DARC: Dynamic Analysis of Root Causes
of Latency Distributions

Avishay Traeger, Ivan Deras, and Erez Zadok
Computer Science Department, Stony Brook University
Stony Brook, NY, USA
{atraeger,iderashn,ezk}@cs.sunysb.edu

ABSTRACT

OSprof is a versatile, portable, and efficient profiling method-
ology based on the analysis of latency distributions. Al-
though OSprof has offers several unique benefits and has
been used to uncover several interesting performance prob-
lems, the latency distributions that it provides must be an-
alyzed manually. These latency distributions are presented
as histograms and contain distinct groups of data, called
peaks, that characterize the overall behavior of the running
code. By automating the analysis process, we make it easier
to take advantage of OSprof’s unique features.

We have developed the Dynamic Analysis of Root Causes
system (DARC), which finds root cause paths in a running
program’s call-graph using runtime latency analysis. A root
cause path is a call-path that starts at a given function and
includes the largest latency contributors to a given peak.
These paths are the main causes for the high-level behavior
that is represented as a peak in an OSprof histogram. DARC
performs PID and call-path filtering to reduce overheads
and perturbations, and can handle recursive and indirect
calls. DARC can analyze preemptive behavior and asyn-
chronous call-paths, and can also resume its analysis from a
previous state, which is useful when analyzing short-running
programs or specific phases of a program’s execution.

We present DARC and show its usefulness by analyzing
behaviors that were observed in several interesting scenar-
ios. We also show that DARC has negligible elapsed time
overheads for normal use cases.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance Attributes

General Terms

Measurement, Performance

Keywords

Dynamic Instrumentation, Root Cause

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGMETRICS’08June 2—6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/0655.00.

1. INTRODUCTION

An important goal of performance analysis is finding the
root causes for some high-level behavior that a user observes.
OSprof [8] presents these high-level behaviors to the user by
collecting latency distributions for functions in histograms.
These histogram profiles contain groups of operations, called
peaks. Figure 1 shows example OSprof profiles for single and
multiple processes calling the fork operation. We discuss
this profile further in Section 2. For now, note that there
are two distinct peaks in the multi-process profile (white
bars): the first spans bins 15-19, and the second spans bins
20-25. These types of peaks are characteristic of OSprof
profiles, and are indicative of some high-level behavior. In
this case, the left peak characterizes the latency of the actual
fork operation, and the right peak shows a lock contention.

These histogram profiles are presented to the user, and
with OSprof, the user then manually analyzes the profiles
using a variety of techniques. One technique is to compare
peaks from two different profiles to reach some conclusion.
To analyze the multi-process fork workload shown in the
white bars of Figure 1, a user would need to have the exper-
tise and insight to compare the profile to a single-process
workload’s profile. Because the right-most peak does not
appear in the single-process profile, the user can guess that
a lock contention caused the peak.

Despite the manual analysis required to analyze profiles,
OSprof is a versatile, portable, and efficient profiling method-
ology. It includes features that are lacking in other profilers,
such as the ability to collect time-lapse profiles, small profile
sizes, and low overheads (in terms of time, memory usage,
and code size).

We designed DARC (Dynamic Analysis or Root Causes)
to remedy the problem of manual profile analysis. DARC
dynamically instruments running code to find the functions
that are the main latency contributors to a given peak in a
given profile. We call these functions root causes. DARC’s
output is the call-paths that begin with the function being
analyzed, and consist of root cause functions. This provides
the user with the exact sequence of functions that were re-
sponsible for the peak of interest.

DARC can narrow down root causes to basic blocks and
can analyze recursive code as well as code containing indirect
functions. If the root cause of a peak is a preemptive event,
DARC can determine the type of event (a disk interrupt, for
example). DARC can also analyze asynchronous paths in
the context of the main process. Although DARC generally
does not require much time to perform its analysis, DARC
may not be able to fully analyze programs with short run-



times, and longer running programs with short phases that
are of interest. To solve these issues, DARC can resume its
analysis from a previous point. The program can be run
again, and the analysis continues from the previous point.
To minimize false positives, DARC performs both process
ID (PID) and call-path filtering. PID filtering ensures that
only calls made by a specific process or thread group are
analyzed. Call-path filtering ensures that DARC analyzes
only calls which originate from the function of interest and
proceed through root cause functions.

We implemented DARC and present several cases that
show the advantages of automatic root cause analysis. Not
only is DARC’s analysis faster than manual analysis, but
it also provides more definitive explanations than those ob-
tained from manual analysis. We measured DARC’s elapsed
time overheads and show that they are negligible for normal
usage. Although DARC can add approximately 4.9 times
overhead to fast memory-bound operations, the analysis can
be completed quickly, resulting in a negligible effect on over-
all elapsed time. Further, our instrumentation adds no no-
ticeable overhead on slower I/O-bound operations.

The rest of the paper is organized as follows. We describe
OSprof in Section 2. We detail our design in Section 3 and
our implementation in Section 4. We discuss DARC’s limita-
tions in Section 5 and its parameters in Section 6. Section 7
describes our experimental setup. Section 8 shows exam-
ples of how DARC finds root causes. We evaluate DARC’s
performance in Section 9. We discuss related work in Sec-
tion 10. We conclude and discuss future work in Section 11.

2. OSPROF

OSprof [8] is a powerful profiling methodology. Latencies
for a specified function are measured using the CPU cycle
counter (TSC on x86) and presented in histogram form. OS-
prof measures latency using CPU cycles because it is a highly
precise and efficient metric available at run-time. Figure 1
shows an actual profile of the FreeBSD 6.0 fork operation.
The fork operation was called concurrently by one process
(black bars) and by four processes (white bars) on a dual-
CPU SMP system. The operation name is shown in the top
right corner of the profile. The lower x-axis shows the bin
(or bucket) numbers, which are calculated as the logarithm
of the latency in CPU cycles. The y-axis shows the num-
ber of operations whose latency falls into a given bin. Note
that both axes are logarithmic. For reference, the labels
above the profile give the bins’ average latency in seconds.
In Figure 1, the two peaks in the multi-process histogram
correspond to two paths of the fork operation: (1) the left
peak corresponds to a path without lock contention, and (2)
the right peak corresponds to a path with a lock contention.
The methods used to reach this conclusion are described
later in this section.

The relative simplicity of the profiling code makes OSprof
highly portable. It has been used to find and diagnose inter-
esting problems on Linux, FreeBSD, and Windows XP, and
has been used to profile from user-space and at several ker-
nel instrumentation points. OSprof can be used for gray-box
OS profiling. For example, binary instrumentation was used
to instrument Windows XP system calls. The latency distri-
butions of these system calls included information about the
Windows kernel. OSprof is also versatile: it can profile CPU
time, 1/0, locks, semaphores, interrupts, the scheduler, and
networking protocols.

single-process m—
multi-process T———1

) 28ns 903ns 28us 925us 29ms
£ 10000 —=5 258 s
g 1000 FORK
2 [
g 100
S i,
2
1
£ LL
z 10 15 0 25 30

Bucket number: [og,(latency in CPU cycles)d

Figure 1: Profiles of FreeBSD 6.0 fork operations
with single-process (black bars) and multi-process (white
bars) workloads.

OSprof has negligible performance overheads. Its small
profiles and code size minimize the effects on caches. Ad-
ditionally, having small profiles enables OSprof to collect
time-lapse profiles, where a separate profile is used for each
time segment. This allows the user to see how latency dis-
tributions change over time. The performance overhead for
profiling an operation is approximately 40 cycles per call.
This is much faster than most measured functions, especially
since OSprof is generally used to profile high-level functions.

