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Abstract

Intrusion detection systems (IDSs) must maximize the realization of security goals while minimizing

costs. In this paper, we study the problem of building cost-sensitive intrusion detection models. We

examine the major cost factors associated with an IDS, which include development cost, operational cost,

damage cost due to successful intrusions, and the cost of manual and automated response to intrusions.

These cost factors can be qualified according to a defined attack taxonomy and site-specific security

policies and priorities. We define cost models to formulate the total expected cost of an IDS. We present

cost-sensitive machine learning techniques that can produce detection models that are optimized for

user-defined cost metrics. Empirical experiments show that our cost-sensitive modeling and deployment

techniques are effective in reducing the overall cost of intrusion detection.

1 Introduction

Accompanying our growing dependency on network-based computer systems is an increased importance

of protecting our information systems. Intrusion detection (ID), the process of identifying and respond-

ing to malicious activity targeted at computing and networking resources [1], is a critical component of

infrastructure protection mechanisms.

A natural tendency in developing an intrusion detection system (IDS) is trying to maximize itstechnical

effectiveness. This often translates into IDS vendors attempting to use brute force to correctly detect a larger
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spectrum of intrusions than their competitors. However, the goal of catching all attacks has proved to be a

major technical challenge. After more than two decades of research and development efforts, the leading

IDSs still have marginal detection rates and high false alarm rates, especially in the face ofstealthyor novel

intrusions. This goal is also impractical for IDS deployment, as the constraints on time (i.e., processing

speed) and resources (both human and computer) may become overwhelmingly restrictive. An IDS usually

performspassive monitoringof network or system activities rather thanactive filtering(as is the case with

Firewalls). It is essential for an IDS to keep up with the throughput of the data stream that it monitors

so that intrusions can be detected in a timely manner. A real-time IDS can thus become vulnerable to

overload attacks[20]. In such an attack, the attacker first directs a huge amount of malicious traffic at the

IDS (or some machine it is monitoring) to the point that it can no longer track all data necessary to detect

every intrusion. The attacker can then successfully execute the intended intrusion, which the IDS will fail

to detect. Similarly, an incident response team can be overloaded by intrusion reports and may be forced

to raise detection and response thresholds [5], resulting in real attacks being ignored. In such a situation,

focusing limited resources on the most damaging intrusions is a more beneficial and effective approach.

A very important but often neglected facet of intrusion detection is itscost-effectiveness, or cost-benefit

trade-off. An educated decision to deploy a security mechanism such as an IDS is often motivated by the

needs of security risk management [3, 8, 19]. The objective of an IDS is therefore to provide protection to

the information assets that are at risk and have value to an organization. An IDS needs to be cost-effective

because it should cost no more than the expected level of loss from intrusions. This requires that an IDS

consider the trade-off among cost factors, which at the minimum should include development cost, the

cost of damage caused by an intrusion, the cost of manual or automatic response to an intrusion, and the

operational cost, which measures constraints on time and computing resources. For example, an intrusion

which has a higher response cost than damage cost should usually not be acted upon beyond simple logging.

Currently these cost factors are, for the most part, ignored as unwanted complexities in the development

process of IDSs. This is caused by the fact that achieving a reasonable degree of technical effectiveness is
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already a challenging task, given the complexities of today’s network environments and the manual effort of

knowledge-engineering approaches (e.g., encoding expert rules). Some IDSs do try to minimize operational

cost. For example, the Bro [20] scripting language for specifying intrusion detection rules does not support

for -loops because iteration through a large number of connections is considered time consuming. However,

we do not know of any IDS that considers any other cost factors. These cost factors are not sufficiently

considered in the deployment of IDSs because many organizations are not educated about the cost-benefits

of security systems and analyzing site-specific cost factors is very difficult. Therefore, we believe that the

security community as a whole must study the cost-effective aspects of IDSs in greater detail to help make

intrusion detection a more successful technology.

We have developed a data mining framework for building intrusion detection models in an effort to au-

tomate the process of IDS development and lower its development cost. The framework uses data mining

algorithms to compute activity patterns and extract predictive features, and then applies machine learning

algorithms to generate detection rules [12, 13]. Results from the 1998 DARPA Intrusion Detection Eval-

uation showed that our ID model was one of the best performing of all the participating systems, most of

which were knowledge-engineered [15].

