a source
file begins.

ctrees | After C parsing Allows plug-ins to analysze the abstract
syntax trees for a C program before it is con-
verted to GIMPLE.

cgraph | Before IPA transformations Allows plug-ins to perform interprocedural

analyses, which have access to every func-
tion’s code and the call graph.

gi mpl e | After IPA, per function Allows plug-ins to manipulate the GIMPLE
representation of each function, including
the control-flow graph.

rtl After conversion to RTL, per function | Allows plug-ins to manipulate the RTL for
each function.
post After compilation Allows plug-ins to perform data-structure

cleanup after compilation of a source file
ends successfully.

Figure 2.2: Plug-in transformation passes.

Finally, to allow the end user to specify which plug-ins should be loaded with which argu-
ments, we provided a new argument, - f t r ee- pl ugi n, which has the syntax shown in Figure 2.3.

- f tr ee- pl ugi n=plug-in-name
: key=value

Figure 2.3: Syntax for specifying a plug-in.

The first argument, plug-in-name, is a shared object file that contains functions for one or more
of the passes described in Table 2.2. The list of key-value pairs specifies arguments to the plug-
in; these can be fetched using a function. In addition, the special key _CONF specifies a file to be
loaded and parsed for additional arguments; in this case, each line in the file is a key-value pair
separated by an = sign.

2.1.2 Existing plug-ins

We will now enumerate some plug-ins that we have already developed: a verbose dump plug-
in for GIMPLE meant for use by programmers in developing transformations, and a call-trace
plug-in for use by end users in tracing their code. We have also developed mal | oc checking and
bounds-checking plug-ins; however, these will be superseded by a plug-in implementation of
Mudflap (see Section 2.1.4).

Verbose Dump Plug-in. Transformation developers frequently require a view of the GIMPLE
code that is as verbose as possible. They use this view for several purposes: to identify patterns
that need to be transformed, to determine the proper form of GIMPLE structures that transfor-

mations should generate, and to verify that transformations are working correctly. We designed a
verbose dump plug-in to facilitate this. We designed the verbose dump plug-in with extensibility
in mind: as GIMPLE evolves and grows, the verbose dump plug-in will handle new GIMPLE
objects, such as new tree codes or parameters, with little or no changes needing to be made. We
achieved this by creating a new file, par anet er . def, that resembles t r ee. def but formally spec-
ifies all the accessor macros that exist for tree attributes. The file contains lines of the form shown
in Figure 2.4.

DEFTREEPARAMETER(
name,
type,
macro,
code, ...

)

Figure 2.4: Syntax of par amet er . def

The name field specifies the name of the macro; the type field specifies what type of data
it returns (e.g., S| ZE_T or TREE); the macro field specifies the macro used to extract the field;
and the code fields constitute a list of TREE_CODEs for trees that have this parameter. For exam-
ple, the parameter named t ype_pr eci si on has type SI ZE_T, macro TYPE_.PRECI Sl ON, and codes
| NTEGERTYPE, REAL _TYPE, and VECTOR TYPE.

Graphical Inspection of GIMPLE Code. As shown in Figure 2.5, the output from the verbose-
dump plug-in is so verbose as to be overwhelming in large quantities. Rather than adopt a sim-
plified representation, we instead developed a Java-based tool called Gimple Viz to represent the
output graphically. We chose Java as the development language due to its cross-platform compat-
ibility, which allowed us to concentrate on the development of the actual tool itself as opposed to
platform support and library dependencies. Figure 2.6 is a screen-shot of Gimple Viz displaying
a file. The visualizer has three main areas: the Control Flow Graph area, the GIMPLE Tree View
area, and the Source / Search area, which we describe below.

The control flow graph for each function is rendered as rectangles connected by arrows. Each
colored rectangle represents a basic block. When the user clicks on a block, Gimple Viz high-
lights the selected block along with its predecessors and successors. The successor edges are
highlighted as well. Additionally, it displays a tree representation of the corresponding GIMPLE
nodes in the GIMPLE tree view area, and highlights corresponding code or dump lines in the
source / search area.

The GIMPLE tree view area is a visual representation of the GIMPLE code for a particular ba-
sic block. The root node of each tree is a statement from the currently selected basic block, labeled
with the result of applying pri nt _generi c_st nt . The other nodes are operands or parameters of
their parents. The user interacts with the tree view in two ways: clicking and searching. Man-
ually clicking a node will expand that node showing its children. This process can be repeated
until the desired node is reached. Searching for a particular TREE_CODE will expand the tree to
reveal the desired node, allowing the user to quickly locate specific nodes.

The Source/Search area can show search results, source code, and verbose-dump output. The
results of searches—function searches, basic-block searches, and type searches—are interactive:
clicking on a function search result shows the control-flow graph for that function; clicking on
a basic-block search result shows the containing function’s CFG and highlights the block; and

MODI FY_EXPR 1, 2
TREE_TYPE:

I NTEGER-TYPE 2,0
TYPE_PRECI SI ON=32

TYPE_UNSI GNED=t r ue

VARDECL 2,0
TREE_TYPE:

I NTEGER.TYPE 2,0
TYPE_PREC! SI ON=32
TYPE_UNSI GNED=t r ue

DECL_ARTI FI Cl AL=t r ue
MULT_EXPR 1, 2
TREE_TYPE:

I NTEGER.TYPE 2,0
TYPE_PREC! SI ON=32
TYPE_UNSI GNED=t r ue

Figure 2.5: A portion of the verbose dump output for one statement, leaving many node attributes out.

£ GIMPLE Viz v1.0
File Edit SearchOptions Functions Help

h | search |successors are Preecessors are Selacted block is _

ot s T mo

] eiMPLEVizv1.0

|Enter

ddress Deh7daticd] F= =2 Basic Black: Dxb7e80d

[Entry Block ¢ E1D.2371 = (n x;
¢ I MODIFY_EXPR
¢ [TREE_TYPE
¢ 3 INTEGER_TYPE
D TYPE_PRECISION = 32
D TYPE_UNSIGNED = false
o [VAR_DECL

o [JNOP_EXPR
¢ 10 2372= facts[D.2371];
& [C111(D.2372==0) goto L0~ else yoto <L3x;
£ COND_EXPR
¢] TREE_TYPE
[voip_Tvre

o I FQ FAPR -

[teste. | testrererence.out | search Results

[2) #inct o h= 14
[2) #inclue <systtypes b i
10
15) u_intBd_tfacts[21],4 anything over 20 and we' e |
B
[7) u_inted_tfactiunsigned char)

i 2E

No =0

4 -
ldiess | Oxbyd90dcO ddress | Dxb7d90ebl
) <L3=,
D231 = Gy
1) D 2380 = facts[D 23811,
[3) returm D.2380;

else
13) factshg=x*Tactoe1);
1

5| K

Expression (0) > Line : (9) Expression (1) -> Line: (%) Expression (2) -> Line : (9)

Figure 2.6: Gimple Viz displaying a file. 1 marks the CFG area, 2 marks the tree view, and 3 marks the source/search
areaq.

clicking on a TREE_CODE search highlights the containing basic block and expands the containing
tree in the GIMPLE tree view to make the tree with that code visible.

Gimple Viz can also display the original source file that was compiled by GCC in the source /
search window. For quick reference, line numbers are displayed for the user. Although the user
cannot directly interact with this area, clicking a basic block or a search result will highlight the
lines corresponding to that block, its predecessors and its successors. Finally, the source / search
window can also display the raw verbose dump output.

Call Trace Plug-in. We have developed a plug-in called call-trace to allow full verbose tracing
statements to be added to a program at compile time without requiring the programmer to add

*xx CALL TO main [O0]

Struct :*xtestxx found in function
* % TAl N* *

test->value = (int32t)5
test->name = (char=*)"contents"
*x CALL TO foo [1]

* [1] testPtr = OxOx7fffcef31770
x CALL TO foo2 [2]

* [2] value = OxOx7fffcef31748
Condi tional found val ue = FALSE,
ri ght branch taken...

*xx [2] RETURNED nul |

Figure 2.7: Call trace output

any code. This feature significantly reduces debugging time for many code problems by elimi-
nating the need to add pri ntf statements and other debugging statements to code, and by pro-
viding verbose tracing information in cases where the programmer would normally have needed
to single-step the program in gdb.

This plug-in identifies control points in the GIMPLE code corresponding to conditional state-
ments and function calls, as well as accesses to variables. Arguments control exactly which state-
ments are logged, and which portions of the source code are to have logging added. The way
events are reported is also configurable: logging statements can be printed using f pri nt f or sent
to a custom logging function. Figure 2.7 shows sample output from the call tracer.

We are currently developing an extension to Gimple Viz to display the output from the call-
trace plug-in in a visual manner, giving the developer the ability to watch the internal execution of
a program at run-time. We are also expanding the call-trace plug-in to detect not only conditionals
but loops as well by tying into the GENERIC intermediate representation.

2.1.3 Making Plug-ins from Existing Functionality

In this section, we describe portions of GCC'’s functionality that could be extracted into separate
modules for use only when needed. This would have three benefits: first, it would enforce modu-
larity for these components, ensuring that they can be maintained separately from the main code
base and contributing to their stability as GCC internals change. Second, it would reduce the
turnaround time for fixes to mudflap because they would not need to be subject to the scrutiny
that core GCC patches are subjected to. Third, it would reduce the size of the core GCC code base,
resulting in less code for GCC’s core developers to maintain and support, and less download and
compilation time for end-users.

Mudflap. This utility provides pointer-debugging functionality including buffer overflow de-
tection, matching-based leak detection, and reads to uninitialized objects. It is implemented as
two GIMPLE optimization passes: one that executes before the lowering to SSA (Static Single As-
signment) so that all scopes are intact, and one that executes after lowering and optimization to
get an accurate view of just those memory accesses that have actually been performed. Mudflap
can be converted to a plug-in provided that plug-in hooks are provided at multiple stages in the
optimization process. Our plug-in infrastructure supports transformation hooks at all locations
where built-in GIMPLE transformations can take place, making this process straightforward.

geov and gprof. These utilities consume call-graph information that is generated by GCC and
by the running program, creating runtime profiles of the execution patterns for code that has been
compiled with the - p or - f profi | e-arcs flags. When profiling, GCC modifies the program to
include coverage counters embedded in the program that provide runtime coverage information.
It also generates a call-graph for the program. The transformation that performs these tasks runs
as a transformation in a way analogous to Mudflap, but labels basic block edges with additional
information that uses the aux field in the basic block structure. This does not present a problem for
these transformations, since they take place in one pass and do not need persistent aux storage.
However, other plug-ins that may need to do analyses at multiple times in compilation it may
become desirable to expand aux to support addition of custom fields, perhaps keyed on a string,
at runtime.

2.1.4 Future Work

Once the groundwork is in place that allows GCC transformations to be developed as plug-ins,
we anticipate that many new transformations will be developed. In this section, we outline future
applications of plug-ins, some of which we are currently developing for our own research.

Transformations in Python. Some developers only want to perform straightforward analyses
or transformations that use the GIMPLE API. To reduce development time for these developers,
we are developing a plug-in that will expose the GIMPLE API to Python scripts. This plug-in
links against the Python library and executes a user-specified Python script for each function
being translated. It currently allows read-only access to basic blocks and trees; we are adding
support for viewing and editing the control-flow graph, adding and removing statements, and
modifying trees. In addition to reducing development time, this plug-in will allow developers
to use Python data structures, reducing implementation time for optimizations that use sophisti-
cated algorithms to perform static analyses on GIMPLE.

Library call error detection. When developing systems software, programmers frequently add
large amounts of error checking for library function calls to detect problems that are ironed out in
the early stages of development. This error-checking adds to code size, reduces code readability,
and takes time. In addition, retroactively adding error-checking onto existing code if it fails can
be a significant time investment. . A GIMPLE transformation plug-in could be used to add error-
checking to code at compile time, optionally warning when the code is not written to check the
result of calls that commonly fail.

Interface profiling. Threaded applications typically have points at which threads wait for re-
sponses from other threads. These can take several forms: functions that are called to perform
synchronous requests, or locks that the programs block on until data is ready. Additionally, even
single-process applications can spend time waiting for library functions or system calls to com-
plete. A GIMPLE transformation plug-in could accept a list of locks and interface functions to
profile, and add entry-exit profiling to these locks and functions. This would be coupled to a
runtime library that determines the amount of time spent waiting for these interfaces, credited to
the functions that waited for them.