The drawback of OSprof is the manual investigation re-
quired to find the root cause of a particular behavior, which
is seen as a peak in a profile. The investigation typically re-
quires some deep understanding of the code, as well as taking
the time to profile more sections of code. Let us consider
the profile shown in Figure 1 in more detail. In the single-
process case, only the left-most peak is present. Therefore,
it is reasonable to assume that there is some contention be-
tween processes inside of the fork function. In addition to
the differential profile analysis technique used here, other
techniques have also been used, such as using prior knowl-
edge of latencies, layered profiling, correlating latencies to
variables, and profile sampling [8]. We show some exam-
ples of these techniques in Section 8, where we compare the
analysis methods of OSprof with DARC.

3. DESIGN

We define a root cause function to be a function that is a
major latency contributor to a given peak in an OSprof pro-
file. The key to searching for root causes lies in the fact that
latencies are additive: the latency of a function’s execution
is roughly equal to the latency of executing the function it-
self, plus the latency to execute its callees. This concept can
be extended recursively to the entire call-graph, providing
us with an effective method for finding the largest latency
contributors. DARC searches the call-graph one level at a
time, identifying the main latency contributors at each step,
and further searching the sub-trees of those functions.

When starting DARC, the user specifies the process ID
(PID) of the target program, the function to begin analyz-
ing (we refer to this as fo), and the maximum search depth.
We call a path from fo to a root cause a root cause path.
DARC'’s goal is to find root cause paths and present them
to the user. Over time, DARC creates an in-memory tree
that represents the function calls along root cause paths.
We call this the Function Tree, or ftree, and it is composed
of fnodes. Initially, there is a single fnode in the tree, repre-
senting calls to fo. The depth of the ftree increases during
DARC’s analysis, until either the specified maximum depth
is reached, or DARC has finished its analysis. The PID is
used to ensure that only function calls that are invoked on
behalf of the given process or thread group are analyzed.



f0 {
timel = GET_CYCLES();

£0,00;

£0,10;

£0,00);

time2 = GET_CYCLESQ);
latency = time2 - timel;

record_latency_in_histogram(latency);

}

Figure 2: The instrumentation DARC adds to fo when
DARC is started. fo,0, fo,i, and fo,n are functions that
fo calls.

It is important to note that fnodes do not represent func-
tions, but rather function calls in the context of call-paths.
For example, if both f4 and fp call fc, there would be two
nodes for fc—one with fa as a parent, and one with fp as
a parent. This concept also holds for situations where one
function calls a different function twice. In this case, there
will be one node for each call site. The ftree is a proper tree,
as it contains only sequences of function calls, and so it does
not contain loops or nodes with more than one parent. The
ftree grows as DARC finds more functions that belong to
root cause paths.

DARC begins by instrumenting fo with OSprof code, as
shown in Figure 2. In our notation, the callees of fy are
fo,0 to fo,n. The ellipses represent any code present in the
original program that is not relevant to our discussion. The
GET_CYCLES function reads the current value of the regis-
ter which contains the current number of clock ticks on the
CPU (e.g., RDTSC on x86). These notations are also used for
Figures 3 and 4. The instrumentation accumulates profile
data, which is displayed to the user upon request. DARC
examines changes between bins in the histogram to identify
peaks, and displays the peak numbers to the user along with
the histogram. The peak analysis takes the logarithmic val-
ues of the y-axis into account, mimicking the way a human
might identify peaks. The user may then communicate the
desired peak to DARC. At this point DARC translates the
peak into a range of bins. If the desired peak is known ahead
of time, the user may specify the peak number and the num-
ber of times fo should be called before translating the peak
into a bin range. Once foy is called that number of times,
the profile is displayed so that the user may see the profile
that the results will be based on.

Once a peak is chosen, the original instrumentation is re-
placed by the instrumentation shown in Figure 3. When
fo is executed, DARC measures the latencies of fo and its
callees. The maximum latency for each function is stored
in the appropriate fnode. The maximum is used because a
function may be called more than once in the case of loops
(this is explained further in the following paragraph). Be-
cause the latencies of the callees are measured from within
fo, the latency stored in the fnode of fy; is guaranteed to
be the latency of fo,; when called by fo. The latencies are
processed only if the latency of fo lies in the range of the
peak being analyzed. Otherwise, they are discarded. Note
that in Figure 3, the start and latency variables in the fnode
are thread-local to support multi-threaded workloads.

f0 {
root->start = GET_CYCLES();

£0,00);

c = root->child[i];

c->start = GET_CYCLES();

£0,i0);

c->latency = GET_CYCLES() - c->start;

if (c->latency > c->maxlatency)
c->maxlatency = c->latency;

£0,n0);
root->latency = GET_CYCLES() - root->start;
if (is_in_peak_range(root->latency)) {

process_latencies();
num_calls++;

}

if (num_calls % decision_calls == 0) {
choose_root_causes();
num_calls = 0;

}

reset_latencies();

}

Figure 3: The instrumentation DARC adds to fp after
a peak is chosen. The instrumentation for fo o and fo,, is
similar to that of fy;, and was elided to conserve space.

When DARC calls the process_latencies function (see
Figure 3), it first approximates the latency of fo itself, as
latencys, — (37, latencyy, ;). It then looks for the largest
latency contributors among fo and the callees, whose laten-
cies are in the same bin as the maximum latency. In the
case of a function f; being called from a loop, only the max-
imum latency is attributed to f;, and the remainder of the
latencies are attributed to fi’s caller. Because of this, if in-
dividual calls to f; have high latencies, f; will be chosen as
a root cause. Otherwise, it is the loop in fi’s caller that is
causing the high latency, so it will be chosen.

To improve accuracy, DARC does not make root cause
decisions based on a single call of fp. Instead, it increments
a counter, maxcount, in the fnodes of the largest latency
contributors. Root cause decisions are made after a user-
defined amount of times where the latency of fo has been
in the range of the peak being analyzed. The main la-
tency contributors are those whose value of maxcount are
within a user-defined percentage of the largest maxcount
value. These functions are root cause functions, and their
fnodes are marked as such. DARC always clears the laten-
cies that were recorded before fo returns.

Before describing how descendants of fy that have been
marked as root cause functions are instrumented, the con-
cept of left shift must be introduced. As DARC descends
deeper into the code, the peak being analyzed shifts to the
left. To understand why this occurs, assume the peak is in
bin N of fy’s profile. Further, the main latency contributor
for this peak is fo;. The peak, as seen in the profile of fo,
includes the latency for fo itself, as well as the latencies for
the other functions that fo calls. However, the peak in fo;
does not contain these additional latencies, and so the peak
may shift to the left in the profile of fo ;.

Rather than calculating the location of the peak in fo,
DARC keeps the decision logic in fo. Root cause functions
other than fy are instrumented as shown in Figure 4. As-



£0,i {

¢ = parent->child[j];

c->start = GET_CYCLES();

£0,1,30;

c->latency = GET_CYCLES() - c->start;

if (c->latency > c->maxlatency)
c->maxlatency = c->latency;

}

Figure 4: The instrumentation DARC adds to fj ;, and
fo,i,; is a function that fo; calls.

sume fo calls functions fo,0 to fo,n, and fo; is chosen as a
root cause. Further, fo; calls fo:,0 to fo,i,m. In fo,:, laten-
cies for each fo,,; are calculated, but not processed. DARC
does not add instrumentation to measure the latency of fo ;
because it is measured in fo. DARC creates fnodes for each
fo,i,5, with fo,; as the parent.

Each new root cause function (fo,; in our example) is
added to a list of nodes that fo processes before returning.
Before returning, if fo’s latency is within the peak, DARC
traverses this list to process latencies, and possibly chooses
the next round of root cause functions. To minimize the im-
pact of the decision code on the latency of fo, fo places the
latency information on a queue to be processed off-line by
a separate thread. DARC removes instrumentation that is
no longer needed using a second lower-priority queue for the
instrumentation removal requests. This is because removing
instrumentation is a performance optimization and can be
a slow operation, and so the delays on the analysis should
be minimized.