In this paper, we examine the relevant cost factors, cost models, and cost metrics related to IDSs, and

report the results of our current research in extending our data mining framework to build cost-sensitive

models for intrusion detection. We propose to use cost-sensitive machine learning techniques that can auto-

matically construct detection models optimized for overall cost metrics instead of mere statistical accuracy.

We do not suggest that accuracy be ignored, but rather that cost factors beincludedin the process of devel-

oping and evaluating IDSs. Our contributions are not the specific cost models and cost metrics described,

but rather the principles of cost analysis and modeling for intrusion detection.
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2 Cost Factors and Metrics

In order to build cost-sensitive ID models, we must first understand the relevant cost factors and the metrics

used to define them. Borrowing ideas from the related fields of credit card and cellular phone fraud detection,

we identify the following major cost factors related to intrusion detection: damage cost, response cost, and

operational cost. Damage cost (DCost) characterizes the amount of damage to a target resource by an attack

when intrusion detection is unavailable or ineffective. Response cost (RCost) is the cost of acting upon an

alarm or log entry that indicates a potential intrusion. Operational cost (OpCost) is the cost of processing the

stream of events being monitored by an IDS and analyzing the activities using intrusion detection models.

We will discuss these factors in greater detail in Section 2.2.

Cost-sensitive models can only be constructed and evaluated when cost metrics are given. The issues

involved in the measurement of cost factors have been studied by the computer risk analysis and security

assessment communities. The literature suggests that attempts to fully quantify all factors involved in cost

modeling usually generate misleading results because not all factors can be reduced to discrete dollars

(or some other common unit of measurement) and probabilities [2, 4, 7, 8, 11]. It is recommended that

qualitative analysis be used to measure the relative magnitudes of cost factors. It should also be noted

that cost metrics are often site-specific because each organization has its own security policies, information

assets, and risk factors [19].

2.1 Attack Taxonomy

An attack taxonomy is essential in producing meaningful cost metrics. The taxonomy groups intrusions into

different types so that cost measurement can be performed for categories of similar attacks. Intrusions can

be categorized and analyzed from different perspectives. Lindqvist and Jonsson introduced the concept of

thedimensionof an intrusion and used several dimensions to classify intrusions [14]. Theintrusion results

dimension categorizes attacks according to their effects (e.g., whether or not denial-of-service is accom-

4



Table 1: An Attack Taxonomy for DARPA Data
Main Category Description Sub-Category Description Cost
(by results) (by techniques)
1. ROOT illegal root ac-

cess is obtained.
1.1 local by first logging in as a legiti-

mate user on a local system, e.g.,
buffer overflowon local system
programs such aseject.

DCost=100
RCost=40

1.2 remote from a remote host, e.g., buffer
overflow of some daemon run-
ning suid root.

DCost=100
RCost=60

2. R2L illegal user ac-
cess is obtained
from outside.

2.1 single a single event, e.g., guessing
passwords.

DCost=50
RCost=20

2.2 multiple multiple events, hosts, or days,
e.g., themultihopattack.

DCost=50
RCost=40

3. DOS Denial-of-
Service of target
is accomplished.

3.1 crashing using a single malicious event
(or a few packets) to crash a sys-
tem, e.g., theteardropattack.

DCost=30
RCost=10

3.2 consumption using a large number of events
to exhaust network bandwidth or
system resources, e.g.,synflood.

DCost=30
RCost=15

4. PROBE information
about the target
is gathered.

4.1 simple many of probes within a short
period of time, e.g., fast port
scan.

DCost=2
RCost=5

4.2 stealth probe events are distributed
sparsely across a long time
windows, e.g. slow port scan.

DCost=2
RCost=7

plished). It can therefore be used to assess the damage cost and response cost. Theintrusion techniques

dimension categorizes attacks based on their methods (e.g., resource or bandwidth consumption). It there-

fore affects the operational cost and the response cost. Also, theintrusion targetdimension categorizes

attacks according to the resource being targeted and affects both damage and response costs.

Our attack taxonomy is illustrated in Table 1, and categorizes intrusions that occur in the DARPA Intru-

sion Detection Evaluation dataset, which was collected in a simulated military environment by MIT Lincoln

Lab [15]. In this dataset, each event to be monitored is a network connection, and the resources being at-

tacked are mainly the network services (e.g.,http, smtp, etc.) and system programs on a particular host in

the network. We use the taxonomy described in Table 1 to first categorize the intrusions occurring in the

dataset into ROOT, DOS, R2L, and PROBE, based on their intrusion results. Then within each of these cat-
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egories, the attacks are further partitioned by the techniques used to execute the intrusion. The ordering of

sub-categories is of increasing complexity of the attack method. Attacks of each sub-category can be further

partitioned according to the attack targets. For simplicity, theintrusion targetdimension is not shown.