2.1.5 Conclusion

We have described a framework that we developed that allows GCC to load and execute plug-
ins that implement custom GIMPLE transformations. This framework offers three compelling
benefits:

e it reduces development time for new GCC transformations;

10

e it allows transformations to be developed and distributed that would otherwise be difficult
to use or not available at all; and

e it reduces the workload for the GCC core developers by reducing GCC code size and allow-
ing many transformations to be maintained separately.

We have shown a verbose-dump plug-in and a compatible Java-based visualizer that help
GCC developers develop and debug their transformations. We have also shown a call-trace plug-
in that tracks function calls, variable accesses, and conditionals, providing a detailed view of the
execution of a program. In addition to these existing plug-ins, we have shown examples of exist-
ing functionality in GCC that could be converted to plug-ins, and examples of new functionality
that do not exist yet but would be well-suited to implementation as plug-ins.

2.2 Debugging

Traditionally, debuggers have been defined as command-line tools that have a relatively standard
set of functions, controlled by a command-line interpreter. This kind of debugger is also called
an source-level debugger. The interpreter evaluates expressions written in a language very similar
to the original source code, using type information embedded by the compiler and data from
a paused process or process image. Examples of source-level debuggers include GDB [15] and
dbx [45]. The core mechansims used by these tools are:

Process control: Modern UNIX kernels provide debuggers with interfaces to stop, start, and
single-step processes. Most other operations a debugger performs require a process to be
paused first. Operating-system support for process control varies widely. Linux provides
a system call, pt race, which implements process stopping, starting, and single-stepping
as kernel facilities [22]. Solaris exposes this functionality to user-space through the / pr oc/
pid/ ct| file, which is replicated for every process and every thread [31]. Mac OS X exports
this functionality through the Mach task and thread port interfaces [2].

Watchpoints and signal handling: Users frequently want to stop a process when a particular
event occurs, including when a signal arrives and when the process touches a particular
area of memory. Debuggers can trace signals in various ways: Linux and Mac OS X provide
the ability to trace signals through the pt r ace interface. (Mac OS X does not provide Mach
interfaces to do so because Mach does not use signals.) Solaris provides signal tracing via
the / proc/ pidl ct| interface. Watchpoints are typically implemented using dedicated CPU
support, typically implemented as watch registers [51].

Memory inspection: Reading and writing a process’s memory violates isolation, so this too re-
quires special kernel support. It is nonetheless necessary for inspection of a program’s vari-
ables, as well as the debugging information necessary to interpret the program’s execution
state. Linux and Solaris provide a special file that allows a debugger to read from a pro-
cess’s memory (/ proc/ pid/ memon Linux, and / pr oc/ pid/ as on Solaris), although Linux’s
version does not allow writing due to a security hole. Mac OS X provides a Mach call,
mach_vmr emap, to map another task’s memory into the current task’s address space [42].

Source-level debuggers are a well-understood area; however, there are three areas in which
they fall short of the requirements of programmers today. First, the source-level debugger inter-
face is locked into a particular interaction model. Modern development environments such as
Xcode [25] and Eclipse [17] must consequently rely on slow, text-only interfaces to the debug-
ger. Second, source-level debugging is slow; the fact that the debugger is external to the process
and typically interprets its command language makes it unsuitable for operations that need to be
performed often, like verifying that a particular lock is held each time a variable is accessed [43].
Third, source-level debugging does not permit maintenance of auxiliary data structures to keep

11

track of information, preventing checks like stale memory detection.
In this section, we will discuss existing alternatives to source-level debugging that others have
developed, as well as interposition methods we have developed.

2.21 Operating system and hardware-assisted debugging

As we saw in our discussion of source-level debuggers, operating systems and hardware provide
considerable support for debugging, which is exploited by a variety of tools; we will discuss some
of these below.

The Solaris modular debugger. Solaris provides extensive user-level support for debugging [32].
The Solaris modular debugger, ndb, provides an API that allows programmers to write custom
debugging tools that exploit these APIs [41]. Programmers implement these tools as modules,
which they can compile as object files using a C compiler and load into ndb, allowing maintenance
of auxiliary data structures using the standard C heap allocation APIs. The debugger provides
a uniform command-line interface that allows users to compose the functionality provided by
these modules, allowing quick inspection of large data structures and maintenance of auxiliary
data structures. ndb can debug both userspace targets and the Solaris kernel, and Solaris devel-
opers have provided an extensive module infrastructure for debugging memory, inter-process
communications, and other subsystems.

DTrace. Although its compiled module support makes mib much more versatile than conven-
tional source-level debuggers, nub still pauses the process to perform its inspection. This makes
mdb’s approach unsuitable for production environments and for diagnosing timing-sensitive bugs
like performance bottlenecks and deadlocks. DTrace is an event-processing system that is in-
tended to operate autonomously on a running system [9]. It runs inside the operating system’s
kernel, and can monitor events both in the kernel and in user processes. Users interact with
DTrace by writing scripts and compiling them into a restricted bytecode, which runs in a virtual
machine inside the kernel, reducing context-switch latencies and performing data collection and
aggregation without requiring interaction with the user.

Hardware counter overflow profiling. Many microprocessors include performance counters
that record instruction counts, cache misses, cache invalidations, pipeline stalls, branch mispre-
dictions, and other statistics [28]. These counters increment each time a particular event occurs,
and often generate CPU interrupts when they overflow. The operating system can read from and
write to these registers. Many tools use these counters to measure overall execution characteris-
tics [10], allowing the developer to get a general view of an application’s execution characteristics.
In cases where a counter overflow generates an interrupt, many tools also provide the ability to
sample these events to determine their causes, by loading the counter with a value very close to
an overflow and inspecting the code that caused the interrupt when an overflow occurs [54].

Hardware-assisted memory profiling. All modern microprocessors intended for server or desk-
top use have memory-management units. Operating systems take advantage of this hardware
not only to provide isolation, but to measure applications” usage of memory. The canonical
two-handed clock algorithm takes advantage of MMU page usage bits, swapping out unused
pages [47]. Although the granularity of this approach is limited to the system’s page size, Safe-
Mem demonstrates that similar protections are possible using ECC memory, providing cache-line
granularity [38]. To determine whether a particular cache-line is used, SafeMem disables ECC on
it, scrambles it in a reversible manner, and then re-enables ECC. The ECC check is performed on
the cache line when it is used; cache lines for which no ECC errors come in are consequently not
being used. SafeMem uses this approach for bounds-checking as well, putting bad data into ECC

12

lines to either side of a valid allocation. ElectricFence applies a similar approach using only the
MMU [36].

2.2.2 Binary modification

When specific hardware support is unavailable, or to avoid the kernel-user context switches asso-
ciated with hardware interaction, debuggers can rewrite the binary representation of the program
being debugged. This can be accomplished in one of two ways. First, a tool can modify a binary
before use; second, a tool can instrument a running binary. We will discuss examples of both.

ATOM. ATOM is a library that programmers can use to implement instrumentation tools [44].
Tools built with ATOM accept a program binary and add instrumentation code to it statically —
that is, without running the program. ATOM-based instrumentation tools work by inserting the
instrumentation code into free space between segments, and inserting calls to that instrumenta-
tion at every relevant point in the executable. This is done to avoid having to modify offsets in
the executable, which has already been fully linked and would be difficult to relocate again.

Kerninst. What ATOM does for user binaries, Kerninst does for a running Solaris kernel [46].
The tool takes object files containing instrumentation code and inserts them into the Solaris ker-
nel, including any and all installed loadable modules, at runtime. This is done via a springboard
mechanism: the assembly instruction before which instrumentation is to be inserted is placed at
the beginning of a new piece of assembly code, which also includes the instrumentation function.
A ba, a instruction, an unconditional branch that annuls the instruction in its delay slot, is in-
serted in its place; however, on the SPARC architecture, branches can only target code locations
within 8 megabytes of the branch instruction. In most cases, there is not sufficient room to place
the entire instrumentation function this close, but there is enough room to place a small “spring-
board,” which contains a cal | instruction that jumps to the actual instrumentation function, and
a nop for its delay slot.

2.2.3 Compiler-assisted debugging

Binary modification has two problems. First, inserting instrumentation code into a program is dif-
ficult to do without performing a full relocation afterward. This is because code is tightly packed
and there is no room to insert code in-line, meaning that instrumentation code must be located
outside the instruction stream, reducing performance and increasing implementation complex-
ity. Second, instrumentation doesn’t have access to all the rich type information and high-level
structural information that the source code contains. Inserting instrumentation using the com-
piler solves both of these problems: it takes place before linking, and instrumentation tools have
full access to the compiler’s intermediate representations.

gprof. Thegpr of utility [19] post-processes data generated by code that has been instrumented
using the GNU C compiler. The GNU C compiler can be instructed, via the - pg parameter, to
instrument each time a function returns control to its caller, in such a way that they will increment
a counter corresponding to the caller-callee pair. This produces a raw profile which is stored in
an external file, gnon. out . The gpr of tool uses this file to generate a call graph, identifying
common calling sequences and cycles. This information is combined with information derived
from program-counter sampling to produce a profile of the execution of the program.

2.2.4 Fixed tracepoints

Binary instrumentation and compiler-based instrumentation introduce significant implementa-
tion complexity. For some tasks, it is sufficient to simply modify the source code being instru-

13

mented by hand. This is particularly useful when instrumenting high-level events that can’t be
inferred by compilers.

Lockmeter. The Lockmeter utility is a profiler for spinlock access in the Linux kernel [6]. It
consists of a patch that makes wrappers for the spinlock access macros in the Linux kernel. Each
time the wrappers are invoked, the current program counter is recorded. Lockmeter maintains a
hash table of program counters for locations where locks are taken and released, to which each
location is added each time it is first seen. The addresses of the locks taken, and how long they
were held, are stored in a separate array, and can be used to generate a profile of lock accesses.
This profile can be used to find bottlenecks that limit SMP scalability. To speed up access to the
lock array, which is a read-write data structure, independent versions are kept for each processor
and data is only aggregated when necessary.

Linux Trace Toolkit. This system instruments a variety of events in the Linux kernel, and allows
filtering and formatting of these events and their contexts before logging to a disk file [53]. It
instruments a cross-section of kernel events: system call entry and exit, interrupts, events related
to processes and the file system, VM and cache events, and networking and IPC events, among
others. Like Lockmeter, the instrumentation consists of a patch to the Linux kernel source code.
When instrumentation functions are invoked, a trace module is invoked. This trace module filters
events based on event type, process, user, or group ID, and augments them with information
such as CPU ID or the instruction pointer of the calling process (in the case of a system call).
This information is stored in a buffer, which is periodically swapped with another buffer that is
exposed to user logging processes via the / pr oc interface. The authors developed a graphical
tool to visualize events, as well as showing all context switches between userspace and the kernel,
as well as different userspace applications.

14

Chapter 3

Controlling Overhead

A central component of our proposed system is the mechanism that we use to ensure that over-
head is predictable and controllable. As we will see in Section 3.3, overhead-control mechanisms
typically fall into one of two categories. Mechanisms in the first category have a rate control that
they autonomously reduce when particular targets are met. This rate control is not an overhead
control; rather, it represents a best-effort method for reducing overhead. The second category
attempts to minimize overhead using some non-quantitative approach.

In Section 3.1, we discuss our first approach, Monte Carlo Monitoring (MCM) which falls into
the first category, and demonstrate Aristotle, a system based on it for detecting reference-counting
bugs in the Linux kernel. In MCM the goal is to observe some target number of events and then
reduce the sampling rate. Then, in Section 3.2, we show our second approach, Software Moni-
toring with Controlled Overhead (SMCO), which adjusts monitoring to achieve a set overhead
target. Our proposal is based on SMCO. Finally, in Section 3.3, we discuss other work in the area
of overhead reduction.