When DARC determines that a function (and not any of
the functions that it calls) is responsible for the specified
peak, DARC stops exploring along that call-path. DARC
also stops exploring a call-path if it reaches a function that
does not call any functions, or after the root cause path
has grown to the user-specified length. When all call-paths
have completed, DARC removes all remaining instrumenta-
tion and the program continues to run as normal. DARC’s
status may be queried by the user at any time. This status
includes the latency histogram for fy, the analysis status
(“in progress,” “maximum depth reached,” or “root cause
found”), the ftree, and the maxcount values for each fnode.

3.1 Tracking Function Nodes

Before instrumenting a function, DARC must check if the
function has already been instrumented to avoid duplicat-
ing instrumentation. An example of how this could occur is
shown in Figure 5. Here the latency of f, is measured from
fw and fz. DARC then determines that f, is a root cause of
both paths. Because f, was chosen as a root cause twice, it
would be instrumented twice to measure the latency of f..
We avoid this by using a hash table to track which functions
have been instrumented. A hash table is used because in-
strumented functions cannot be tracked by marking fnodes,
because there may be multiple fnodes for a single function.

When more than one fnode exists for each instrumentation
point, the fnode cannot be tied to the instrumentation. For
example, there are two fnodes for f,, so f,’s instrumenta-
tion cannot always use the same fnode. To solve this, DARC
decouples the fnode tracking from the instrumentation by
using a global (thread-local) fnode pointer, current_fnode,

f] 7]
v ]

(b) ftree

(a) call-graph

Figure 5: An example of a call-graph (left) with a pos-
sible corresponding ftree (right) that requires a hash ta-
ble to avoid duplicate instrumentation. Edge labels in
(a) are fnode identifiers, which are enumerations of each
fnode’s children. All nodes belong to root cause paths.

which points to the current fnode. This pointer is always set
to fo at the start of fo. Each instrumented function sets the
current_fnode pointer by moving it to a specific child of the
fnode that current_fnode is pointing to. It does so using
the fnode identifiers (see labels on the call-graph edges in
Figure 5(a)). These fnode identifiers are simply an enumer-
ation of the callees of the parent function. In addition, each
fnode contains a thread-local saved_fnode pointer, where
the value of the global pointer is saved so that it can be
restored after the function call. In Figure 5, f,’s instru-
mentation will save current_fnode, and then change it to
point to the first child of the current fnode. This will cause
current_fnode to point to the correct f, fnode regardless of
whether it was called via f,, or fs.

3.2 Filtering

DARC performs two types of filtering to ensure that only
relevant latencies are measured and analyzed. First, process
ID (PID) filtering ensures that only function calls that are
called in the context of the target process or thread group
are analyzed. This is important for functions that reside in
shared libraries or the operating system. Second, it performs
call-path filtering. It is possible for functions that are not
part of a root cause path to call a function that DARC has
instrumented. In this case, latency measurements should
not be taken, because they may reduce the accuracy of the
analysis. For example, lower-level functions are generally
called from several call-paths, as the functions tend to be
more generic. Performing this filtering can increase the ac-
curacy of DARC’s analysis by reducing noise in the captured
latencies. Call-path filtering also ensures that no function
that is called from outside of the root cause paths will mod-
ify the current_fnode pointer.

DARC uses an efficient call-path—filtering technique. Each
fnode contains a thread-local flag to specify that it was called
along a root cause path. The flag in fo’s fnode is always set.
Before a root cause function calls another root cause func-



tion, it sets the flag of its callee’s fnode if its own flag is set.
The latency measurements and analysis are only executed
when the flag of the current fnode is set.

Although others [3] have used a relatively expensive and
compiler-dependent stack walk to perform call-path filter-
ing, our method is sufficient. It is simple to prove induc-
tively that if a function is called as part of a root cause
path, then the flag in its corresponding fnode is set. Fur-
ther, it is simple to prove that if a function is not called as
part of a root cause path, then its flag will not be set.

3.3 Profiling Basic Blocks

If the instrumentation method used to implement DARC
has knowledge about basic blocks, DARC can instrument
these as well. This is useful in two cases. First, when DARC
reaches the end of a root cause path, DARC can then pro-
ceed to narrow down the root cause to a basic block in that
function. DARC acts on basic blocks in the same way as it
does on functions: it creates an fnode for each basic block,
and sub-blocks are treated as callees of those blocks.

The second case where basic block instrumentation is use-
ful is if a function calls a large number of other functions.
Instrumenting all of the functions at once may add too much
overhead. The user may specify a threshold for the maxi-
mum number of functions to be instrumented at once. If
this threshold is about to be exceeded, DARC instruments
only those function calls that are not called from a basic
block nested within the function, and also instruments any
basic block containing a function call. There is no need to
instrument basic blocks that do not call functions because
their latencies are included in the latency of the function
itself. After DARC narrows down the root cause to a basic
block, it instruments that block to continue its analysis.

DARC can be set to always instrument basic blocks before
function calls. This reduces the overhead incurred at any
given point in time. The trade-off is that because there
are more steps to finding a root cause, the period of time
in which overheads are incurred is prolonged. In addition,
DARC consumes more memory because the ftree contains
basic blocks as well as functions.

3.4 Resuming DARC

DARC can use its output as input in a future run, al-
lowing it to continue a root cause search without repeating
analysis. After parsing the previous output, DARC rebuilds
the ftree (including the maxcount values), and inserts the
needed instrumentation. The ability to resume analysis is
important in two cases. First, a user may search for root
cause paths up to a specified length and later need more in-
formation. Second, a program may not run for enough time
to fully analyze it, or the user may be analyzing a specific
phase of a program’s execution. In this case, the program
may signal DARC on when to begin and end the analysis.

If desired, a new OSprof profile for fo can be collected
before DARC resumes analysis, and this profile can be com-
pared to the previous profile to ensure that the latency dis-
tribution has not changed. A change in the distribution may
be caused by factors such as changes in the execution envi-
ronment or different input to the process. DARC compares
the profiles using the Earth Mover’s Distance (EMD) algo-
rithm, which is commonly used in data visualization as a
goodness-of-fit test [16]. In previous work, its accuracy was
shown to be better than the other algorithms [8].

@\/QQF

) call-graph ) ftree

Figure 6: A recursive call-graph (left) with a corre-
sponding ftree (right), where only f, has been identified
as a root cause at this point. The numbers on the edges
of the call-graph are the fnode identifiers.

3.5 Recursion

To handle recursion, the ftree needs to have one fnode for
every instance of a function call, as described in Section 3.1.
Additionally, DARC needs to know when the code execution
goes past a leaf in the ftree and then re-enters it by way
of recursion. For example, in Figure 6, DARC must know
that after f, calls a function, it is no longer in the ftree.
This is because f, may call f,, which would incorrectly set
current_fnode to f;. To solve this, DARC has a thread-
local flag that tracks when the execution leaves the ftree.
DARC ensures that the same function execution that sets
the flag to false sets it back to true.

3.6 Analyzing Preemptive Behavior

Preemptive behavior refers to any case where the primary
thread that is being investigated is stopped and another
piece of code is set to run. This can be when the main
process is preempted for another process to run or when an
interrupt occurs. Preemptive behavior may concern us when
the latency of a secondary code path is incorporated into the
latencies that DARC measures, although in general these
latencies may be ignored [8]. The original OSprof method-
ology used system-specific knowledge about the quantum
length to determine when the process was preempted, and
intuitive guesses to determine when interrupts caused peaks.