2.2 Cost Factors

When measuring cost factors, we only consider individual attacks detectable by IDSs. For example, a

coordinated attack that involves port-scanning a network, gaining user-level access to the network illegally,

and finally acquiring root access, would normally be detected and responded to by an IDS as three separate

attacks because most IDSs are designed to respond quickly to events occurring in real-time. It is therefore

reasonable to measure the attacks individually. As part of our future work, we will study the cost-sensitive

aspects of intrusion detection for coordinated attacks.

2.2.1 Damage Cost

There are several factors that determine the damage cost of an attack. Northcutt usescriticality andlethality

to quantify the damage that may be incurred by some intrusive behavior [19].

Criticality measures the importance, or value, of the target of an attack. This measure can be evaluated

according to a resource’s functional role in an organization or its relative cost ofreplacement, unavailabil-

ity, anddisclosure[8]. Similar to Northcutt’s analysis, we assign 5 points for firewalls, routers, or DNS

servers, 4 points for mail or Web servers, 2 points for UNIX workstations, and 1 point for Windows or DOS

workstations. Lethality measures the degree of damage that could potentially be caused by some attack. For

example, a more lethal attack that helped an intruder gain root access would have a higher damage cost than

if the attack gave the intruder local user access. Other damage may include the discovery of knowledge about

network infrastructure or preventing the offering of some critical service. For each main attack category in

Table 1, we define a relative lethality scale and use it as thebase damage cost, or baseD. By assigning

damage cost according to the criticality of the target, we are using theintrusion targetdimension. Using
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these metrics, we can define the damage cost of an attack targeted at some resource ascriticality� baseD.

For example, a DOS attack targeted at a firewall hasDCost = 150, while the same attack targeted at a Unix

workstation hasDCost = 60.

In addition to criticality and lethality, we define theprogressof an attack to be a measure of how suc-

cessfully an attack is in achieving its goals. For example, a Denial-of-Service (DOS) attack via resource or

bandwidth consumption (e.g. SYN flooding) may not incur damage cost until it has progressed to the point

where the performance of the resource under attack is starting to suffer. The progress measure can be used

as an estimate of the percentage of the maximum damage cost that should be accounted for. That is, the

actual cost isprogress� criticality� baseD. However, in deciding whether or not to respond to an attack,

it is necessary to compare the maximum possible damage cost with the response cost. This requires that we

assume a worst-case scenario in whichprogress = 1:0.

2.2.2 Response Cost

Response cost depends primarily on the type of response mechanisms being used. This is usually determined

by an IDS’s capabilities, site-specific policies, attack type, and the target resource [3]. Responses may be

either automated or manual, and manual responses will clearly have a higher response cost.

Responses to intrusions that may be automated include the following: termination of the offending con-

nection or session (either killing a process or resetting a network connection), implementation of a packet-

filtering rule, rebooting the targeted system, or recording the session for evidence gathering purposes and

further investigation [1, 19]. In addition to these responses, a notification may be sent to the administrator of

the offending machine via e-mail in case that machine was itself compromised. A more advanced response

which has not been successfully employed to date could involve the coordination of response mechanisms

in disparate locations to halt intrusive behavior closer to its source.

Additional manual responses to an intrusion may involve further investigation (perhaps to eliminate ac-

tion against false positives), identification, containment, eradication, and recovery [19]. The cost of manual
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response includes the labor cost of the response team, the user of the target, and any other personnel that

participate in response. It also includes any downtime needed for repairing and patching the targeted system

to prevent future damage.

We estimate the relative complexities of typical responses to each attack type in Table 1 in order to

define the relativebase response cost, or baseR. Attacks with simpler techniques (i.e., sub-categoriesx.1

in our taxonomy) generally have lower response costs than more complex attacks (i.e., sub-categoriesx.2),

which require more complex mechanisms for effective response.