3.1 Reducing Overhead as Confidence Increases

In this section, we present a new approach to runtime verification that utilizes classical statistical
techniques such as Monte Carlo simulation, hypothesis testing, and confidence interval estima-
tion. Our algorithm, MCM uses sampling-policy automata to vary its sampling rate dynamically as
a function of the current confidence it has in the correctness of the deployed system. We im-
plemented MCMusing the instrumentation architecture discussed in Section 2.1. For a case study
involving the dynamic allocation and deallocation of objects in the Linux kernel, our experimen-
tal results show that Aristotle reduces the runtime overhead due to monitoring, which is initially
high when confidence is low, to levels low enough to be acceptable in the long term as confidence
in the monitored system grows.

In previous work [20], Grosu and Smolka presented the MC* algorithm for Monte Carlo Model
Checking. Given a (finite-state) reactive program P, a temporal property ¢, and parameters € and
9, MC? samples up to M random executions of P, where M is a function of ¢ and ¢. Should a
sample execution reveal a counter-example, MC* answers false to the model-checking problem
P = ¢. Otherwise, it decides with confidence 1 — § and error margin €, that P indeed satisfies ¢.
Typically the number M of executions that MC* samples is much smaller than the actual number
of executions of P. Moreover, each execution sampled starts in an initial state of P, and termi-
nates after a finite number of execution steps, when a cycle in the state space of P is reached. In
this paper, we show how the technique of Monte Carlo model checking can be extended to the
problem of Monte Carlo monitoring and runtime verification. Our resulting algorithm, MCM can be

15

seen as a runtime adaptation of MC?, one whose dynamic behavior is defined by sampling-policy
automata (SPA). Such automata encode strategies for dynamically varying MCMs sampling rate as
a function of the current confidence in the monitored system’s correctness. A sampling-policy
automaton may specify that when a counterexample is detected at runtime, the sampling rate
should be increased since MCMs confidence in the monitored system is lower. Conversely, if af-
ter M samples the system is counterexample-free, the sampling rate may be reduced since MCMs
confidence in the monitored system is greater.

The two key benefits derived from an SPA-based approach to runtime monitoring are the
following:

e As confidence in the deployed system grows, the sampling rate decreases, thereby mitigat-
ing the overhead typically associated with long-term runtime monitoring.

e Because the sampling rate is automatically increased when the monitored system begins
to exhibit erroneous behavior (due either to internal malfunction or external malevolence),
Monte Carlo monitoring dynamically adapts to internal mode switches and to changes in
the deployed system’s operating environment.

A key issue addressed in our extension of Monte Carlo model checking to the runtime setting
is: What constitutes an adequate notion of a sample? In the case of Monte Carlo runtime verifi-
cation, the monitored program is already deployed, and restarting it after each sample to return
the system to an initial state is not a practical option. Given that every reactive system is essen-
tially a sense-process-actuate loop, in this paper we propose weaker notions of initial state that
are sufficient for the purpose of dynamic sampling. One such notion pertains to the manipulation
of instances of dynamic types: Java classes, dynamic data structures in C, etc. In this setting, a
sample commences in the program state immediately preceding the allocation of an object 0 and
terminates in the program state immediately following the deallocation of o, with these two states
being considered equivalent with respect to o.

To illustrate this notion of runtime sampling, we consider the problem of verifying the safe
use of reference counts (RCs) in the Linux virtual file system (VFS). The VFS is an abstraction layer
that permits a variety of separately-developed file systems to share caches and present a uniform
interface to other kernel subsystems and the user. Shared objects in the VFS have RCs so that the
degree of sharing of a particular object can be measured. Objects are placed in the reusable pool
when their RCs go to zero, objects with low RCs can be swapped out, but objects with high RCs
should remain in main memory. Proper use of RCs is essential to avoid serious correctness and
performance problems for all file systems.

To apply Monte Carlo runtime monitoring to this problem, we have defined Real Time Linear
Temporal Logic formulas that collectively specify what it means for RCs to be correctly manip-
ulated by the VFS. We further implemented the MCMalgorithm within the Aristotle environment
for Monte Carlo monitoring. Aristotle provide a highly extensible, GCC-based architecture for in-
strumenting C programs for the purposes of runtime monitoring. Aristotle realizes this architec-
ture via a simple modification of the GNU C compiler (GCC) that allows one to load an arbitrary
number of plug-ins dynamically and invoke code from those plug-ins at the tree-optimization
phase of compilation.

Using a very simple sampling policy, our results show that Aristotle brings runtime overhead,
which is initially very high when confidence is low, down to long-term acceptable levels. For
example, a benchmark designed to highlight overheads under worst-case conditions exhibited a
10x initial slowdown; 11 minutes into the run, however, we achieved 99.999% confidence that the
error rate for both classes of reference counts was below one in 10°. At this point, monitoring for
that class was reduced, leaving an overhead of only 33% from other monitoring.

16

In addition to reference counts, Aristotle currently provides Monte Carlo monitoring support
for the correct manipulation of pointer variables (bounds checking), lock-based synchronization
primitives, and memory allocation library calls. Due to its extensible architecture based on plug-
ins, support for other system features can be easily added.

The rest of the section is organized as follows. Section 3.1.1 describes our system design.
Section 3.1.2 presents our Monte Carlo runtime monitoring algorithm. Section 3.1.3 details the
Aristotle design and implementation. Section 3.1.4 gives an example application of Aristotle, and
Section 3.1.5 contains our concluding remarks and directions for future work.

3.1.1 Aristotle Design Overview

Figure 3.1 depicts the various stages of operation for Aristotle as it processes a system’s source
code. A modified version of the GNU C compiler (GCC) parses the source code, invoking an in-
strumenting plug-in to process the control flow graph for each function. The instrumenting plug-in
inserts calls to verification code at each point where an event occurs that could affect the prop-
erty being checked. The verification code is part of a runtime monitor, which maintains auxiliary
runtime data used for property verification and is bound into the software at link time.

Unmodified
source code
Inan RC In abounds
debugger: checker:
. Instruments| Instruments
GCC tree] |nstl‘ument|ng all code that| all memory
optimization[~%] plug-in manipulates| accesses and
I reference allocations
counts
GCC code
emission
I
. Monitors Monitors
Linking | Runtime objects; flags areas
monitor improper use currently
and leaks allocated;
Compile time flags bad
___________________________ accesses
Run time] o
| Confid Regulates monitoring based
nztrumen onfidence o, sampled behavior and
ted system engine sampling policy

Figure 3.1: Architectural overview of the Aristotle system.

The runtime monitor interacts with the confidence engine, which implements a sampling policy
based on our Monte Carlo runtime monitoring algorithm (described in Section 3.1.2). The confi-
dence engine maintains a confidence level for the properties being checked and may implement
a sampling policy automaton to regulate the instrumentation or perform other actions. This reg-
ulation can be based on changes in the confidence level and could respond to other events in the
system, such as the execution of rarely-used code paths.

17

(st) VYo:C.Goxc >0 RC values are always non-negative.
(tr) VYo:C.G|oxc—oxc|<1 RC values are never incremented or decre-
mented by more than 1.
(kI) Vo : C.Go.rc # orc = A change in the value of an RC is always fol-
XF<p o' .rc < o.rc lowed within time 7" by a decrement.

Figure 3.2: Reference-count correctness properties.

3.1.2 Monte Carlo Monitoring

In this section, we present our MCM algorithm for Monte Carlo monitoring and runtime verifi-
cation. We first present MCMin the context of monitoring the correct manipulation of reference
counts (RCs) in the Linux virtual file system (VFS). RCs are used throughout the Linux kernel,
not only to prevent premature deallocation of objects, but also to allow different subsystems to
indicate interest in an object without knowing about each other’s internals. Safe use of reference
counts is an important obligation of all kernel subsystems. We then consider generalizations of
the algorithm to arbitrary dynamic types.

In the case of the Linux VFS, the objects of interest are dentries and inodes, which the VFS uses
to maintain information about file names and data blocks, respectively. The VFS maintains a static
pool of these objects and uses RCs for allocation and deallocation purposes: a free object has an
RC of zero and may be allocated to a process; an object with a positive RC is considered in-use
and may only be returned to the free pool when the state of the RC returns to zero. Additionally,
an object with a high reference count is less likely to be swapped out to disk.

To apply Monte Carlo runtime monitoring to this problem, we first define the properties of
interest. These are formally defined in Figure 3.2.

Each of these properties is formalized using Real-Time Linear Temporal Logic [5], where G F
and X are unary temporal operators. Grequires the sub-formula over which it operates to be true
Globally (in all states of an execution), F requires it to hold Finally (in some eventual state of an
execution), and X requires it to hold neXt (in the next state of an execution). Also, an unprimed
variable refers to its value in the current state and the primed version refers to its value in the
next state. Each property uses universal quantification over all instances o of a dynamic type C'.

The first property is a state invariant (stl) while the second property is a transition invariant
(trl). The third property is a leak invariant (IkI) that is intended to capture the requirement that
the RC of an actively used object eventually returns to zero. It is expressed as a time-bounded
liveness constraint, with time bound T'.

Since each of these properties can be proved false by examining a finite execution, they are
safety properties, and one can therefore construct a deterministic finite automaton (DFA) A that
recognizes violating executions [27, 49]. The synchronous composition (product) C4 of C with
A is constructed by instrumenting C' with A such that C violates the property in question iff an
object o of type C' can synchronize with A so as to lead A to an accepting state.

We view an object o of type C as executing in a closed system consisting of the OS and its
environment. We assume that the OS is deterministic but the environment is a (possibly evolving)
Markov chain; i.e., its transitions may have associated probabilities. As a consequence, C4 is also
a Markov chain. Formally, a Markov chain M = (X, E,p,py) consists of a set X of states; a set
E C X x X of transitions (edges); an assignment of positive transition probabilities p(z,y) to all
transitions (z,y) so that for each state =, Y,exp(x,y) = 1; and an initial probability distribution
po on the states such that ¥,cxpo(x) = 1. A finite trajectory of M is the finite sequence of states
X = Tg,T1,..., Ty, such that for all 4, (z;, xi+1) € E and p(x;, z;+1) > 0. The probability of a finite

18

trajectory x = xg, z1,. ..,y is defined as P/ (x) = po(zo)p(xo,z1) - - p(Tn—1, Tn).

Each trajectory of C'4 corresponds to an object execution. The more objects displaying the
same execution behavior, the higher the probability of the associated trajectory. Hence, although
the probabilities of C'4 are not explicitly given, they can be learned via runtime monitoring.

Assuming that kernel-level objects have finite lifetimes (with the possible exception of objects
such as the root file-system directory entry), and that state is dependent on the object’s history,
(4 is actually a Markov tree, since no object goes backward in time. The leaves of C4 fall into two
categories: (i) violation-free executions of objects of type C' which are deallocated after their RCs
return to zero, and (ii) executions violating property stl, trl, or IkI.

Thus, a trajectory in C'4 can be viewed as an object execution from its birth to its death or to
an error state representing a property violation. We consider such a trajectory to be a Bernoulli
random variable Z such that Z = 0 if the object terminated normally, and Z = 1 otherwise. Further,
let pz be the probability that Z = 1 and gz = pz — 1 be the probability that Z = 0. The question
then becomes: how many random samples of Z must one take to either find a property violation or to
conclude with confidence ratio 6 and error margin e that no such violation exists?

To answer this question, we rely, as we did in the case of Monte Carlo model checking, on the
techniques of acceptance sampling and confidence interval estimation. We first define the geometric
random variable X, with parameter p,, whose value is the number of independent trials required
until success, i.e., until Z = 1. The probability mass function of X is p(N) = P[X = N] = ¢} 'pz,
and the cumulative distribution function (CDF) of X is

F(N)=P[X <N]=) p(n)=1-gq
n<N

Requiring that F'(IN)=1—0 for confidence ratio ¢ yields:

In(d)
In(1 —pz)
which provides the number N of attempts needed to find a property violation with probability
1-9.

In our case, pz is unknown. However, given error margin € and assuming that p; > ¢, we
obtain that

N =

B In(9) B In(9)
M= In(1 —¢) 2= In(1 —pz)

and therefore that P[X < M| > P[X < N| =1 — ¢. Summarizing, for M = lr:?l(i)e) we have:

pz>e=PX<M>1-§ (3.1)

Inequality 3.1 gives us the minimal number of attempts M needed to achieve success with
confidence ratio 6 under the assumption that pz > e.