DARC measures preemptive behavior only if the added
latency will be incorporated into the current latency mea-
surements. This happens if the code being executed in the
primary thread is in the subtree of an fnode that is currently
being investigated. These fnodes contain extra variables to
store preemption and interrupt latencies. In cases where
multiple preemptive events of the same type occur, DARC
stores the sum of their latencies (recall that DARC resets
latency information after each execution of fo).

If the name or address of the appropriate scheduler func-
tion is available, DARC can instrument it to check if the
target process was preempted, and for how long. DARC
stores the total amount of time spent while preempted in
the appropriate fnode, and uses this data when searching
for root causes. If preemption latency was greater than the
other measured latencies, then DARC reports “preemption”
as the cause of the peak.

For interrupts, if the name or address of the main inter-
rupt routine is known, DARC instruments it to record the
latencies in an array contained in the proper fnode that is in-
dexed by the interrupt number. Latencies are only recorded
if the target process was executing in the subtree of a func-
tion being analyzed. In addition, DARC keeps a small aux-
iliary array to handle the case where an interrupt occurs
while processing an interrupt. If an interrupt is determined
to be a root cause, DARC reports the interrupt number and
handler routine name.



3.7 Analyzing Asynchronous Paths

An asynchronous path refers to a secondary thread that
acts upon some shared object. Examples of this are a thread
that routinely examines a system’s data cache and writes
modified segments to disk, or a thread that takes I/O re-
quests from a queue and services them. Asynchronous paths
are not uncommon, and it may be desirable to analyze the
behavior of these paths. Work done by asynchronous threads
will generally not appear in a latency histogram, unless the
target process waits for a request to be completed (forcing
synchronous behavior). An example of such behavior can
be seen in the Linux kernel, where a request to read data
is placed on a queue, and a separate thread processes the
request. Because the data must be returned to the applica-
tion, the main thread waits for the request’s completion.

To analyze asynchronous paths, the user may choose a
function on the asynchronous path to be fy. This requires
no extra information, other than the name or address of
fo. However, if it is desirable to analyze an asynchronous
path in the context of a main path, DARC requires extra
information. For cases with a request queue, DARC needs
to know the address of the request structure. DARC adds
call-path filtering along the main path up to the point where
the request structure is available to DARC. At this point,
DARC adds the request structure’s address to a hash table
if the PID and call-path filtering checks all pass. When the
secondary thread uses the request object, DARC checks the
hash table for the object’s address. If it is there, DARC
knows that the target process enqueued the object along
the call-path that is of interest to the user.

In the case where the asynchronous thread is scanning all
objects (with no request queue), the object can be added to
the hash table when appropriate. This technique requires
the same extra knowledge as the situation with a request
queue: the call-path to filter and the name of the request
object. In the case where this information is not available,
DARC proceeds without PID or call-path filtering,.

4. |IMPLEMENTATION

DARC operates by using dynamic binary instrumenta-
tion (DBI) to find the root causes of a peak. An alternative
to DBI would be a compile-time method, where all of the
instrumentation is added to the source code. A compile-
time method has the benefits of lower overheads to activate
instrumentation and the ability to report the names of in-
line functions. However, there are five main drawbacks to
compile-time methods. First, the build system would need
to be changed to add the code. In large projects, this may
be a daunting task. Second, the application would need to
be stopped to run the version with the new instrumentation.
This is a problem for critical or long-running applications.
Third, because all instrumentation must be inserted ahead
of time, there would be a large increase in code size, and
all code paths would incur overheads when skipping over
the instrumentation. Fourth, all source code needs to be
available. Although application code is usually available to
developers, libraries and kernel code may not be. Finally,
indirect calls can only be resolved at runtime.

DARC includes a script that takes a configuration file as
input, translates the program name into a PID and function
names into code addresses, and executes DARC with the ap-
propriate parameters. This makes DARC easier to operate,

because the user does not need to look up these values man-
ually. Internally, DARC does not use any function names, so
its output contains only function addresses. DARC includes
a user-level program that interacts with the kernel compo-
nent using an ioctl, and allows a user to send commands
to the DARC module to display the ftree, display fo’s la-
tency histogram, and to set the initial root cause path when
resuming DARC. DARC also includes a user-level script to
process the output, translating addresses to function names
and interrupt numbers to interrupt names.

The current DARC prototype is implemented as a ker-
nel module for the Linux 2.6.23 kernel. It uses kprobes for
DBI [5]. Simply put, a kprobe consists of a function and the
address where the function is to be inserted. Most DARC
instrumentation is inserted using ordinary kprobes. How-
ever, the instrumentation that is executed before fo returns
(see end of Figure 2) is inserted using a kretprobe, or “return
kprobe.” This type of kprobe is executed before a function
returns from any point. To handle function pointers, DARC
adds an additional kprobe to the call site that checks the ap-
propriate register for the target address.

We used kprobes for two reasons. First, it is part of the
mainline Linux kernel. Code inside the mainline kernel tends
to be stable and well-maintained, and is available in any re-
cent kernel version. Kprobes are currently available for the
i386, x86_64, ppc6b4, ia64, and sparc64 architectures, and
it can be expected that other architectures that Linux sup-
ports will be supported by kprobes in the future. The second
reason is that kprobes provide a minimalistic interface—
they place a given section of code at a given code address.
This shows that DARC can be implemented using any DBI
mechanism, and can be ported to other operating systems
and architectures.

DARC also uses a disassembler that we modified from the
Hacker Disassembler Engine v0.8 [15]. We converted the
NASM syntax to GNU assembler syntax using intel2gas [14],
and converted the opcode table from NASM to C. We chose
this disassembler because it is very small and lightweight
(298 lines of assembly in our version). We also added a C
function that returns the callsites of a given function, which
took 84 lines of code. This function also handles tail-call
optimizations (if a function x calls a function y immediately
before returning, the call and return can be replaced by a
jump to y, and y then returns to x’s return address). This
provides the minimum necessary functionality for DARC ex-
cept for the identification of basic blocks, which our current
prototype does not yet support.

DARC uses kprobes in a non-standard way. An initial
version inserted two kprobes per function call: one before
the call and one after. This may cause problems if the code
path jumps to the second kprobe without executing the first
one. We had to insert an extra check to ensure that the
code in the second kprobe was executed only if the first
kprobe was called. Instead, the first kprobe saves the return
address of the function f that is being called. The kprobe
then modifies f’s return address on the stack to point to a
new function that essentially contains the code of the second
kprobe. This new function then returns to f’s original call
point. This has two benefits. First, it guarantees that the
code contained in the second kprobe is executed only when
the first is. Second, DARC now uses only one kprobe per
function call, which speeds up the code because each kprobe
causes a trap to occur.



Although the current DARC prototype is implemented
in the kernel, the design is portable enough to use in user-
space as well. Additionally, the design is flexible enough that
DARC could begin investigating peaks in a user process and
continue the analysis in the kernel if necessary [12]. The im-
plementation would instrument the user-space application
and invoke the kernel instrumentation when it detects sys-
tem calls. This can be done by creating separate user-space
and kernel implementations, and synchronizing latency mea-
surements. Alternatively, probes can be added to the user-
space application from the kernel, so that DARC’s instru-
mentation code, data structures, and decision logic reside
only in the kernel. This avoids the need to duplicate code
and synchronize latency information, and allows for simple
call-path filtering across the user-kernel boundary.

5. LIMITATIONS

DARC has three main limitations. First, DARC assumes
that the latency distribution of fo is fairly static. If the be-
havior of the code being analyzed changes during analysis,
DARC may not be able to conclude the analysis. How-
ever, we expect this to be rare. Second, inline functions and
macros cannot be analyzed separately because this DARC
implementation uses binary instrumentation. Third, if the
source of the code being analyzed is not available, the bi-
nary should include symbols so that the output can be trans-
lated from function addresses to names. The function names
should also be descriptive enough for the user to guess what
the function does. Otherwise, the user must disassemble the
binary to understand the root cause.