2.2.3 Operational Cost

The main cost inherent in the operation of an IDS is the amount of time and computing resources needed

to extract and test features from the raw data stream that is being monitored1. We associate OpCost with

time because a real-time IDS must detect an attack while it is in progress and generate an alarm as quickly

as possible so that damage can be minimized. A slower IDS which uses features with higher computational

costs should therefore be penalized. Even if a computing resource has a “sunken cost” (e.g., a dedicated IDS

box has been purchased in a single payment), we still assign some cost to the expenditure of its resources as

they are used. If a resource is used by one task, it may not be used by another task at the same time. The

cost of computing resources is therefore an important factor in prioritization and decision making.

Some features cost more to gather than others. However, costlier features are often more informative

for detecting intrusions. For example, features that examine events across a larger time window have more

information available and are often used for “correlation analysis [1]” in order to detect extended or coor-

dinated attacks such as slow host or network scans [3]. Computation of these features is costly because of

their need to store and analyze larger amounts data.

Based on our experience in extracting and constructing predictive features from network audit data, we

classify features into three relative levels, based on their computational costs:
1For simplicity, we omit the discussion of personnel cost involved in administering and maintaining an IDS.
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� Level 1 features are computed using a small amount of information available at the beginning of an

event. For example, the “destination service” can be determined using the first packet of a connection.

� Level 2 features are computed at any point during an event, and are maintained throughout the event’s

duration. For example, the “number of data bytes from the source to the destination” is such a feature.

� Level 3 features are computed using information from several events within a given time window. For

example, the feature measuring “the percentage of connections in the past 5 seconds that are to the

same destination host as the current connection and are half-open” can be computed by examining all

the connections of the past 5 seconds and may help detect SYN-flooding.

We can assign relative magnitudes to these features according to their computational costs. For example,

level 1 features may cost 1 or 5, level 2 features may cost 10, and level 3 features may cost 100. These

estimations have been verified empirically using a prototype system for evaluating our ID models in real-

time that has been built in coordination with Network Flight Recorder [18].

3 Cost Models

A cost model formulates the total expected cost of intrusion detection. It considers the trade-off among all

relevant cost factors and provides the basis for making appropriate cost-sensitive detection decisions. We

first examine the cost trade-off associated with each possible outcome of observing some evente, which may

represent a network connection, a user’s session on a system, or some logical grouping of activities being

monitored. In our discussion, we say thate = (a; p; r) is an event described by the attack typea (which can

benormal for a truly normal event), the progressp of the attack, and the target resourcer. The detection

outcome ofe is one of the following: false negative (FN), false positive (FP), true positive (TP), true negative

(TN), or misclassified hit. The costs associated with these outcomes are known asconsequential costs

(CCost), as they are incurred as a consequence of prediction, and are outlined in Table 2.
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FN Costis the cost of not detecting an attack and is incurred by systems that do not install IDSs. Here,

the IDS falsely decides that a connection is not an attack and does not respond to the attack. This indicates

that the attack will succeed and the target resource will be damaged. The FN Cost is therefore defined as the

damage cost associated with evente, or DCost(e).

TP Costis incurred in the event of a correctly classified attack, and involves the cost of detecting the

attack and possibly responding to it. To determine whether response will be taken,RCost andDCost must

be considered. If the damage done by the attack to resourcer is less than RCost, then ignoring the attack

actually reduces the overall cost. Therefore, if RCost(e) > DCost(e), the intrusion is not responded to

beyond simply logging its occurrence, and the loss is DCost(e). If RCost(e) � DCost(e), then the intrusion

is acted upon and the loss is limited to RCost(e). In reality, however, by the time an attack is detected

and response ensues, some damage may have incurred. To account for this, TP cost may be defined as

RCost(e) + �1DCost(e), where�1 2 [0; 1] is a function of the progressp of the attack.

FP Costis incurred when an event is incorrectly classified as an attack, i.e., whene = (normal; p; r) is

misidentified ase0 = (a; p0; r) for some attacka. If RCost(e0) � DCost(e0), a response will ensue and the

response cost, RCost(e0), must be accounted for as well. Also, since normal activities may be disrupted due

to unnecessary response, false alarms should be penalized. For our discussion, we use PCost(e) to represent

the penalty cost of treating a legitimate evente as an intrusion. For example, ife is aborted, PCost(e) can be

the damage cost of a DOS attack on resourcer, because a legitimate user may be denied access tor.

TN Costis always 0, as it is incurred when an IDS correctly decides that an event is normal. We therefore

bare no cost that is dependent on the outcome of the decision.