The standard way of discharging such an assumption is to use statistical hypothesis testing [34].
We define the null hypothesis Hy as the assumption that pz > e. Rewriting inequality 3.1 with
respect to Hy we obtain:

P[X < M|Ho]>1-6 (3.2)

We now perform M trials. If no counterexample is found, i.e., if X > M, then we reject H.
This may introduce a type-I error: Hy may be true even though we did not find a counterexample.

19

However, the probability of making this error is bounded by §; this is shown in inequality 3.3
which is obtained by taking the complement of X < M in inequality 3.2:

PIX > M|Hy| <6 (3.3)

With the above framework in place, we now present MCM our Monte Carlo Monitoring algo-
rithm. MCM whose pseudo-code is given in Figure 3.3, utilizes DFA A to monitor properties stl,
trl, and IkI, while keeping track of the number of samples taken.

input: ¢ 4, C t, d;
global: tn, cn;
tn=cn=In(d)/In(l-¢; set(timeout,d);
when (created(0:C) && flip())

if (tn>0) { tn--; o.to=t; o.rc=0};
when (destroyed(o:C)){

cn--; if (cn=0) monitoring stop; }
when (nonitored(o:C) && nodified(o.rc)){
if (0’.rc<0 || |0.rc-0.rc|>1) safety stop; I+ st trl */

if (o.rc-0.rc==1) o.to=t;}
when (timeout (d))

foreach (rmonitored(o:Q)){
0.to--; if (0.to==0) leakstop; } [IkI =/

Figure 3.3: The MCMalgorithm.

MCM consists of an initialization part, which sets the target (t n) and current (cn) number of
samples, and a monitoring part, derived from the properties to be verified. The latter is a state
machine whose transitions (When statements) are triggered either by actions taken by objects of
type Cor by a kernel timer thread. The timer thread wakes up every d time units, and the time
window used to sample object executions is t *d, wheret and d are inputs to the algorithm. When
an object 0: Cis created and the random boolean variable f | i p() is true, the target number of
samples is decremented. The random variable f | i p() represents one throw of a multi-sided,
unweighted coin with one labeled side, and returns true precisely when the labeled side comes
up. If enough objects have been sampled (t n=0), no further object is monitored. For a monitored
object, its reference count r ¢ and timeout interval t 0 are appropriately initialized. When an
object is destroyed, cn is decremented. If the target number of samples was reached (cn=0),
the required level of confidence is achieved and monitoring can be disabled. When the RC of
a monitored object is altered, we check for a violation of safety properties stl or trl, stopping
execution if one has occurred. If an object’s RC is decremented, we reset its timeout interval;
moreover, should its RC reach zero, the object is destroyed or reclaimed. When the timer thread
awakens, we adjust the timeout interval of all monitored objects. If an object’s timeout interval
has expired, leak invariant 1kl has been violated and the algorithm halts.

Due to the random variable f | i p()) , MCMdoes not monitor every instance o of type C. Rather,
it uses a sampling-policy automaton to determine the rate at which instances of C' are sampled. For
example, consider the n-state policy automaton PA,, that, in state £, 1 < k < n, MCMwill only
sample oif f | i p() returns true for a 2¥-sided coin. Moreover, PA,, makes a transition from state
k to k + 1 mod n after exactly M samples. Hence, after M samples (without detecting an error)
the algorithm uses a 4-sided coin, after 2/ samples an 8-sided coin, etc. For a given error margin
¢, the associated confidence ratio § will then be (1 — €)M, (1 — €)?, (1 —)3 and so on. PA,

20

also makes a transition from state k to j, where j < k, when an undesirable event occurs, such
as a counterexample, or perhaps an execution of as yet unexecuted code. Sampling policies such
as the one encoded by PA,, assure that MCMcan adapt to environmental changes, and that the
samples taken by MCMare mutually independent (as n tends toward infinity).

MCMis very efficient in both time and space. For each random sample, it suffices to store two
values (old and new) of the object’s RC. Moreover, the number of samples taken is bounded by
M. That M is optimal follows from inequality 3.3, which provides a tight lower bound on the
number of trials needed to achieve success with confidence ratio 6 and lower bound € on p.

Our kernel-level implementation of MCMis such that if a violating trajectory is observed dur-
ing monitoring, it is usually the case that a sufficient amount of diagnostic information can be
gleaned from the instrumentation to pinpoint the root cause of the error. For example, if an ob-
ject’s RC becomes negative, the application that executed the method that led to this event can be
determined.

In another example, if the object’s RC fails to return to zero and a leak is suspected, diagnostic
information can be attained by identifying the object’s containing type. Suppose the object is an
inode; we can use this information to locate the corresponding file name and link it back to the
offending application.

The MCMalgorithm of Figure 3.3 can be extended by expanding the class of correctness proper-
ties supported by the algorithm. The third and fourth when branches of the algorithm correspond
to safety or bounded-liveness checks, respectively. Hence, the MCMalgorithm can be generalized
in the obvious way, to allow the treatment of arbitrary safety and bounded-liveness properties
for any reactive program involving dynamic types. For example, in addition to reference counts,
Aristotle currently provides Monte Carlo monitoring support for the correct manipulation of
pointer variables (bounds checking), lock synchronization primitives, and memory allocation
library calls. Due to its extensible, plug-in-oriented architecture, support for other properties can
easily be added.

3.1.3 Implementation

In Aristotle, we instrument a program with monitoring code using a modified version of the
GNU C compiler (GCC), version 4. We modified the compiler to load an arbitrary number of
plug-ins and invoke code from those plug-ins at the tree-optimization phase of a compilation.
At that point in the compilation, the abstract syntax tree has been translated into the GIMPLE
intermediate representation [18], which includes syntactic, control-flow, and type information.
A plug-in is invoked that can use the GCC APIs to inspect each function body in turn and add
or remove statements. The plug-in can even invoke other GCC passes to extract information;
for example, one plug-in we developed for bounds checking uses the reference-analysis pass to
obtain a list of all variables used by a function.

Our use of GCC as the basis for Aristotle offers several advantages. First, it can be used
to instrument any software that compiles with GCC. Prior static-checking and meta-compilation
projects have used lightweight compilers [7, 23] that do not support all of the language extensions
and features of GCC. Many of these extensions are used by open-source software, particularly the
Linux kernel. Second, the modular architecture of Aristotle allows programmers to instrument
source-code without actually changing it. Third, Aristotle users can take advantage of GCC’s li-
brary of optimizations and ability to generate code for many architectures. Adding GCC support
for plug-ins is very simple; we added a command-line option to load a plug-in and changed the
way GCC is built to expose GCC’s internal APIs to plug-ins.

The information collected at the instrumented locations in the system’s source code is used by
runtime monitors. A runtime monitor is a static library, linked with the system at compile time.

21

The runtime monitor contains checking code which verifies that each detected event satisfies all
safety properties; furthermore, it may spawn threads that periodically verify that all bounded
liveness properties hold. The monitor interfaces with the confidence engine, reporting rule viola-
tions and regulating its operation according to the confidence engine’s instructions, which reflect
the operation of a sampling-policy automaton. Finally, it may also perform other operations, like
verbose logging and network-based error reporting, which vary from application to application.

3.1.4 Case Study: The Linux VFS

The Linux Virtual File System (VFS) is an interface layer that manages installed file systems and
storage media. Its function is to provide a uniform interface to the user and to other kernel subsys-
tems, so that data on mass storage devices can be accessed in a consistent manner. To accomplish
this, the VFS maintains unified caches of information about file names and data blocks: the dentry
and inode caches, respectively. The entries in these caches are shared by all file systems. The VFS
and file systems use reference counts to ensure that entries are not reused without a file system’s
knowledge and to prioritize highly-referenced objects for retention in main memory as opposed
to being swapped out.

The fact that these caches are shared by different file systems, implemented by different au-
thors and of varying degrees of maturity, introduces the potential for system resource leaks and
faults arising from misuse of cached objects. For example, a misbehaving file system may pre-
vent a storage device from being safely removed because the reference count for an object stored
to that device was not safely reduced to zero. Worse, a misbehaving file system could hamper
the performance of other file systems by failing to decrement the reference counts of cache data
structures.

Using the Aristotle framework, we developed a tool that monitors reference counts in the
Linux VFS. As described in Section 3.1.2, we enforced a state invariant (stl), a transition invariant
(trl), and a leak invariant (IkI).

The plug-in for this case study instruments every point in the source code at which a reference
count was modified. Because we had access to type information, we were able to classify refer-
ence counts for dentry and inode objects. Whenever it is invoked, the runtime monitor checks the
operation to ensure that the safety properties hold. Additionally, if the operation is a decrement,
the monitor updates a timestamp for that reference count, which is maintained in an auxiliary
data structure. A separate thread periodically traverses the data structure to verify that all refer-
ence counts have been decremented more recently than time interval 7. Additionally, all checked
operations are optionally logged to disk.

The confidence engine maintains separate confidence levels for dentry and inode reference
counts using our Monte Carlo model checking algorithm. For clarity, we demonstrate the system
with a sampling policy automaton that disables checking when a 99.999% confidence level has
been reached that the error rate for that reference counter category is less than 1 in 10°> samples.
As discussed in Section 3.1.2, a sample is defined as the lifetime of a cached object, that is, the
period when the object’s reference counter is nonzero. Other sampling policies, such as flipping
an n-sided coin where n increases as confidence increases to determine whether to sample a given
object, allow more fine-grained trade-offs of performance vs. confidence; additionally, it may be
advisable to increase the sampling rate as the environment changes.

Figure 3.4(a) shows the performance overhead of the system with logging and checking en-
abled, logging disabled but checking enabled, and no instrumentation, under a micro-benchmark
designed to exercise the file system caches. In each run, the micro-benchmark creates a tree of di-
rectories, does a depth-first traversal of that tree, and deletes the tree. Because directories are
being created and deleted, on-disk data is being manipulated, causing creation and deletion of

22

objects in the inode cache. Additionally, the directory traversal stress-tests the dentry cache. We
observe an initial 10x overhead as both dentry and inode reference counts are being monitored
and all accesses are being logged. After five runs, which take six minutes in total, dentry confi-
dence reaches the target, and overhead falls to a factor of three. Finally, five minutes later, after
eleven runs, overhead drops to 33% when inode confidence reaches the target. The remaining
overhead is a characteristic of our prototype; we expect optimization to reduce it significantly.

Events inhibited —+— Events inhibited ——
Events checked —x— Events logged —»—

Events logged —*—
120 | 70 }

Time (seconds)
Time (seconds)
IS
8

L L L L L L L L L
0 5 10 15 20 25 0 10 20 30 40 50 60
Run number Run number

(a) directory-tree microbenchmark (b) compilation of GNU t ar

Figure 3.4: Overhead reduction as confidence increases.

Figure 3.4(b) shows the effects under a benchmark that puts less stress on the file system.
Compiling the GNU t ar utility involves less cache activity than the micro-benchmark described
above, so the overheads from monitoring are lower; however, it also takes longer for confidence
to reach the target. Initial overhead with logging was 46%. After ten runs, or eleven minutes,
this overhead dropped to 14% as dentry confidence reached the target. Forty minutes later, at the
55th run, overheads dropped to 11% as inode confidence reached its target as well.

3.1.5 Conclusion

We have presented the MCM algorithm for Monte Carlo monitoring and runtime verification,
which uses sampling-policy automata to vary its sampling rate dynamically as a function of the
current confidence in the monitored system’s correctness. We implemented MCMwithin the Aris-
totle tool environment, an extensible, GCC-based architecture for instrumenting C programs for
the purposes of runtime monitoring. Aristotle realizes this architecture via a simple modifica-
tion of GCC that allows one to load an arbitrary number of plug-ins dynamically and invoke
code from those plug-ins at the tree-optimization phase of compilation. Our experimental results
show that Aristotle reduces the runtime overhead due to monitoring, which is initially high when
confidence is low, to long-term acceptable levels as confidence in the deployed system grows.

We are investigating the integration of auxiliary information, such as code coverage, into sam-
pling policies. This would allow, for example, instrumentation to be increased when a rarely-used
section of code is executed.