6. SETTING DARC PARAMETERS

DARC has several parameters that affect its execution.
These include the program name or PID for filtering and
the function to analyze. To limit DARC’s runtime, the user
may set the maximum search depth. As described in Sec-
tion 3.4, DARC may be resumed if this parameter is not set
high enough. The decision_ops parameter sets the number
of times fo is called where its latency is within the desired
range until a root cause decision is made. This parameter
allows the user to trade off analysis runtime for accuracy.
The maxcount_percentage parameter is used to determine
the maxcount threshold for functions to choose the next level
of root causes. Acceptable values range from 0 to 1, and the
threshold is maxcount_percentage * maximum maxcount. A
value of 1 will cause one function to be chosen as a root
cause for the current decision unless more than one function
has a maxcount value equal to the maximum. Lower values
will allow for more functions to be chosen potentially as root
causes. We have two more parameters useful for benchmark-
ing, start_ops and start_peak, but they are not meant for
normal use. The start_ops parameter is the number of ele-
ments to collect in the OSprof histogram before choosing a
peak specified by start_peak.

7. EXPERIMENTAL SETUP

We now describe the experimental setup used for our
use cases (Section 8) and our performance evaluation (Sec-
tion 9). The test machine was a Dell PowerEdge SC 1425
with a 2.8GHz Intel Xeon processor, 2MB L2 cache, and
2GB of RAM. The machines were equipped with two 73GB
Seagate Cheetah ST373207LW SCSI disks. We used one

561ps 17ms 575ms

READ.

Number of operations
.
)
S
S
i1

10 15 20 25 30
Bucket number: [og,(latency in CPU cycles)U

Figure 7: A profile of the read operation that reads zero
bytes of data.

disk as the system disk, and the additional disk for the test
data. The machines ran Fedora Core 6 updated as of Octo-
ber 8, 2007, with kernel version 2.6.23. The file system for
all benchmarks in Section 9 was ext2, unless otherwise spec-
ified. To aid in reproducing these experiments, the DARC
and workload source code, a list of installed package ver-
sions, the kernel configuration, and a full hardware descrip-
tion are available at www.fsl.cs.sunysb.edu/docs/darc/.

8. USE CASES

In this section we describe some interesting examples that
illustrate DARC’s ability to analyze root causes. To high-
light the benefits of using DARC, we show three usage ex-
amples that were first published in the OSprof paper [8]. We
compare the use of DARC to the manual analysis described
in the OSprof paper. We show that DARC does not require
as much expertise from the user, is faster, and gives more
definitive results.

The use cases that we present highlight three of DARC’s
interesting aspects: analyzing interrupts, investigating asyn-
chronous paths, and finding intermittent lock contentions.
We recreated all of the test cases on our test machine. The
first example used a workload that reads zero bytes of data
in a loop. The remaining two examples used a grep work-
load, where the grep utility searched recursively through
the Linux 2.6.23 kernel source tree for a nonexistent string,
thereby reading all of the files. We will specify the values of
the start_ops and decision_ops parameters (described in
Section 6) for each use case.

8.1 Analyzing Interrupts

Figure 7 shows a profile of the read operation issued by
two processes that were repeatedly reading zero bytes of
data from a file. This profile contains three peaks, and we
order them from left to right: first (bins 7-9), second (10—
13), and third (14-18). The first peak is clearly the usual
case when the read operation returns immediately because
the request was for zero bytes of data. For this peak, DARC
reports a root cause path showing the read path up to the
point where the size of the read is checked to be zero. At
this point, the functions return because there is no work to
be done. The root cause path as shown by DARC is:

vis_read — do_sync_read — generic_file aio_read.

Note that the last two functions here are indirect calls, but
DARC displays name of the target function. This output
tells us that the read operation is responsible for the peak.

In the OSprof paper, the authors hypothesized that the
second peak was caused by the timer interrupt. They based
this on the total runtime of the workload, the number of
elements in the peak, and the timer interrupt frequency.
Recall from Section 3.6 that DARC instruments the main
interrupt handling routine (do_IRQ in our case). This in-



10000 17ns 548ns 17ps 561us

1000

17ms 575ms
READDIR

i
o

[N

Number of operations
.
)
o

10 15 20 25 30
Bucket number: [og,(latency in CPU cycles)

Figure 8: A profile of the ext2 readdir operations cap-
tured for a single run of grep -r on a Linux 2.6.23 kernel
source tree.

strumentation checks if the target process was executing a
function that DARC is currently analyzing. If so, it records
the latencies for each interrupt type and attributes these
measurements to the executing function. In our case, we set
fo to vfs_read, as before. DARC reported “interrupt 0” as
the root cause, which our post-processing script translated
as “timer interrupt.” DARC arrived at this conclusion be-
cause after comparing the latencies of vfs_read, its callees,
and the latencies for each interrupt number, interrupt 0 al-
ways had the highest latency.

Although it was possible to determine the cause of the
peak without DARC, doing so would have required deep in-
sight and thorough analysis. Even so, the cause of the peak
could not be confirmed with manual analysis. DARC con-
firmed the cause, while requiring much less expertise from
the user. Additionally, DARC discovered that the third peak
was caused by interrupt 14 (the disk interrupt), which was
not reported in the OSprof paper. DARC analyzed this third
peak in the same way as it did with the second.

For analyzing this profile, we set start_ops to 100 and
decision_ops to 20. From our experience, we found these
values to be generally sufficient.

8.2 Analyzing Asynchronous Paths

Running the grep workload on ext2 resulted in the profile
shown in Figure 8. There are four peaks in the profile of
the readdir operation, ordered from left to right: first (bin
9), second (11-14), third (16-17), and fourth (18-23). In
the OSprof paper, prior knowledge was used as a clue to the
cause of the first peak. The OSprof authors noted that the
latency is similar to the latency of reading zero bytes (see
the first peak in Figure 7). This implies that the operation
completes almost immediately. The OSprof authors guessed
that the cause of the peak is reading past the end of the di-
rectory. They confirmed this by modifying the OSprof code
to correlate the latency of the first peak with the condition
that the readdir request is for a position past the end of
the directory. We ran DARC to analyze this first peak, and
the resulting root cause path consisted of a single function:
ext2_readdir. This is because the function immediately
checks for reading past the end of the directory and returns.

The causes of the remaining peaks were analyzed in the
OSprof paper by examining the profile for the function that
reads data from the disk. The OSprof authors noted that the
number of disk read operations corresponded to the number
of operations in the third and fourth peaks. This indicates
that the operations in the second peak are probably cached
requests, and the operations in the third and fourth peaks
are satisfied directly from disk. Further, based on the shape
of the third peak, they guessed that the operations in that
peak were satisfied from the disk’s cache. Based on the
knowledge of the disk’s latency specifications, they further

guessed that the operations in the fourth peak were affected
by disk-head seeks and rotational delay.

When DARC analyzed the second peak, it displayed the
following root cause path, which clearly indicates that the
root cause is reading cached data:

ext2 readdir — ext2_get_page — read_cache_page —
read_cache_page_async — __read_cache_page.

For the third peak, DARC produced the following root
cause path:

ext2_readdir — ext2_get_page — read_cache_page —
read_cache_page_async — ext2_readpage —
mpage_readpage — mpage_bio_submit — bio_submit.