Misclassified Hit Costis incurred when the wrong type of attack is identified, i.e., an evente = (a; p; r)

is misidentified ase0 = (a0; p0; r). If RCost(e0) � DCost(e0), a response will ensue and RCost(e0) needs to

be accounted for. Since the response taken is effective against attack typea0 rather thana, some damage

cost of�2DCost(e) will be incurred due to the true attack. Here�2 2 [0; 1] is a function of the progressp

and the effect of the response intended fora0 ona.
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Table 2: Model for Consequential Cost
Outcome Consequential CostCCost(e) Condition
Miss (False Negative,FN) DCost(e)
False Alarm (False Positive,FP) RCost(e0) + PCost(e) if DCost(e0) � RCost(e0) or

0 if DCost(e0) < RCost(e0)
Hit (True Positive,TP) RCost(e) + �1DCost(e), 0 � �1 � 1 if DCost(e) � RCost(e) or

DCost(e) if DCost(e) < RCost(e)
Normal (True Negative,TN) 0
Misclassified Hit RCost(e0) + �2DCost(e), 0 � �2 � 1 if DCost(e0) � RCost(e0) or

DCost(e) if DCost(e0) < RCost(e0)

We can now define the cost model for an IDS. When evaluating an IDS over some labeled test setE,

where each event,e 2 E, has a label ofnormalor one of the intrusions, we define the cumulative cost of the

IDS as follows:

CumulativeCost(E) =
X

e2E

(CCost(e) +OpCost(e)) (1)

where CCost(e), the consequential cost of the prediction by the IDS one, is defined in Table 2.

It may not always be possible to fold damage and response costs into the same measurement unit.

Instead, each should be analyzed in its own relative scale. We must, however, compare and then combine

the two so that we can compute CCost(e) for use in the calculation of CumulativeCost in Equation 1. One

way is to decide first under what conditions to not respond to particular intrusions. For example, assuming

that probing attacks should not be responded to and that the damage cost for probing is 2, then the response

cost for probing must be greater, say, 20. Similarly, if the attack type with the lowest damage cost should

not be ignored, then the corresponding lowest response cost should be a smaller value. Once a starting value

is defined, remaining values can be computed according to the relative scales discussed in Section 2.2.

OpCost(e) in Equation 1 can be computed as the sum of the computational costs of all the features

used during rule checking. Since OpCost(e) and CCost(e) use two different measurement units and there

is no possibility of comparing the two, as with damage cost and response cost, we can use Equation 1

at a conceptual level. That is, when evaluating IDSs, we can consider both the cumulative OpCost and

cumulative CCost, but actual comparisons are performed separately using the two costs. This inconvenience
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can not be overcome easily unless all cost factors can be represented using a common measurement unit, or

there is a reference or comparison relation for all the factors. Site-specific policies can be used to determine

how to uniformly measure these factors.

4 Cost-Sensitive Modeling

Like risk analysis [2], cost-sensitive modeling for intrusion detection must be performed periodically be-

cause cost metrics must take into account changes in information assets and security policies. It is therefore

important to develop tools that can automatically produce cost-sensitive models for given cost metrics.

We have done extensive development and evaluation of the use of machine learning methods for reduc-

ing the CumulativeCost of intrusion detection [10, 16]. Because of space constraints, in this section and

Section 5, we describe and evaluate the particular methods which have proven most effective.

4.1 Reducing Operational Cost

In order to reduce OpCost, ID models need to use low cost features as often as possible while maintaining

a desired level of accuracy. Our approach is to build multiple ID models, each of which uses different sets

of features at different cost levels. Low cost models are always evaluated first by the IDS, and high cost

models are used only when the low cost models can not make a prediction with sufficient accuracy. We

implement this multiple-model approach using RIPPER [6], a rule induction algorithm. However, other

machine learning algorithms or knowledge-engineering methods may be used as well.

Given a training set in which each event is labeled as eithernormalor some intrusions, RIPPER builds

an orderedor unorderedruleset. Each rule in the ruleset uses the most discriminating feature values for

classifying a data item into one of the classes. A rule consists of conjunctions of feature comparisons,

and if the rule evaluates totrue, then a prediction is made. An example rule for predictingteardrop is

“ if number bad fragments � 2 and protocol = udp then teardrop.” Before discussing the details of
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our approach, it is necessary to outline the advantages and disadvantages of ordered and un-ordered rulesets.