3.2 Bounding Overhead Using Supervisory Control

In this section, we introduce the new technique of Software Monitoring with Controllable Overhead
(SMCO). SMCO is formally grounded in control theory, in particular, the supervisory control of
discrete event systems [39, 1]. Overhead control, while maximizing confidence, is realized by dis-
abling interrupts generated by the events being monitored—and hence avoiding the overhead

23

associated with processing these interrupts—for as short a time as possible under the constraint
of a user-supplied target overhead o;. SMCO can be viewed as the problem of generating an op-
timal controller for a specific class of nonlinear systems that can be modeled as the composition
of a set of timed automata. Our controller is designed in a modular way by composing a global
controller with a set of local controllers, one for each monitored object in an application. Moreover,
SMCO is a general monitoring technique that can be attached to any system interface or APIL

We have applied SMCO to the problems of detecting stale or underutilized memory and checking
for bounds violations. For memory staleness, we make novel use of the virtual memory hardware
by utilizing the npr ot ect system call to protect each area suspected of being underutilized. If
such an area is in fact accessed, the program generates a segmentation fault, informing the mon-
itor that the area is not stale. If the time since the monitor protected an area is longer than a
user-specified threshold, and there were no segmentation faults from that area, then it is stale.
The SMCO controller controls the total overhead of memory under-utilization checking by en-
abling and disabling the monitoring of each memory area appropriately. For bounds checking,
we use a plug-in-based approach as discussed in Section 2.1.

Experimental results of SMCO’s performance on the Li ght t pd Web server, the vi mtext ed-
itor, and our micro-benchmark suite are encouraging. SMCO maintains bounded overhead well
for both applications. When local controllers behave linearly, SMCO controls overhead precisely;
when local controllers behave non-linearly, it becomes more challenging for SMCO to control
overhead, but results are still acceptable. For Li ght t pd, we also demonstrate a discovery, that
one-third of its heap footprint is completely unused. Our micro-benchmarks demonstrate how
confidence grows monotonically with the target overhead up to CPU saturation, and that this
is done consistently and predictably. Collectively, our benchmarking results show that using
SMCO, it is indeed possible to achieve high-confidence monitoring with bounded overhead.

We organize the rest of this section in the following way. Section 3.2.1 explains SMCO'’s
control-theoretic approach to bounding overhead while maximizing confidence. Section 3.2.2
presents our architectural framework for SMCO and describes how we apply it to bounds check-
ing and staleness detection. Section 3.2.3 contains our performance evaluation and Section 3.2.4
offers concluding remarks and directions for future work.

3.2.1 Control-Theoretic Monitoring

The controller design problem attempts to regulate the input v to a process P, henceforth referred
to as the plant, to make its output y adhere to a reference input x. The device that accepts = and
y and produces v is called a controller; we write it (). The composition of) and P must make y
approximate z with good dynamic response and small error (see Figure 3.5).

[P Yy,

| S

Figure 3.5: Plant (P) and Controller (Q) architecture.

Runtime monitoring can be beneficially stated as a controller-design problem, where the con-
troller is the runtime monitor, the plant is a software application and the reference input z is the
target overhead o,. To ensure that the plant is controllable, one typically instruments the application
so that it emits events of interest to the monitor. The monitor catches these events, and controls
the plant by enabling or disabling event signaling (interrupts). Hence, the plant can be regarded as
a discrete event process.

The classic theory of digital control [13] assumes that the plant and the controller are linear

24

systems. This assumption allows one to apply a rich set of design and optimization techniques,
such as the Z-transform, fast Fourier transform, root-locus analysis, frequency response analysis,
and state-space optimal design. For nonlinear systems, however, these techniques are not directly
applicable, and various linearization and adaptation techniques must be applied as pre- and post-
processing, respectively.

Because of the enabling and disabling of interrupts, the problem we are considering is nonlin-
ear: intuitively, the interrupt signal is multiplied by a control signal which is 1 when interrupts
are enabled and 0 otherwise. Although linearization is one possible approach for this kind of
nonlinear system, automata theory suggests a better approach, recasting the controller design
(synthesis) problem as one of supervisory control [39, 1].

The main idea of supervisory control we exploit to enable and disable interrupts is the syn-
chronization inherent in the parallel composition of state machines. In this setting, the plant P is a
state machine, the desired outcome (tracking the reference input) is a language L, and the con-
troller design problem is that of designing a controller (), which is also a state machine, such that
the language L(Q||P) of the composition of () and P is included in L. This problem is decidable
for finite state machines [39, 1].

The monitoring overhead depends on the timing of events and the monitor’s per-event pro-
cessing time. The specification language L therefore consists of timed words a;,t1, ..., an,t, where
each q; is an (access) event and ¢; is the time at which a; has occurred. Consequently, the state
machines used to model P and () must also include a notion of time. Previous work has shown
that supervisory control is decidable for timed automata [3, 52] and for timed transition models [40].
In our setting, we use a more expressive version of timed automata that allows clocks to be com-
pared to variables, and for such automata decidability is not guaranteed. We therefore design our
controller manually, but we are currently investigating techniques for the automated synthesis of
an approximate controller. The controller we designed consists of the composition of a global con-
troller and a set of local controllers, one for each plant (object in the application software) that we
monitor. We define these two controllers later in this section.

Plant model.. We describe the plant P (see Figure 3.6) as an extended timed automaton whose
alphabet consists of input and output events. We use timing constraints to label its locations and
transitions. These constraints take the form = ~ ¢, where x is a clock, c is a natural constant or vari-
able, and ~ is one of <, <, =, >, and >. We write transition labels in the form [guard] I n/ Qut,
Asgn, where guar d is a predicate over the automaton’s variables; | n is a sequence of input events
of the form v?e denoting the receipt of value e on channel v; Qut is a sequence of output events of
the form yla denoting the sending of value a on channel y; and Asgn is a sequence of assignments
to the (local) variables. All fields in a label are optional. A transition is enabled when its guard is
true and the event (if specified) has arrived. A transition is not forced to be taken unless letting
time flow would violate the condition (invariant) labeling the current location.

v?en /i=1 v2di/i=0

>

[i=1]/ ylac

Figure 3.6: State machine for the plant P of one monitored object.

The plant P has an input channel v where it may receive enable and disable commands, denoted
en and di, respectively. It has an output channel y where it may send an access message ac. Upon
receipt of v7di, the interrupt bit 7 is set to zero which prevents the plant from sending further

25

messages. Upon receipt of v?en, the interrupt bit is set to one which allows the plant to send
messages at arbitrary moments in time. The plant terminates when the maximum monitoring
time M, a parameter of the model, is reached; i.e., when the clock & reaches value M. Initially,
i=1land k=0.

Target specification.. The specification for a single controlled plant is given as a timed language
L. Let Ndenote the natural numbers, Rt the positive reals, and A the set of events. Then:
L={ay,t1,...,an,t, | n €N a; € Ajt; ERT}
where the following conditions hold:

1. The average overhead o = (npg)/(t, — t1) is < o, where p, is the average event-processing
time.

2. If the strict inequality © < o; holds, then the overhead undershoot is due to time intervals
(with low activity) during which all access events are monitored.

The first condition talks only about the mean overhead o within a timed word w € L. Hence,
various policies for handling overhead, and thus enabling/disabling interrupts, are allowed. The
second condition is a best-effort condition which guarantees that if the target overhead is not
reached, this is only because the plant does not throw enough interrupts. Our policy, which
we describe next, satisfies these conditions and will also be shown to be optimal in a specific
sense.

The local controller.. Each monitored plant P has a local controller), the state machine for
which is given in Figure 3.7. Within each iteration of its main control loop, @) disables interrupts
by sending message di along v upon receiving an access event ac along y, and subsequently
enables interrupts by sending en along v. Consider the i-th execution of @)’s control loop, and
let 7; be the time monitoring is on within this cycle; i.e., the time between events vlen and y?ac.
Let p; be the time required to process event y?ac, and let d; be the delay time until monitoring is
restarted; i.e., until event vlen is sent again. See Figure 3.8 for a graphical illustration of these
intervals. Then ¢; = 7; + p; + d; is the total amount of time () spends in the i-th cycle, and we refer
to o; = p;/c; as the overhead ratio at i.

x?ot/o,=ot x?o0t/ o, =ot x?ot/o,=ot

> iy’7ac/vldl VW [k2p, 1/p=k, uk
True kkO< dpoprkOde

[k=>d]/vlen, k=0

Figure 3.7: State machine for local controller Q.

To ensure that o; = o, whenever the plant is throwing access events at a high rate, the local
controller computes d; as the least positive integer greater than or equal to p;/o; — p; — 7;. If the
plant throws events at a low rate, then all events are monitored and d; = 0. Whenever processing
of event y?ac is finished, the local controller sends along u the processing time k to the global con-
troller, which is discussed following the soundness and optimality proofs for the local controller.
The processing time is assumed to lie within the interval [p,,, pas].

Soundness and optimality of the local controller. We provide informal soundness and opti-
mality proofs for our local controller.

Theorem 3.2.1 (Soundness). The language L(Q||P) of the parallel composition of the local controller @
with the plant P is included in the target specification language L.

26

[Monitoring

Legend 1 Not Monitoring

Start ~Stop —Controller gets ~ ~Start Stop —Controller gets
Monitoring| Monitoring | ,,p,, sets d, Monitoring| Monitoring | t,, p,, sets d,
T P; d1 T2 P, dz

Event - Event 4

Time

Figure 3.8: Timeline for local controller.

Proof. The soundness follows from the definitions of (Q and P. If P throws events at a high rate,
then () maintains the mean overhead rate o = o;. If P throws events at a low enough rate, then)
monitors all events, and 0 < o;. If P alternates between intervals of high and low rates of event
throwing, then o0 < o; the difference between o and o; is due to the low-rate intervals during
which all events are monitored. O

The optimality condition we consider for the controller is with respect to the space and time
locality of the plant. In particular, a useful property of our controller is that it tends to moni-
tor a representative sample of “independent” events. This is because of its fine-grained control
strategy; i.e., when the event rate is high, our controller (briefly) disables interrupts after each
processed event. Since, by the space and time locality of the plant, consecutive events are likely
to be similar or related, this strategy helps avoid monitoring similar events.

Theorem 3.2.2 (Locality-based optimality). The controller Q) is optimal with respect to space and time
locality.

Proof. If an event is thrown at time ¢; by a statement s or memory location m, then due to space
locality, another event is likely to be thrown at a statement ¢ or memory location n close to s and
m, respectively. Therefore, the time ¢; when the second event is thrown is also close to time ¢;.
Since () disables interrupts immediately following occurrence of an event, optimality follows. [

The two applications of SMCO we consider are the detection of stale memory and bounds
violations. For stale memory detection, once an event is thrown, we are certain that the corre-
sponding object is not stale, so we can ignore interrupts for a definite interval of time, without
compromising soundness and at the same time lowering the monitoring overhead. For array-
bounds violations, we would like to analyze the program in a uniform way. Two bounds viola-
tions close to each other are likely to be caused by the same statement in the program. Hence, the
first interrupt is enough to identify the bug, while also lowering the monitoring overhead.

The global controller.. The local controller @) achieves its target overhead o; only if the plant
P throws events at a sufficiently high rate. Otherwise the mean overhead o is less than o;. In
case we monitor a large number of plants P; simultaneously, it is possible to take advantage of
this under-utilization of o; by increasing the overhead o; of those controllers (); associated with
plants P; that throw interrupts at a high rate. In fact, we can scale the target overhead o; of all local
controllers); with the same factor), as the controllers); of plants P; with low rate of interrupts
will not take advantage of this scaling. Furthermore, we do this every 7" seconds, a period of time
we call the adjustment-interval. The periodic adjustment of the local target overheads is the task of
the global controller GQ. The architecture of our overall control framework for SMCO is shown
in Figure 3.9.

The timed state machine for the global controller GQ is given in Figure 3.10. It inputs on x
the user-specified target overhead ot, which it then assigns to local variable o, representing the
global target overhead. It further outputs ot/n to the local controllers and assigns ot/n to local

27

V7 y
> 1
< P1 o
Vo, y
2
X Y, F’2 >
Vn y
> -~
2 Pn >

Figure 3.9: Overall control architecture.

variable o;, representing the target overhead for the local controllers. The idea is that the global
target overhead is evenly partitioned among the n local controllers. It also maintains an array of
total processing time p, initially zero, such that p[i] is the processing time used by local controller
Q; within the last adjustment-interval of 7" seconds. Array entry p[i] is updated whenever Q;
sends the processing time p; of the most recent event a;; i.e., p[i] is the sum of the p; that local
controller); generates during the current adjustment interval.