Notice that first portion of the root cause path is the
same as for the second peak. However, after calling the
__read_cache_page function to read data from the cache, it
calls ext2_readpage, which reads data from disk. Even-
tually the request is placed on the I/O queue, with the
bio_submit function (bio is short for block I/0O). For all
of the use cases, DARC was tracking asynchronous disk re-
quests, as described in Section 3.7. If a request reaches the
bio_submit function and is not filtered by PID or call-path
filtering, DARC records the address for the current block
I/O structure in a hash table. After DARC analyzed this
peak for the first time, we restarted DARC, giving it the pre-
vious call-path output as input. We set fo to the function
that dequeues the requests was the queue. This allowed us
to analyze the asynchronous portion of the root cause path
while retaining the PID and call-path filtering from the main
path. DARC then produced the following output:

__make_request — __elv_add_request — elv_insert —
cfq_insert_request — blk_start_queueing —
scsi_request_fn.

In this root cause path, __make_request removes the re-
quest from the queue. The cfq_insert_request function is
a function pointer that is specific to the I/O scheduler that
the kernel is configured to use (CFQ in this case). Finally,
scsi_request_fn is a SCSI-specific function that delivers the
request to the low-level driver. The root cause path for the
fourth peak was identical to that of the third, indicating that
disk reads are responsible for both peaks, as reported by OS-
prof. Unfortunately, because requests from both peaks are
satisfied by the disk, the factor that differentiates the two
peaks is hardware, and therefore software techniques cannot
directly find the cause. In this case, one must use manual
analysis to infer the causes.

8.3 Analyzing Intermittent Behavior

On Reiserfs, the grep workload resulted in the profiles
shown in Figure 9. These are time-lapse profiles. Because
OSprof profiles are small, OSprof can store latency measure-
ments in different histograms over time to show how the dis-
tributions change. The x-axis represents the bin number, as
before. The y-axis is the elapsed time of the benchmark in
seconds, and the height of each bin is represented using dif-
ferent patterns. The profile on the left is for the write_super
operation, which writes the file system’s superblock struc-
ture to disk. This structure contains information pertaining
to the entire file system, and is written to disk by a buffer
flushing daemon every five seconds by default. The profile
on the right is for the read operation.



> 100 Operations m—
11-100 Operations Fzz

> 100 Operations m—
11-100 Operations EXzzm

WRITE_SUPER 1-10 Operations zz=z2a READ 1-10 Operations zzz2
35 1%} 35 -
~ 30 2 30 v
g 2
225 S o5t A2
2 o
E 2 = E}
2 3
2 15 a 2 15 -
o K]
w10 & w10 + &
5 o 5
0 0 e

5 10 15 20 25 30 5 10 15 20 25 30
Bucket number: (og,(latency in CPU cycles)l Bucket number: [og,(latency in CPU cycles)l

Figure 9: Reiserfs 3.6 file-system profiles sampled at 1.5
second intervals.

The bins on the right side of the read profile correspond
to the bins in the write_super profile. This indicates that
there is some resource contention between the two opera-
tions, but the OSprof analysis methods cannot confirm this,
nor can they give more information about the resource in
question. The OSprof authors attributed this behavior to
a known lock contention. A user that was not informed
about this lock contention would struggle to analyze this
behavior manually. First, the user may be confused as to
why the file system is writing metadata during a read-only
workload. The user must know that reading a file changes
the time it was last accessed, or atime. Further, the atime
updates are written by the buffer flushing daemon, which
wakes periodically. This would lead the user to collect a
time-lapse profile for this case. In the end, only source code
investigation would provide an answer.

Using DARC, we analyzed both profiles shown in Figure 9.
We first ran DARC on the read path. We set start_ops
to 5,000 so that enough delayed read operations would be
executed, and we set decision_ops to 5, because the read
operations do not get delayed very often. The root cause
path that DARC displayed was:

vis_read — do_sync_read — generic_file_aio_read —
do_generic_mapping_read — touch_atime —
_mark_inode_dirty — reiserfs_dirty_inode —

lock kernel.

We can see from this that the read operation (vfs_read)
caused the atime to be updated (touch_atime). This caused
the lock kernel function to be called. This function takes
the global kernel lock, also known as the big kernel lock
(BKL). To understand why this happens, we can look at the
siblings of the lock_kernel fnode (not shown above because
they are not root causes): journal_begin, journal_end, and
unlock_kernel. This tells us clearly that Reiserfs takes the
BKL when it writes the atime information to the journal.

For the write_super operation, we turned off PID filter-
ing because the superblock is not written on behalf of a
process. We set both start_ops and decision_ops to 5,
because the write_super operation does not get called fre-
quently. DARC produced the following root cause path:

reiserfs_write_super — reiserfs_sync_fs — lock_kernel.

Again, the siblings of the lock kernel fnode are journal-
related functions. We now know that the lock contention
is due to Reiserfs taking the BKL when writing atime and
superblock information to the journal.

9. PERFORMANCE EVALUATION

We used the Autopilot v.2.0 [20] benchmarking suite to
automate the benchmarking procedure. We configured Au-
topilot to run all tests at least ten times, and computed the
95% confidence intervals for the mean elapsed, system, and
user times using the Student-t distribution. In each case,
the half-width of the interval was less than 2% of the mean.
We report the mean of each set of runs. To minimize the
influence of consecutive runs on each other, all tests were
run with cold caches. We cleared the caches by re-mounting
the file systems between runs. In addition, the page, in-
ode, and dentry caches were cleaned between runs on all
machines using the Linux kernel’s drop_caches mechanism.
This clears the in-memory file data, per-file structures, and
per-directory structures, respectively. The sync function
was called first to write out dirty objects, as dirty objects
are not free-able.

We had two main requirements for choosing a benchmark.
First, it should run for a long enough time to obtain sta-
ble results—we ensured that all tests ran for at least ten
minutes. Second, the benchmark should call one function
repeatedly. This function will be the one DARC analyzes,
so the DARC instrumentation will be constantly executed.
We ran two benchmarks. The first repeatedly executes the
stat system call on a single file, which returns cached infor-
mation about the file. This shows DARC’s overhead when
investigating a relatively low-latency, memory-bound opera-
tion. The second benchmark reads a 1GB file in 1MB chunks
50 times using direct I/O (this causes data to be read from
disk, rather than the cache). This shows the overheads when
investigating a higher-latency, I/O-bound operation.

Recall the two parameters that affect DARC’s overhead
that we described in Section 8: start_ops and decision_ops.
For our benchmarks, we chose these values such that the
analysis does not finish by the time the benchmark con-
cludes, forcing DARC to run for the entire duration of the
benchmark. We present the values of these parameters for
each benchmark, which are orders of magnitude higher than
the values used in the use cases presented in Section 8.

Stat workload.

We ran the stat workload with 300 million operations,
resulting in an elapsed time of approximately 689 seconds
without DARC. We then used DARC to analyze the stat
call, and saw that there was one peak, with a single root
cause path that is five levels deep (shown later). The num-
ber of fnodes in each level of the ftree, from top to bot-
tom, were 1, 3, 3, 11, 1, and 6. Because we wanted DARC
to reach the maximum depth without finishing its analysis,
we set start_ops to 1,000 operations and decision_ops to
60,000,000 operations.

The runtime with the DARC analysis took approximately
3,380 seconds, or about 4.9 times longer. This is because
the stat operation returns very quickly (the average latency
is 2.3 microseconds), and the DARC instrumentation adds
approximately 8.9 microseconds per operation. The results
are summarized in Figure 10. We refer to the portion of
time that is not counted as user or system time as wait time
(seen as the white portion of the bars). This is the time
that the process was not using the CPU. In this case, the
wait time overhead is mostly due to the kprobes, which do
not run in the context of the process. The system time
overhead is mostly due to the helper threads (which run in



Wait —— 3379.9

3500 User

3000
2500
2000
1500
1000

500

Elapsed Time (seconds)

No DARC DARC

Figure 10: Results for the stat benchmark. Note that
error bars are always drawn, but may be difficult to see.