Ordered Rulesets: An ordered ruleset has the formif r1 then i1 elseif r2 then i2; : : : ; else default,

wherern is a rule andin is the class label predicted by that rule. Before learning, RIPPER first orders the

classes by one of the following heuristics:+freq, which orders by increasing frequency in the training data;

�freq, by decreasing frequency;given, which is a user-defined ordering;mdl, which uses the minimal de-

scription length to guess an optimal ordering [17] . After arranging the classes, RIPPER finds rules to sepa-

rateclass1 from classesclass2; : : : ; classn, then rules to separateclass2 from classesclass3; : : : ; classn,

and so on. The final class,classn, will become the default class. The end result is that rules for a single

class will always be grouped together, but rules forclassi are possibly simplified, because they can assume

that the class of the example is one ofclassi; : : : ; classn. If an example is covered by rules from two or

more classes, this conflict is resolved in favor of the class that comes first in the ordering.

An ordered ruleset is usually succinct and efficient. Evaluation of an entire ordered ruleset does not

require each rule to be tested, but proceeds from the top of the ruleset to the bottom until any rule evaluates

to true. The features used by each rule can be computed one by one as evaluation proceeds. The operational

cost to evaluate an ordered ruleset for a given event is the total cost of computing unique features until

a prediction is made. For intrusion detection, a�freq ruleset is usually lowest in operational cost and

accurately classifies normal events. This is because the first rules of the ruleset identify normal, which is

usually the most frequently occurring class. On the contrary, a+freq ruleset would most likely be higher

in operational cost but more accurate in classifying intrusions because the ruleset partitions intrusions from

normal events early in its evaluation, andnormal is the final default classification. Depending on the class

ordering, the performances ofgiven andmdl will lie between those of�freq and+freq.

Un-ordered Rulesets: An un-ordered ruleset has at least one rule for each class and there are usually

many rules for frequently occurring classes. There is also a default class which is used for prediction when

none of these rules are satisfied. Unlike ordered rulesets, all rules are evaluated during prediction and

conflicts are broken by using the most accurate rule. Un-ordered rulesets, in general, contain more rules and
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are less efficient in execution than�freq and+freq ordered rulesets, but there are usually several rules of

high precision for the most frequent class, resulting in accurate classification of normal events.

With the advantages and disadvantages of ordered and un-ordered rulesets in mind, we propose the

following multiple ruleset approach:

� We first generate multiple training setsT1; T2; T3; T4 using different feature subsets.T1 uses only cost

1 features;T2 uses features of costs 1 and 5;T3 uses features of costs 1, 5, and 10; andT4 uses all

available features of costs 1, 5, 10, and 100.

� RulesetsR1; R2; R3; R4 are learned using their respective training sets.R4 is learned as either+freq

or�freq ruleset for efficiency, as it may contain the most costly features.R1; R2; R3 are learned as

either�freq or un-ordered rulesets, as they will contain accurate rules for classifying normal events

and we filter normal as early as possible to reduce operational cost.given andmdl might be used,

but their performance would not be better.

� A precision measurementpr is computed forevery rule, r, except for the rules inR4
2.

� A threshold value�i is obtained for every class, and determines the tolerable precision required for a

prediction to be made in execution.

In real-time execution, the feature computation and rule evaluation proceed as follows:

� R1 is evaluated and a predictioni is made by some ruler.

� If pr � �i, the predictioni is final. In this case, no more features are computed and the system

examines the next event. Otherwise, additional features required byR2 are computed andR2 is be

evaluated.

� This process continues until a final prediction is made. The evaluation ofR4 always produces a final

prediction becauseR4 uses all features.
2Precision describes how accurate a prediction is. IfP is the set of predictions with labeli andW is the set of instances with

labeli in the data set, by definition,p = jP\W j
jP j

.
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The precision and threshold values used by the multiple model approach can be obtained during model

training from the training set, or can be computed using a separate hold-out validation set. The precision of

a rule can be obtained easily from the positive and negative counts of a rule:p
p+n . Threshold values are set

to the precisions of the rules in a single ruleset using all features (R4) for each class in the chosen dataset,

as we do not want to make less precise classifications inR1; R2; R3 than would be made usingR4.

4.2 Reducing Consequential Cost

A traditional IDS that does not consider the trade-off between RCost and DCost will attempt to respond

to every intrusion that it detects. As a result, the consequential cost for FP, TP, and misclassified hits will

always include some response cost. We use a cost-sensitive decision module to determine whether response

should ensue based on whether DCost is greater than RCost.