Whenever the time bound of 7" seconds is reached, GQ computes a scaling factor A = >, p[¢]/(T"
0g4t) as the overall observed processing time divided by the product of 7', n and the global target
overhead oy. This factor represents the under- or over-utilization of oy. The new local target
overhead o; is then computed by scaling the previous o; by A.

[k=T]/k=0,
A= gp[l] +(T<ogt),o,=7uo{,p=0

k<0
—

T [k=0]/x]0,, x,Jo,, ... xlo,

. 1u?p,/plil=pli+p,
x?ot/xlotsn, ... x lot=n, o,= ot:n, o,=ot

Figure 3.10: State machine for the global controller.

The target specification language L¢ is defined in a fashion similar to the one for the local con-
trollers, except that the events of the plant P are replaced by the events of the parallel composition
Py ||Py|l...]| P, of all plants.

Theorem 3.2.3 (Global soundness). Let .S be defined as

GQQ1] ... [|Qnl|P1 - .. || Py, the parallel composition of the global controller GQ, local controllers Q;
and plants P;, i € [1..n]. Then the language L(S) is included in the target specification language L.
Moreover, the discrepancy between © and oy, is the minimal that can be achieved for the parallel composition
of the plants and the adjustment interval of T' seconds.

Proof. We derive o; so that n x o; = o4, where n is the number of plants. Each local controller
Qi achieves observed overhead 0; < o4, 50) i ; 0; < o4. If the total is less than oy, then this is
because some plants P; are experiencing a low rate of interrupts, but in that case those plants have
reduced their delays d; to 0 so they are observing all possible events. Furthermore, because their
rate is already as high as possible, under-utilized local controllers will be unaffected by A-scaling,
whereas others benefit. This fact can be used to prove minimal discrepancy. O

28

GQ also balances the load of local controllers in an optimal way with respect to the space and
time locality of access events.

3.2.2 Design

____________________ .| Instrumented Program [n |
@ h i Splay u
tree
¥ ¥
llocs,
: Stack tracing o i i
i, Jactivations_events] | | Access reporting 200s Bl‘:u"lgs :\letP .
checker etector
Controller @ @
i faults, allocs
| MMU / Allocator :

Figure 3.11: SMCO architecture for bounds checking and memory under-utilization detection.

In this section, we discuss the two applications that we have implemented for SMCO, namely
memory under-utilization detection and bounds checking. An architecture overview of the sys-
tem is shown in Figure 3.11. The controller in Figure 3.11 implements the global controller GQ
and each local controller ();. The controller receives an event from the instrumented program
each time the program executes a bounds check and from the Memory Management Unit (MMU)
each time the program accesses a protected area. Based on the total time spent processing these
events, the controller activates and deactivates monitoring of functions and memory areas.

The bounds checker and NAP (Non-Accessed Period) detector are responsible for detecting
and reporting errors. Together, they maintain a splay tree of memory ranges, including stack ar-
eas and dynamic memory allocations. The bounds checker uses the splay tree to determine which
accesses are out-of-bounds, and the NAP detector searches dynamic allocations in the splay tree
to find regions that have not reported accesses in a prescribed amount of time. The stack trac-
ing/access reporting module intercepts stack-area creations/destructions and pointer dereferences
from instrumented functions and reports them to the bounds checker. Note that our architec-
ture cleanly separates the overhead controller from the modules that perform fault detection and
reporting.

Functions f and g and memory areas m and o in Figure 3.11 are rendered in gray to indicate
that they are in the activated state. Function calls to f or g will therefore result in the execution
of their instrumented versions f’ and ¢/, respectively, so that bounds checking, with controllable
overhead, can be performed. Similarly, the MMU will intercept accesses to m and o so that events
can be generated for processing by the NAP detector.

We now describe the controller, the NAP detector, and the bounds checker in more detail.

Controller Design. The controller’s role is to limit the number of events generated by the in-
strumentation in order to meet a target overhead goal, where overhead refers to the percentage of
time an instrumented program spends processing the events. To this end, after every event, the
controller temporarily disables events from the entity (activated function or memory area, in our
case) that generated the event. Consider bounds checking. A memory access within a function
call generates a bounds-checking event. The controller measures the total amount of time the
bounds check takes, and then computes a delay using the function’s local controller, as described
in Section 3.2.1. The function runs with bounds checking turned off until the delay passes and

29

the controller reactivates it. A similar mechanism temporarily deactivates a protected memory
area when it generates an access event.

NAP Detection. We have implemented an SMCO-based under-utilization detector which iden-
tifies areas that are not accessed for a user-definable period of time. We refer to such a time period
as a Non-Accessed Period, or NAP. Figure 3.12 depicts the error model for the under-utilization de-
tector. Note that we are not detecting areas that are never touched (i.e., leaks), but rather areas
that are not touched for a sufficiently long period of time to raise concerns about memory-usage
efficiency.

access nap nap
_O_O) Y &
U \; J ;
= = = = time
nap threshold

Figure 3.12: Our memory under-utilization detector reports non-accessed periods. NAPS can vary in length, and
multiple NAPS can be reported for the same area.

The implementation of a memory under-utilization detector would normally involve instru-
menting memory-access instructions. This technique, however, introduces a number of issues,
both practical and theoretical. First, there is the practical issue of finding accesses. This can be
done using a compiler or by using tools like Valgrind; compiler tools only works for programs
with available source, and both introduce significant overheads. Our under-utilization detector
controls its overhead using sampling. However, if one attempts to find NAPS by sampling a sub-
set of memory-access instructions, this introduces a theoretical problem: in order to be able to
say with certainty whether or not a particular area was accessed in a particular time period, all
memory-access instructions must be monitored during that period, which could again result in
considerable overhead.

To address these problems, we introduce a memory-access interposition mechanism called
mencov that intercepts accesses to particular areas, not accesses by particular instructions. We take
advantage of the memory-protection hardware by using the npr ot ect interface, which allows a
programmer to control access to a particular memory region. Accesses that violate the access
controls set in this way cause segmentation fault signals (S| GSEGV on Linux) to be sent to the
process in question. By intercepting such faults, which include the faulting address, nentov can
determine which areas are being accessed by the program and when.

To perform our memory-access interposition, we implemented a shared library that replaces
the standard memory-allocation functions, notably nal | oc and f r ee, with functions that handle
memory in multiples of the block size that npr ot ect can protect. Due to the implementation of
memory protection in hardware, this block size is nearly always larger than the smallest address-
able unit: on x86-based platforms, it is usually 4096 bytes. After allocating an area, our custom
allocator adds an entry to a splay tree that contains information about its size, the last time an
access was observed, and data to support our controller, which controls each area individually.

When the controller instructs nentov to monitor an area, mencov uses npr ot ect to disallow
reads and writes that reference that area. Then, when the program attempts to access that area,
the memory protection hardware intercepts the access and the kernel passes a SI GSEGV to the
process. The signal is then handled by nentov, which performs a lookup in the splay tree and
registers a hit with the appropriate controller. Memcov periodically checks for areas that have
been monitored and unaccessed for longer than the user-defined threshold, and reports them as
NAPs if that NAP has not already been reported.

30

Bounds Checking. Our second application is a more traditional problem: bounds checking.
Bounds checking may be broadly defined as ensuring that pointers are dereferenced only when
they are valid, which typically means that they point to memory addresses located in properly-
typed regions of the stack, heap, or static (including text, data, and BSS) segments of the pro-
gram’s address space. Our definition of a valid pointer is one that points to a region that

e has been allocated using the system’s heap memory allocation functions (notably nmal | oc),

e corresponds to some instance of a stack variable (either a local variable or a function pa-
rameter), or

e corresponds to a static variable.

We consider any dereferenced pointer to be valid if its target matches the above criteria, re-
gardless of the pointer’s type or the region it originally pointed to. This means that we do not
need to keep track of each pointer update, which would impose additional overheads. Instead,
we need only keep track of areas as they are allocated and deallocated. To accomplish this, we
use the splay tree that we use for NAP detection. At the entry to each function, the function’s
stack variables and static variables are registered in the splay tree. At each function’s exit points,
the function’s stack variables are deregistered.

To add instrumentation to a program, we use a branch of the GNU C compiler modified to use
plug-ins [8]. Plug-ins are written as normal GCC-optimization passes that modify GCC’s GIM-
PLE intermediate representation, but can be compiled separately from GCC and loaded dynam-
ically. This dramatically reduces turnaround time for modifications and facilitates debugging.
Our bounds-checker plug-in, called meni nst, performs three tasks, which we discuss in detail
below: emitting registrations and deregistrations, duplicating the source code for each function,
and emitting instrumentation into one of the copies. Figure 3.13 shows an example duplicated
function along with its added instrumentation and the control block that switches between the
two copies.

void* uid;

void* bases = { &values };

size_t extents = { sizeof(values) };
register(bases, extents, 1);
if(controller(uid)) goto L2; else goto L1;

v Y
L1: L2:
inti; int i;
for(i = 0; i < len; i++) { for(i = 0; i < len; i++) {
total += values][i]; check_bounds(&valuesi]);
} total += valuesi];
deregister(bases, extents, 1); }
return total; deregister(bases, extents, 1);
return total;

Figure 3.13: mem nst adds initial registrations and a call to the controller in a function’s first block; the rest is
duplicated, and one copy (left) of the function only has deregistrations, whereas the instrumented copy (right) also
includes bounds checking.

Emitting registrations/deregistrations.. nem nst first locates each addressable variable in the
internal representation of the function being transformed, and adds it to a list. This takes O (n + r?)
time, where n is the size of the function’s IR and r is the number of such variables (the 2 is due

31

to the fact that we enforce uniqueness in the list). It then builds an array containing the address
of each variable, and another array containing the size of each variable. The plug-in adds a call to
an area-registration function at the beginning of the function, and a call to an area-deregistration
function at each return point from the function.

Duplicating the source code.. To create instrumented and uninstrumented versions of the pro-
gram, memi nst duplicates the basic blocks in the control-flow graph for each function. This takes
O (n) time, where n is the size of the function’s internal representation. In order for the con-
troller to determine which set of basic blocks is executed before the beginning of each function,
mem nst inserts a call to the controller. The controller maintains a data structure corresponding
to each function, which contains the computed 7 for that function and the most recent value of
p; mem nst adds a static variable to the function that is passed to the controller and which the
controller sets to point to this structure.

Emitting instrumentation.. At each pointer dereference or array-member access in the instru-
mented copy of the code, meni nst adds a call to the bounds checker. This step takes O (n) time.

3.2.3 Evaluation

In this section, we describe a series of benchmarks we ran to validate our implementation and
determine its runtime characteristics. The results show that SMCO fulfills its goals: it closely
adheres to the desired overhead for a range of target overheads, and it observes events at higher
rates, and catches bugs with greater effectiveness, as more overhead is allowed. We begin with
a real-world demonstration using the Lighttpd Web server [26] and the Vim 7.1 text editor [50].
Then we further investigate the effectiveness of SMCO by demonstrating its usage with a micro-
benchmark that causes bounds violations.

We ran our benchmarks on a group of identically configured machines, each with two 2.8GHz
EM64T Intel Xeon processors with 2 megabytes of L2 cache each. The computers each had 1
gigabyte of memory and were installed with the Fedora Core 7 distribution of GNU/Linux. The
installed kernel was a vendor version of Linux 2.6.23. We built all packages tested from source: we
built the instrumented programs with a custom 4.3-series GCC compiler modified to load plug-
ins [8], and we built other utility programs using a vendor version of GCC 4.1.2. Our Lighttpd
benchmarks use Lighttpd version 1.4.18. Graphs that have confidence intervals show the 95%
confidence interval over 10 runs, assuming a sample mean distributed according to the Student’s-
t distribution.

Overhead Control Benchmark Results

SMCO’s main goal is to monitor as much as possible while regulating overhead so that it adheres
closely to the specified target overhead. This adherence should be largely independent of the
load conditions of the system. As our theoretical result in Section 3.2.1 shows this to be achiev-
able, any deviation of the measured performance results from user specification must arise from
implementation limitations.