3500 rNo DARC -

3000 DARC ——
2500
2000
1500
1000
500

Elapsed Time (seconds)

6E1 6E2 6E3 6E4 6E5 6E6 6E7
decision_ops

Figure 11: The overheads for running DARC with
the stat benchmark using different values for the deci-
sion_ops variable. Results without running DARC are
shown as a baseline. Note that the x-axis is logarithmic.

the process context), and the DARC function that measures
the latency after a function call (recall from Section 4 that
this instrumentation was moved from a kprobe to a regular
function using return address modification).

It is important to note that these figures depict an ex-
treme worst-case scenario. Under realistic conditions, such
as in the use cases presented in Section 8, decision_ops was
on the order of tens of operations, whereas here it was on
the order of tens of millions of operations. DARC is de-
signed to analyze longer-running applications, and the time
spent performing the analysis is negligible compared to the
application’s total run time.

To show how the decision_ops variable affects overheads,
we ran the benchmark with different values for decision_ops,
and kept start_ops at 1,000 operations. The results are
shown in Figure 11. The results for DARC with values of
up to 60,000 and the results when not running DARC at all
were statistically indistinguishable. In addition, we calcu-
lated that DARC analyzed latencies for less than one sec-
ond for these values. When we set decision_ops to 6 % 10°,
6 % 10°, and 6 * 107, the overheads were 3.2%, 28.8%, and
4.9 times, respectively. For these same values, DARC per-
formed its analysis for approximately 1.2%, 12%, and 100%
of the total runtime. This shows how the overheads increase
as DARC’s analysis was prolonged.

DARC reported the same root cause path for all cases:

vis_stat_fd — __user_walk_fd — do_path_lookup —
path_walk — link_path_walk.

This shows that DARC has negligible overheads for real-
world configurations, where the analysis can complete in
less than one second.

Random read workload.
For the random read benchmark, we set the start function
to the top-level read function in the kernel. There was only

800 Wait —— 726.2 726.4
700 User

System m—
600

500
400
300
200
100

Elapsed Time (seconds)

No DARC DARC

Figure 12: Results for the random read benchmark.
Note that error bars are always drawn, but may be dif-
ficult to see.

a single peak in the profile, and DARC informed us that
there was one root cause path consisting of eight functions.
Because the benchmark executes 51,200 operations, we set
start_ops to 1,000 operations, and decision_ops to 6,500.
This allowed DARC to reach the final root cause function
without completing the analysis. The root cause path for
this benchmark was:

vis_read — do_sync_read — generic_file_aio_read —
generic file_direct_I0 — ext2_direct_I0 —
_blockdev_direct_I0 — io_schedule.

The ftree for this benchmark was rather large, with the
levels of the ftree having 1, 7, 3, 4, 5, 1, 39, 3, and 28
fnodes, from top to bottom. The results are shown in Fig-
ure 12. Running the benchmark with and without DARC
produced statistically indistinguishable runtimes, with the
elapsed times for both configurations averaging approximately
726 seconds. This is because the overheads of the DARC in-
strumentation are small compared to the time required to
read data from the disk. The average read operation la-
tency was approximately 14 milliseconds, and we saw from
the stat benchmark that DARC added approximately 9 mi-
croseconds to each operation.

10. RELATED WORK

Previous work in this area has focused on using call-paths
as a unit for metric collection and using dynamic instrumen-
tation to investigate bottlenecks. We discuss each of these
topics in turn.

Call-path profiling.

Others have explored using call-paths as a main abstrac-
tion for performance profiling. These projects have also
utilized dynamic binary instrumentation for their profiling.
PP [2] implements an algorithm for path profiling, which
counts the execution frequencies of all intra-procedural acyclic
paths by encoding the paths as integers. This work was ex-
tended to use hardware metrics rather than relying on ex-
ecution frequencies and to use a calling context tree (CCT)
to store metrics [1]. The CCT is similar to our ftree, but has
a bounded size because it does not contain multiple entries
for loops, and it does not differentiate between a function
calling another function multiple times. Our ftree can afford
to contain these extra nodes because it contains few paths,
rather than an entire call-tree, and is also bounded by the
user-specified maximum depth. PP was also extended to
handle inter-procedural paths [9, 10].

The TAU parallel performance system [17] has various
profiling, tracing, and visualization functionality to analyze



the behavior of parallel programs. One mode of operation
which is similar to DARC is call-path profiling. Here, TAU
generates its own call stack by instrumenting all function
calls and returns. This method handles both indirect and
recursive calls. This stack is used to provide profiling data
that is specific to the current call-path. A quantitative com-
parison could not be made because the current implemen-
tation of DARC runs in the kernel whereas TAU runs in
user-space. An extension to TAU, called KTAU [13], was
created to supplement TAU with latency information from
the kernel. However, KTAU only collects simple latency
measurements from pre-defined locations in the kernel and
uses source instrumentation, so a meaningful quantitative
comparison could not be made here either.

CATCH associates hardware metrics with call-path infor-
mation for MPI and OpenMP applications [6]. It builds a
static call-graph for the target application before it is exe-
cuted. CATCH uses a method similar to that of DARC to
keep track of the current node that is executing, but uses
loops in its tree for recursive programs. It is also possible
for users to select subtrees of the call-graph to profile rather
than tracking the entire execution of the program. CATCH
cannot cope with applications that use a function name for
more than one function, and cannot profile applications that
use indirect calls.

A major difference between these projects and DARC is
that DARC performs call-path filtering, rather than call-
path profiling. This means that DARC instruments only
the portion of the code that is currently being investigated,
rather than the entire code-base. Additionally, it generally
runs for a shorter period of time. However, DARC also
collects less information than profiling tools.

Another project, iPath, provides call-path profiling by in-
strumenting only the functions that are of interest to the
user [3]. Whereas DARC searches for the causes of behav-
ior seen in higher-level functions, iPath analyzes lower-level
functions and distinguishes latencies based on the call-paths
used to reach them. It does so by walking the stack to de-
termine the current call-path, sampling the desired perfor-
mance metric, and then updating the profile for that call-
path with the performance data. This provides two main
benefits. First, overheads are incurred only for functions
that the user is profiling. Second, iPath walks the stack, so
it does not need any special handling for indirect or recursive
calls. The main problem with performing stack walks is that
they are architecture and compiler-dependent. There are
some compiler optimizations that iPath cannot cope with,
and it would be difficult to port iPath to use other compil-
ers and optimizations. In contrast, DARC’s method relies
more on simple and portable dynamic binary instrumenta-
tion techniques.

Combining call-path profiling with sampling, csprof sam-
ples the running program’s stack periodically, and attributes
a metric to the call-path [7]. It also introduces a technique
to limit the depth of the stack walk when part of that stack
has been seen before. However, although the stack walk is
more efficient than that of iPath, csprof is also tied to the
code of a specific compiler and its optimizations.

Dynamic bottleneck investigation.

Kperfmon [19] is a tool that uses the Kerninst [18] dy-
namic instrumentation framework. For a given function or
basic block, Kperfmon can collect a metric, such as elapsed

time, processor time, or instruction cache misses. A user
may search for a root cause by examining the results and
running Kperfmon again to measure a new section of code.

CrossWalk [12] combines user-level and kernel-level dy-
namic instrumentation to find CPU bottlenecks. Starting at
a program’s main function, CrossWalk performs a breadth-
first search on the call-graph for functions whose latency is
greater than a pre-defined value. If the search enters the
kernel via a system call, the search will continue in the ker-
nel. It is not clear if CrossWalk can handle multiple paths in
the call-graph. CrossWalk does not handle multi-threaded
programs, asynchronous kernel activities, or recursion. It
does not perform call-path or PID filtering.

