
POSIX is Dead! Long Live... errr... What Exactly?
Erez Zadok,1 Dean Hildebrand,2 Geoff Kuenning,3 and Keith A. Smith4

1Stony Brook University, 2IBM Research—Almaden, 3Harvey Mudd College, 4NetApp
Appears in the proceedings of the 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’17)

Extended Abstract
The Problem. The POSIX system call interface is
nearly 30 years old. It was designed for serialized data
access to local storage, using single computers with sin-
gle CPUs: today’s computers are much faster, more
complex, and require access to remote data. Security
was not a major concern in POSIX’s design, leading to
numerous TOCTTOU attacks over the years and forc-
ing programmers to work around these limitations [3].
Serious bugs are still being discovered, bugs that could
have been averted with a more secure POSIX API de-
sign. POSIX’s main programming model expects users
to issue one synchronous call at a time and wait for its
results before issuing the next. Today’s programmers
expect to issue many asynchronous requests at a time to
improve overall throughput. POSIX’s synchronous one-
at-a-time API is particularly bad for accessing remote
and cloud objects, where high latencies dominate.

A New Hope. By introducing compounding, a tech-
nique of packing multiple requests into one message, we
have shown that we can save expensive context switches
and data copies between user and kernel spaces [2];
and compounding NFS calls can save latency and im-
prove throughput by orders of magnitude on WANs [1].
REST APIs dominate in remote/cloud stores thanks to
improved efficiency (e.g., update whole file in a single
PUT), but they do not go far enough (e.g., cannot PUT
multiple files at once). Moreover, alternative APIs are
less vulnerable to TOTTTOU attacks, for example those
that do not require passing the same file name to suc-
cessive system calls, but instead reuse the same open
file/directory descriptor (e.g., fstat, openat).

Our Proposal. We propose to abolish and replace
POSIX with a new API that is optimized for high-
parallelism and high-latency, and has the following six
properties. (1) Enabling compounding of any set of ar-
bitrary calls, such as those defined by NFSv4. This
would save substantial latency by eliminating many
costly round-trips. As with NFSv4, the results of one
call should be passed to the next. For example, one
should be able to open, read, and close a file in a single
compound, passing a successfully opened file descrip-
tor from the open to the read and close calls. (2) Al-
though the POSIX abstraction of files and namespaces
has been very useful to users, we recognize the growing
popularity of simpler cloud services that offer access to
objects rather than files. Therefore, one should also be

able to compound multiple operations on multiple ob-
jects in one request: read, write, create, rename, delete,
etc. (3) All such new APIs should be asynchronous by
default (and perhaps even only asynchronous). This will
encourage (or force) users to write more efficient code.
(4) Users should be able to define transactional seman-
tics for their compounds. A transactional compound can
eliminate many TOCTTOU bugs inherent in POSIX and
improve end-to-end reliability between clients to even-
tual data holders (e.g., clouds). (5) Users should be al-
lowed to define a compound’s error-handling semantics.
When one request in the middle of a compound fails,
users should be allowed to designate whether to (a) stop
the compound’s processing and return any available re-
sults; (b) continue processing to the end and return a vec-
tor of success/failure information; or even (c) support if-
then-else conditionals (à la NFSv4’s NVERIFY call). (6)
Users should be able to define the sequential and par-
allel portions of a compound. This ensures end-to-end
parallelism and minimizes unwarranted serialization of
operation execution to the storage device
Implementation and Transitioning. Transitioning to
a new API will take time. To encourage easy adoption,
we propose the following four steps: (1) Start by im-
plementing the most common/useful compounds users
would want (e.g., copy-file/object), adding more popu-
lar compounds as needed [1]. (2) Offer additional se-
mantics as library wrappers, so as not to force all users
into a new “low-level” API. (3) Offer a begin/end API
to allow users to mark code segments to be turned into
compounds, and start, commit, or abort when transac-
tional semantics are desired. This would require R&D
into compiler- and static-analysis-based techniques. (4)
Finally, expose a low-level compounding API to enable
new code to create and submit a compound with arbi-
trarily many operations encoded inside (with designated
error, transactional, and parallelism semantics).

Acknowledgments
This work was made possible in part thanks to Dell-
EMC, NetApp, and IBM support; NSF awards CNS-
1251137, CNS-1302246, CNS-1305360, and CNS-
1622832; and ONR award N00014-16-1-2264.

References
[1] M. Chen, D. Hildebrand, H. Nelson, J. Saluja, A. Sub-

ramony, and E. Zadok. vNFS: Maximizing NFS perfor-
mance with compounds and vectorized I/O. In USENIX
FAST’17, pages 301–314, 2017.



[2] A. Purohit, C. Wright, J. Spadavecchia, and E. Zadok.
Cosy: Develop in user-land, run in kernel mode. In ACM
HOTOS 2003, pages 109–114, 2003.

[3] J. Wei and C. Pu. TOCTTOU Vulnerabilities in UNIX-
Style File Systems: An Anatomical Study. In USENIX
FAST’05, pages 155–167, 2005.