The first and most obvious limitation is saturation: at high enough overhead, events stay
enabled all the time. Increasing the desired overhead past this point will not generate more events
to process. All programs eventually reach peak overhead, since a program must spend at least
some percent of its time outside of event processing in order to generate events. A less obvious
limitation is the latency of global controller updates. Changing conditions can cause overhead
increases that require a quick response from the global controller; when the target overhead is
low and the load is high, the actual overhead may temporarily exceed the target overhead.

Figure 3.14 shows observed overhead vs. target overhead for the Lighttpd server and the Vim

32

100

25

100

;_:L- ‘ Fooge-deg-d i’(, Observed overhead
/ Access events ------- -
/ o 4 6
80 4 20 80 | ; }P . I
b 7 o 45
g # 2 g 2
= 60 / 415 & <€ 60 |- : 3]
g # s ¢ 14 &
g s S _g 5
e £ 2 9 2
/ . 4 3
@ 40 K 410 2 & 40 2
2 s 2 s
o) o 42
20 15 20 -
41
Observed overhead
Function call events -------
0 Il Il Il Il Il Il Il Il Il 0 O
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Target overhead Target overhead
(a) Bounds checker on Lighttpd (b) Memory under-utilization detector on Lighttpd
100 T 45 100 T T T T T T T T 8
Observed overhead B
e R =1 40 Access events ------- ,1""}"}\ _%1,»' J 14
80 7~ | 80 L /
/ 35 / A
B 13 2 ¥ II T 2
=4 - . - =4
£ 60 Vd S £ e0f ¥ 5§
> i 425 ©» 3> /! >
o / 5 O /! . 14 %5
8 s’ 1%} E %)
> re 1420 ¢ 2 c
S 40 S & 40t 13 2
£ 115 8 & E
o (e}
4 2
20 110 20 |
11
Observed overhead 5 - <
Function call events ------- e
0 Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il Il Il O

10 20 30 40 50 60 70 80 90
Target overhead

0

10 20 30 40 50 60
Target overhead

70

80

90

(c) Bounds checker on Vim (d) Memory under-utilization detector on Vim

Figure 3.14: Observed load versus desired load for the Lighttpd server with 75 clients issuing one request per second
and the Vim text editor with an automated workload. Observed overhead is shown in % (y axis), and the number of
observed functions calls (for the bounds checker) and memory accesses (for the under-utilization detector) are shown
in millions (y2 axis).

text editor, each tested separately with bounds checking and memory under-utilization detection.
For Lighttpd, we use the curl -1 oader tool to hit the server with one request per second from
each of 75 simulated clients. We ran Vim with a scripted workload that loads a large (1.2MB)
text file and alternates between sorting and reversing its contents. We ran Lighttpd and Vim with
target overheads from 5% to 100% in increments of 5%. The solid line shows the observed percent
overhead (left axis), which should ideally adhere to the thin dotted y = x line. The dotted line
shows the number of events processed—function-call events for the bounds checking benchmark
and memory-access events for the under-utilization detector—in millions of events (right axis).

For the bounds checker, the observed overhead closely tracks the target overhead up to a
target overhead of 30%. At higher target overheads, the system saturates: every function call
runs with bounds checking on, leaving no opportunity to produce higher overhead.

In the Lighttpd memory under-utilization results, we observe that the system meets its over-
head target in the region from 5% to 20%. In the region from 20% to 60%, the local controllers
start to show instability. After deactivation, each memory area waits for reactivation on a priority
queue. In the unstable region, memory regions spend most of their time on this priority queue.
When the queue size gets large, dequeueing a memory region takes longer, adding to its wait

33

time and preventing it from meeting its overhead goal. This effect is non-linear—changing the
desired overhead changes the average queue size—so our global controller does not accurately
compensate for it, though the system is able to keep actual overhead below the bound in all cases.

Above 60% target overhead, the system achieves its maximum possible overhead: memory
regions skip the priority queue and reactivate as fast as possible. The Vim under-utilization re-
sults also show instability, with the global controller unable to use all the overhead it is allowed,
up to 70% desired overhead.

During our benchmarking, we did not observe any bounds violations resulting from bugs in
Lighttpd. However, we observed a number of NAPs (non-accessed periods, see Section 3.2.2).
This can be seen in Figure 3.15, which shows the proportion of areas that have been monitored
for various periods of time over a single run of Lighttpd. Unused regions in the run were clas-
sified into eight buckets based on how long the region remained active with no access. Each set
of stacked vertical bars shows the number of bytes in regions from each bucket at a time dur-
ing Lighttpd’s run, with the lightest shaded bar showing the allocations that have gone longest
without an access.

This graph shows that a comparatively large amount of memory goes unused for almost all
of the program’s run. Lighttpd is intended as an embedded Web server with a low memory
footprint. Its total heap footprint is 540 kilobytes—so the unused 180 kilobytes are of particular
interest and comprise a significant reduction in Lighttpd’s heap memory footprint (one-third
less). We have verified that at least some of these areas come from a pre-loaded MIME type
database that could be loaded incrementally on demand.

350 . .
Less than 0.1ms m—m
0.1ms - 1ms messas
1ms - 10ms m—
10ms - 100ms m—
300 100ms - 15 mm—

1s - 10s

10s - 100s

More than 100s
250 | —

200 q

Kilobytes

150 |
100 -

50

OLJ*- ki s 2 inan ——
0 20

40 60 80 100 120 140
Time in benchmark (s)

Figure 3.15: Age of areas in one run of Lighttpd. Each stack of bars represents one point in time under the medium
load benchmark. The individual bars correspond to ages of areas; their size indicates the number of kilobytes of areas
that have that age.

Micro-Benchmark Results

Having demonstrated the effectiveness of SMCO with real-world applications, we turn to the
micro-benchmarks to demonstrate the high-confidence nature of SMCO. Specifically, we demon-
strate that an SMCO-based monitor will detect more faults in a buggy system when it is allowed
to use more overhead.

We first designed a micro-benchmark called MICRO-BOUNDS that runs for ten seconds, access-
ing a single memory area as fast as it can. Ten times per second, it issues an out-of-bounds access.
This micro-benchmark allows us to examine the performance of SMCO in more detail.

34

100

90
80 |
70
60 -
50 |
40

Millions of events

30

Percent violations caught

20 |

0r Violations caught
Functiqn call eventls -------

0 10 20 30 40 50
Target overhead

Figure 3.16: Number of function executions bounds-checked and number of bounds violations caught, versus target
overhead for the MICRO-BOUNDS micro-benchmark.

Figure 3.16 shows our effectiveness at detecting bounds violations in this micro-benchmark
for different target overhead settings. The solid line shows the percent of bounds violations
caught, and the dotted line shows how many events SMCO observed overall. (Under-utilization
detection is still active, but we do not show the results because MICRO-BOUNDS does not use
heap-allocated memory.) Initially, we observe a linearly increasing number of accesses, which
saturates near 100% of accesses observed, confirming that we are not only achieving our over-
head targets, but we are in fact getting something for that overhead: we are monitoring as much
as possible given the overhead constraints.

160

T
10% overhead
20% overhead -------
140 - 30% overhead -------- 7]

120 | i
100 e
80 | . P g

60 | -

40 T i

Number of bounds violations observed

20 | i

0 L= e I 1 1 1
0 2 4 6

Time in benchmark (sec)

fee]

10

Figure 3.17: Cumulative number of bounds violations caught over time in runs of the MICRO-BOUNDS micro-
benchmark with 10%, 20%, and 30% overhead

Figure 3.17 demonstrates the bounds-checking characteristics of our micro-benchmark over
time with different target overheads. Each line shows a single 10 second run of the micro-
benchmark, with the y-values being the total number of bounds violations observed up until
each point in time. The graph demonstrates that the SMCO-based monitor continues to observe
bounds violations at a roughly uniform rate. This demonstrates the difference between SMCO
and most existing adaptive sampling tools [24], which reduce overhead over time, making viola-
tions occurring later less likely to be caught than early violations.

35

160 T T T T T

140 I |
ol T { -
100 | |
80 | |

60 E

Number of NAPs detected

40 | .

20 E

0 1 1 1 1 1
0 10 20 30 40 50 60

Target overhead

Figure 3.18: Observed NAPs increase with target overhead for the MICRO-NAP micro-benchmark.

Finally, we designed a micro-benchmark called MICRO-NAP that runs for one minute. It main-
tains 100 separately-allocated heap areas—allowing the benchmark’s auxiliary data structures to
reside comfortably in CPU caches—and uses a pseudo-random number generator to generate ac-
cess intervals for each of these areas. Initially, and whenever it performs an access, MICRO-NAP
generates a random interval between one and eight seconds (a NAP is three seconds, and we left
time for monitoring to resume); after this interval, it performs an access. Figure 3.18 shows that
given more overhead, the NAP detector finds more NAPs. We observe that NAP detection works
well even with low overheads, because underutilized memory areas require little overhead to
monitor so their local controllers can afford to monitor them regardless of global targets.

The MICRO-BOUNDS and MICRO-NAP micro-benchmarks demonstrate that both bounds check-
ing and NAP detection can use additional overhead effectively.

Summary of Experimental Results
In this evaluation section, we have demonstrated two things:

1. SMCO is zealous in enforcing the overhead goal specified by the user while making a best
effort to observe increasing amounts of events, and

2. tools using SMCO are effective at detecting memory under-utilization and bounds viola-
tions.

When the local controllers behave linearly, SMCO maximizes the number of events it observes
by using as much overhead as it is allowed. With non-linear local controllers, the overhead control
problem is more difficult, but SMCO still enforces an upper bound on overhead. We have also
shown that SMCO-based monitoring tools observe more events as they are given more overhead,
and can use this information to catch real as well as injected errors. In Lighttpd, we found that
33% of the heap footprint is spent on memory that is completely unused, even under load.

3.2.4 Conclusion

We have presented Software Monitoring with Controllable Overhead (SMCO), an approach to
overhead control for the runtime monitoring of instrumented software. SMCO is high-confidence
because, as we have shown in the paper, it monitors as many events as possible without exceeding
the target overhead level. This is distinct from other approaches to software monitoring which
promise low or adaptive overhead, but where overhead, in fact, varies per application and under
changing usage conditions. The key to SMCO’s performance is an underlying control strategy

36

based on an optimal controller for a nonlinear control problem represented in terms of the com-
position of timed automata.

Using SMCO as a foundation, we have developed two sophisticated monitoring tools: a mem-
ory staleness detector and a bounds checker. The staleness detector detects memory areas that
are unused for longer than a user-definable interval. This is achieved by taking advantage of
memory-protection hardware, a technique normally used in the kernel to evict pages from physi-
cal memory but rarely seen in user-space. The bounds checker instruments memory accesses and
checks them against a splay tree of valid areas. Both the per-area checks in the staleness detec-
tor and the per-function checks in the bounds checker are activated and deactivated by the same
generic controller, which achieves a desired target overhead with both of these systems running.

Our benchmarking results demonstrate that it is possible to perform correctness monitoring
of large software systems with fixed overhead guarantees. As such, the promise of SMCO is
attractive to both developers and system administrators; developers desire maximal monitoring
coverage, and system administrators need a way to effectively manage the overhead runtime
monitoring imposes on system performance. Moreover, our system is fully responsive to changes
in system load, both increases and decreases, which means that administrators need not worry
about load spikes causing unusual effects in instrumented software. We also demonstrated the
effectiveness of our system at detecting real-world bugs: for example, we found out that one-third
of the Lighttpd Web server’s heap footprint is unused.

3.3 Other Approaches to Controlling Overhead

In this section, we discuss approaches to overhead control that others have implemented, and
which provide context for our own approach.

Java-based code replication. Arnold and Ryder developed a system that performs profiling
by replicating code using the Java just-in-time (JIT) compiler [4]. This was implemented as a
compilation phase for the Jikes research virtual machine [48]. In this approach, instrumentation
activates when a counter expires. This is similar to couter overflow sampling, which we dis-
cussed in Section 2.2.1. This gives instrumentation developers a knob to control instrumentation,
adding another input to the system. However, it does not provide any feedback mechanism ex-
cept benchmarks, and consequently is not suited to inline control.

Context-based overhead reduction. Artemis reduces overhead from runtime checks by en-
abling them for only certain function executions [12]. To observe as many behaviors as possi-
ble, Artemis always monitors a function when the function runs in a context that it has not seen
before, where a function’s execution context consists of the values of global variables and argu-
ments. Artemis’s context-based filtering can, when the developer specifies the contexts correctly,
be very effective for focusing instrumentation on areas where it is needed. Artemis, however,
does not address the case where the target overhead is prescribed by the user. Also, Artemis does
not address timing issues because timing is not part of an Artemis context.