Paradyn [11] uses dynamic instrumentation to find bottle-
necks in parallel programs. It does this using a pre-defined
decision tree of bottlenecks that may exist in programs.
Paradyn inserts code to run experiments at runtime to de-
termine the type of bottleneck and where it is (synchro-
nization object, CPU, code, etc.). Instances when continu-
ously measured values exceed a fixed threshold are defined
as bottlenecks. Paradyn can narrow down bottlenecks to
user-defined phases in the program’s execution. Paradyn’s
original code-search strategy was replaced by an approach
based on call-graphs [4].

One difference between the two code search strategies in
Paradyn is that the original used ezclusive latencies and the
new strategy used inclusive latencies, because they are faster
and simpler to calculate. To calculate the exclusive latency
of a function, Paradyn stopped and started the timer so that
the latencies of the function’s callees would not be included.
DARC can use exclusive latencies because the latencies of
the callees are already being calculated, so it does not add
much overhead. Paradyn’s search strategy was also changed.
Originally, Paradyn first attempted to isolate a bottleneck to
particular modules, and then to particular functions in those
modules. They did this by choosing random modules and
functions to instrument [4]. This was replaced by a method
that began at the start of the executable, and continued to
search deeper in the call-graph as long as the bottleneck was
still apparent.

DARC is both more flexible and more accurate than these
solutions. It has the ability to search for the causes of any
peak in an OSprof profile, rather than checking only for pre-
defined bottlenecks. Additionally, these methods would not
be suitable for finding the causes of intermittent behavior.
DARC also introduces several new features, such as call-path
filtering, distinguishing recursive calls, resuming searches,
and investigating asynchronous events.

11. CONCLUSIONS

We designed DARC, a new performance-analysis method
that allows a user to easily find the causes of a given high-
level behavior that is seen in an OSprof profile. DARC
allows the user to analyze a large class of programs, in-
cluding those containing recursive and indirect calls. Short-
lived programs and programs with distinct phases can be
easily analyzed using DARC’s resume feature. Access to
more source code information allows the user to use DARC
to analyze preemptive behavior and asynchronous paths.
The ability to identify basic blocks allows DARC to narrow
down root causes to basic blocks and minimize perturbations
caused by instrumentation. DARC minimizes false positives
through the use of PID and call-path filtering.



In our Linux kernel implementation, the overheads when
analyzing high-latency operations, such as disk reads, were
statistically insignificant. For faster operations, such as re-
trieving in-memory file information, the runtime with DARC
can increase by up to 4.9 times. However, these overheads
are imposed only for the time that DARC is analyzing the
code. DARC is designed for analyzing long-running applica-
tions, and the period of time that this overhead is incurred
is negligible compared to the overall runtime. In the bench-
mark exercising the fast operation, DARC required less than
one second to perform its analysis. This was also seen in all
of the use cases that we presented. In addition, DARC’s
overheads did not affect the analysis in any case.

We have shown how DARC can be used to analyze be-
haviors that were previously more difficult to explain. These
cases include preemptive behavior, asynchronous paths, and
intermittent behavior. Whereas OSprof was generally used
to provide good guesses about the causes of these behaviors,
DARC provided more direct evidence.

Future work.

We plan to extend the DARC implementation to allow
for the analysis of user-level programs, as described in Sec-
tion 4. We also plan to explore how DARC behaves in vir-
tual machine environments, and possibly modify it to better
suit those environments. Further, we plan to explore using
DARC to analyze remote procedure calls, where root cause
paths may reside on more than one machine.

Acknowledgments

We thank the anonymous program committee members and
our shepherd Arif Merchant for their valuable comments.
We also thank Nikolai Joukov for his input on the design.
The idea for this work and an initial design were inspired
while on internship at IBM Haifa Research Labs. This work
was partially made possible thanks to an NSF HECURA
award CCF-0621463, an NSF CSR-AES award CNS-0509230,
and an IBM Ph.D. fellowship.

12. REFERENCES

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In Proc. of the ACM SIGPLAN
1997 Conference on Programming Language Design
and Implementation, pp. 85-96, Las Vegas, NV, June
1997. ACM Press.

[2] T. Ball and J. R. Larus. Efficient path profiling. In
Proc. of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 46-57, Paris,
France, December 1996. IEEE.

[3] A. R. Bernat and B. P. Miller. Incremental call-path
profiling. Concurrency and Computation: Practice and
Ezperience, 19(11):1533-1547, 2007.

[4] H. W. Cain, B. P. Miller, and B. J. N. Wylie. A
callgraph-based search strategy for automated
performance diagnosis. In Proc. of the 6th
International Furo-Par Conference, pp. 108—122,
Munich, Germany, August-September 2000. Springer.

[5] W. Cohen. Gaining insight into the Linux kernel with
Kprobes. RedHat Magazine, March 2005.

[6] L. DeRose and F. Wolf. CATCH - a call-graph based
automatic tool for capture of hardware performance

(17]

(18]

(19]

metrics for MPI and OpenMP applications. In Proc.
of the 8th International Euro-Par Conference on
Parallel Processing, pp. 167-176, Paderborn,
Germany, August 2002. Springer-Verlag.

N. Froyd, J. Mellor-Crummey, and R. Fowler.
Low-overhead call path profiling of unmodified,
optimized code. In Proc. of the 19th Annual
International Conference on Supercomputing, pp.
81-90, Cambridge, MA, June 2005.

N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and

E. Zadok. Operating system profiling via latency
analysis. In Proc. of the Tth Symposium on Operating
Systems Design and Implementation, pp. 89-102,
Seattle, WA, November 2006. ACM SIGOPS.

J. R. Larus. Whole program paths. In Proc. of the
ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, pp. 259-269,
Atlanta, GA, May 1999. ACM Press.

D. Melski and T. Reps. Interprocedural path profiling.
In Proc. of the 8th International Conference on
Compiler Construction, pp. 47-62, Amsterdam, The
Netherlands, March 1999. Springer.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic,

K. Kunchithapadam, and T. Newhall. The paradyn
parallel performance measurement tool. I[EFE
Computer, 28(11):37-46, November 1995.

A. V. Mirgorodskiy and B. P. Miller. CrossWalk: A
tool for performance profiling across the user-kernel
boundary. In Proc. of PARCO 2003, pp. 745-752,
Dresden, Germany, September 2003. Elsevier.

A. Nataraj, A. Malony, S. Shende, and A. Morris.
Kernel-level measurement for integrated parallel
performance views: the ktau project. In Proc. of the
2006 IEEE Conference on Cluster Computing,
Barcelona, Spain, September 2006

C. Nentwich and M. Tiihonen. Intel2gas.
http://www.niksula.hut.fi/~mtiihone/intel2gas/,
2000.

V. Patkov. Hacker disassembler engine.
http://vx.netlux.org/vx.php?id=eh04, 2007.

Y. Rubner, C. Tomasi, and L. J. Guibas. A Metric for
Distributions with Applications to Image Databases.
In Proc. of the 6th International Conference on
Computer Vision, pp. 59-66, Bombay, India, January
1998.

S. S. Shende and A. D. Malony. The TAU parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287-311,
2006.

A. Tamches. Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels. PhD thesis,
University of Wisconsin-Madison, 2001.

A. Tamches and B. P. Miller. Using dynamic kernel
instrumentation for kernel and application tuning.
The International Journal of High Performance
Computing Applications, 13(3):263-276, Fall 1999.

C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy,
and E. Zadok. Auto-pilot: A platform for system
software benchmarking. In Proc. of the Annual
USENIX Technical Conference, FREENIX Track, pp.
175-187, Anaheim, CA, April 2005.