Leak detection using adaptive profiling. SWAT is a leak-detection tool that uses a binary in-
strumentation framework to periodically rewrite pieces of code, enabling monitoring for those
pieces of code [24]. The monitoring observes the memory accesses those code fragments make,
and use that information to infer which memory areas are unused. SWAT reduces the rate at
which it activates individual regions as they execute, meaning that commonly-used codepaths
are monitored less intensively. This means that commonly-used pieces of code use less overhead.
This approach resembles MCM which we discussed in Section 3.1 in that it keeps monitoring high
for rarely-used code, but there is no formal definition of confidence used.

37

Chapter 4

Research Plan

In this thesis proposal, we have two main goals. First, we intend to create a system that allows
programmers to insert arbitrary debugging code into an application after deployment, while
properly respecting users’” performance requirements. Second, we intend to leverage the com-
piler to provide more detailed semantic information at each possible point where the programmer
could add instrumentation, and to provide instrumentation points in a more intelligent manner.
The general architecture of the system we intend to develop to achieve these goals is shown in
Figure 4.1.

While the networked aspect of our system is important for future implementation, we in-
tend to make the system as amenable as possible to network-extension without addressing the
problems of scale and management that have been addressed by existing cooperative debugging
research [29].

APPLICATION DEeBUGGING ExeEcuUTION
Source Cobpe CoDE Logs

¥

GCC-Basep COMPILER, Data
Hooxk INSERTION LINKER COLLECTOR
Developer environment
User environment * %

¥
O— #e

OVERHEAD APPLICATION DEBUGGING
CONTROL WitH Hooks MobpuLE

Fiqure 4.1: Architecture of the proposed system.

GCC will insert instrumentation points into the application’s source code, both automatically
and in response to user annotations. By default, GCC will insert instrumentation at each function
entry point. If annotations do not indicate anything else, instrumentation will be provided with
the arguments that the function receives, and with the values of static variables in the function.

38

Annotations will be able to specify not only code locations but also data structures which, when
they are accessed, can trigger instrumentation.

We will also explore what other data may be useful (such as the function’s locals), as well
as how to provide access to these and other internal variables if instrumentation requests them.
We have already been able to expose a program’s internal state to instrumentation in the case of
GCC, by modifying its link process to expose its global variables as symbols to plug-in code.

When executing, the application will load instrumentation out of a plug-in file, specified as
an environment variable. This is intended to simplify future enhancement, where the code is
downloaded from a server. The instrumentation will specify where it needs to execute, and the
application’s instrumentation hooks will collaborate with an overhead control mechanism to en-
sure that instrumentation only uses a fixed proportion of the program’s execution time. The
instrumentation overhead has several components, which we will quantify individually.

¢ Disabled instrumentation points incur a constant overhead per function execution. We will
determine this overhead by storing the time at the beginning and end of each tracepoint in
a pair of static variables. The difference will be calculated during the next execution of the
tracepoint, to allow the overhead from that calculation to be measured as well.

e The overhead from execution of instrumentation functions can be measured accurately by
calculating the time before and after the call.

e The time spent calculating the next activation time, and maintaining auxiliary data struc-
tures, has been a source of overhead in the past. We will ensure that all computations related
to the overhead-control mechanism itself are themselves profiled.

Initially, the instrumentation will write its output to a local log file. We will investigate ways
to optimize this so as to minimize file-access overhead, as well as providing upload functionality
to the instrumenation server.

We will execute this project in several phases:

1. Develop a GCC plug-in that loads always-on instrumentation into a program and accu-
rately reports the overhead impact of that instrumentation on the program. Benchmark
this.

2. Modify the GCC plug-in to bound the instrumentation’s overhead as discussed in Section
3.2. Benchmark this.

3. Add functionality to GCC supporting user-specificable tracepoints, both at specific points
in the source code and also attached to specific variables.

4. Separate the instrumentation into loadable modules, and provide a uniform logging API.

The deliverable will be a tool that is capable of accomplishing the above on C code, with tests
on the Web servers, text editors, FIP servers, standard benchmarks like SPEC, among other C
applications. We will leave the following as future work:

e Designing the client/server system that obtains new instrumentation code and reports re-
sults.

e Extending the system to support C+.

e Adding code signing and encryption to support secure debugging.

39

Bibliography

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. Dibenedetto, A. Sladanha, and A. L. Sangiovanni-
Vincentelli. Supervisory control of finite state machines. In P. Wolper, editor, 7th International
Conference On Computer Aided Verification, volume 939, pages 279-292, Liege, Belgium, 1995.
Springer Verlag.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:
A new kernel foundation for UNIX development. In Proceedings of the Summer USENIX
Technical Conference, pages 93-112, Atlanta, GA, June 1986. USENIX Association.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183—
235, 1994.

[4] M. Arnold and B. Ryder. A framework for reducing the cost of instrumented code. In
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 168-179, Salt Lake City, UT, June 2001.

[5] A.Bernstein and P. K. Harter. Proving real-time properties of programs with temporal logic.
In Proceedings of the 8th ACM Symposium on Operating Systems Principles (SOSP 1981), pages
1-11, Pacific Grove, California, 1981. ACM Press.

[6] R. Bryant and J. Hawkes. Lockmeter: Highly-informative instrumentation for spin locks
in the Linux kernel. In Proceedings of the 4th Annual Linux Showcase and Conference, pages
271-282, Atlanta, GA, October 2000. USENIX Association.

[7] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and Implementation.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[8] S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with Modular GIMPLE Optimiza-
tions. In Proceedings of the 2007 GCC Developers” Summit, Ottawa, Canada, July 2007.

[9] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic Instrumentation of Production
Systems. In Proceedings of the Annual USENIX Technical Conference, pages 15-28, 2004.

[10] Silicon Graphics Corporation. SpeedShop User’s Guide. SGI Technical Publications, Mountain
View, CA, USA, 2003.

[11] David MacKenzie and Ben Elliston and Akim Demaille. Autoconf: Creating automatic con-
figuration scripts. www. gnu. or g/ sof t war e/ aut oconf / manual / aut oconf . pdf ,2006.

[12] L. Feiand S. P. Midkiff. Artemis: practical runtime monitoring of applications for execution
anomalies. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "06), Ottawa, Canada, June 2006.

40

[13] G.F Franklin,]J.D. Powell, and M. Workman. Digital Control of Dynamic Systems, Third Edition.
Addison Wesley Longman, Inc., 1998.

[14] Free Software Foundation. Shared library support for gnu. www. gnu. or g/ sof t war e/ | i bt ool /
manual . ht m , 2005.

[15] The Free Software Foundation, Inc. GDB: The GNU Project Debugger. www. gnu. or g/
sof t war e/ gdb/ gdb. ht n1 , January 2006.

[16] G.C.Neculaand S. McPeak and S. P. Rahul and W. Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs. In Proceedings of the 11th International
Conference on Compiler Construction, pages 213228, London, England, 2002. Springer-Verlag.

[17] M. Galpin. Developing applications using the Eclipse C/C++ development toolkit. www. i bm
comi devel oper wor ks/ opensour ce/ | i brary/ os- ecl i pse/stlcdt/index. htm ,b2007.

[18] The GCC team. GCC online documentation, December 2005. http://gcc. gnu. org/
onl i nedocs/ .

[19] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution profiler.
In Proceedings of the 1982 SIGPLAN symposium on Compiler construction, pages 120-126, June
1982.

[20] R. Grosu and S. Smolka. Monte carlo model checking (extended version). In Lecture Notes in
Computer Science, volume 3440, pages 271-286. Springer Verlag, 2004.

[21] Free Standards Group. DWARF debugging information format, version 3. dwarf std. or g/
Dwar f 3. pdf , December 2005.

[22] M. Haardt and M. Coleman. ptrace(2). Linux Programmer’s Manual, Section 2, November
1999.

[23] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and Language for Building System-
Specific, Static Analyses. In ACM Conference on Programming Language Design and Implemen-
tation, pages 69-82, Berlin, Germany, June 2002.

[24] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive
statistical profiling. Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2004), pages 156-164, October 2004.

[25] Apple Inc. Xcode User Guide. Apple Inc., Cupertino, California, 2008.
[26] Jan Kneschke. Lighttpd. http://ww. | i ghttpd. net/,2003.

[27] O. Kupferman and M. Y. Yardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291-314, 2001.

[28] F. E. Levine. A programmer’s view of performance monitoring in the PowerPC micropro-
cessor. IBM Journal of Research and Development, 41(3), 1997.

[29] B. Liblit, A. Aiken, A. X. Zheng, and M. L. Jordan. Bug isolation via remote program sam-
pling. In Proceedings of the 2003 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '03), San Diego, CA, June 2003.

41

[30] M. Boshernitsan and S. L. Graham. Interactive transformation of Java programs in Eclipse.
In Proceedings of the 28th Internation Conference on Software Engineering, pages 791-794, New
York, NY, 2006. ACM Press.

[31] R. McDougall and J. Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture,
Second Edition. Prentice Hall, Upper Saddle River, New Jersey, 2006.

[32] R. McDougall,]. Mauro, and B. Gregg. Solaris Performance and Tools. Prentice Hall, Upper
Saddle River, New Jersey, 2007.

[33] J. Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions. In GCC
Developers Summit, 2003.

[34] A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. McGraw-
Hill Series in Probability and Statistics, 1974.

[35] D. Novillo. TreeSSA: A New Optimization Infrastructure for GCC. In Proceedings of the 1st
GCC Developers” Summit, Ottawa, Canada, May 2003.

[36] B. Perens. efenice(3), April 1993. 1i nux. di e. net/ man/ 3/ ef ence.
[37] The GDB Project. STABS. sour ces. redhat . conf gdb/ onl i nedocs/ st abs. ht i ,2004.

[38] F.Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-memory for detecting memory leaks
and memory corruption during production runs. In Proceedings of the 11th International Sym-
posium on High-Performance Computer Architecture (HPCA 2005), San Francisco, CA, February
2005.

[39] PJ. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event systems.
SIAM]. Control and Optimization, 25(1):206-230, 1987.

[40] PJ. Ramadge and W.M. Wonham. Supervisory control of timed discrete-event systems. IEEE
Transactions on Automatic Control, 38(2):329-342, 1994.

[41] M. Shapiro. Solaris Modular Debugger Guide (Solaris 8). Fatbrain, October 2000.

[42] A. Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley, Upper Saddle River,
New Jersey, 2007.

[43] M. Snyder and J. Blandy. The Heisenberg debugging technology. In Proceedings of the 1999
Embedded Systems Conference, San Jose, California, September 2007. sour cewar e. or g/ gdb/
t al ks/ esc- west - 1999/ paper . pdf .

[44] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis
tools. SIGPLAN Not., 39(4):528-539, 2004.

[45] Sun Microsystems, Inc. dbx man page. Sun Studio 11 Man Pages, Section 1.

[46] A. Tamches and B. P. Miller. Using dynamic kernel instrumentation for kernel and applica-
tion tuning. The International Journal of High Performance Computing Applications, 13(3):263—
276, Fall 1999.

[47] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs, NJ, 1992.

42

[48] The Jikes RVM Project. Jikes RVM. j i kesrvm or g, 2007.

[49] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Veri-
fication. In Proceedings of the Symposium on Logic in Computer Science (LICS), pages 332-344,
Cambridge, MA, June 1986.

[50] Vim 7.1,2007. www. vi m or g.

[51] J. Wetzel, E. Silha, C. May, B. Frey,]. Fukukawa, and G. Frazier. PowerPC Operating Environ-
ment Architecture, Book I1I. IBM Corporation, Austin, Texas, 2003.

[52] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In
Proc. of 30th Conf. Decision and Control, pages 1527-1528, Brighton, UK, 1991.

[53] K. Yaghmour and M. R. Dagenais. Measuring and characterizing system behavior using
kernel-level event logging. In Proc. of the Annual USENIX Technical Conference, pages 13-26,
San Diego, CA, June 2000. USENIX Association.

[54] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis using the MIPS
R10000 performance counters. In Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting, November 1996.

43