The decision module takes as input an intrusion report generated by the detection module. The report

contains the name of the predicted intrusion and the name of the target, which are then used to look up the

pre-determined DCost and RCost. If DCost� RCost, the decision module invokes a separate module to

initiate a response; otherwise, it simply logs the intrusion report.

The functionality of the decision module can be implemented before training using some data re-labeling

mechanism such as MetaCost [9], which will re-label intrusions with DCost< RCost tonormalso that the

generated model will not contain rules for predicting these intrusions at all. We have experimented with such

a mechanism [10], but have decided to implement this functionality in the post-detection decision module

to eliminate the necessity of re-training a model when cost factors change, despite the savings in operational

cost due to the generation of a smaller model.
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5 Experiments

Our experiments use data that were distributed by the 1998 DARPA Intrusion Detection Evaluation Program.

The data were gathered from a military network with a wide variety of intrusions injected into the network

over a period of 7 weeks. The details of our data mining framework for data pre-processing and feature

extraction is described in our previous work [13]. We used 80% of the data for training the detection

models. The training set was also used to calculate the precision of each rule and the threshold value for

each class label. The remaining 20% were used as a test set for evaluation of the cost-sensitive models.

5.1 Measurements

We measure expected operational and consequential costs in our experiments. The expected average op-

erational cost per event over the entire test set is defined as
P

e2S
OpCost(e)

jSj . In all of our reported results,

OpCost(e) is computed as the sum of the feature computation costs of all unique features used by all rules

evaluated until a prediction is made for evente. If any level 3 features (of cost 100) are used at all, the cost is

counted only once. This is done because a natural optimization of rule evaluation is to compute all statistical

and temporal features in one iteration through the event database.

For each event in the test set, its CCost is computed as follows: the outcome of the prediction (i.e.,

FP, TP, FN, TN, or misclassified hit) is used to determine the corresponding conditional cost expression

in Table 2; the relevant RCost, DCost, and PCost are then used to compute the appropriate CCost. The

CCost for all events in the test set are then summed to measure total CCost as reported in Section 5.2. In

all experiments, we set�1 = 0 and �2 = 1 in the cost model of Table 2. Setting�1 = 0 corresponds

to the optimistic belief that the correct response will be successful in preventing damage. Setting�2 = 1

corresponds to the pessimistic belief that an incorrect response does not prevent the intended damage at all.
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Table 3: Average OpCost Per Connection

- ���� ���� + ���+ ���+

OpCost 128.70 48.43 42.29 222.73 48.42 47.37
%rdc N/A 56.68% 67.14% N/A 78.26% 78.73%

Table 4: CCost Comparison

Model Format � ���� ���� + ���+ ���+

CCost 25776 25146 25226 24746 24646 24786
Cost Sensitive

%rdc 87.8% 92.3% 91.7% 95.1% 95.8% 94.8%
CCost 28255 27584 27704 27226 27105 27258

Cost Insensitive
%rdc 71.4% 75.1% 74.3% 77.6% 78.5% 77.4%

%err 0.193% 0.165% 0.151% 0.085% 0.122% 0.104%

5.2 Results

In all discussion of our results, we use+, � and� to represent+freq, �freq andun-orderedrulesets,

respectively. A multiple model approach is denoted as a sequence of these symbols. For example,����

represents a multiple model where all rulesets are�freq.

Table 3 shows the average operational cost per event for a single classifier approach (R4 learned as

� or +) and the respective multiple model approaches (� � ��, � � �� or � � �+, � � �+). The

first row below each method is the average OpCost per event and the second row is the reduction (%rdc)

by the multiple model over the respective single model,Single�Multiple
Single

� 100%. As clearly shown in the

table, there is always a significant reduction by the multiple model approach. In all 4 configurations, the

reduction is more than 57% and� � �+ has a reduction in operational cost by as much as 79%. This

significant reduction is due to the fact thatR1 : : : R3 are very accurate in filteringnormal events and a

majority of events in real network environments (and consequently our test set) arenormal. Our multiple

model approach computes more costly features only when they are needed.

CCost measurements are shown in Table 4. TheMaximal loss is the cost incurred when always pre-

dicting normal, or
P

DCosti. This value is 38256 for our test set. TheMinimal loss is the the cost of
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correctly predicting all connections and responding to an intrusion only whenDCost(i) � RCost(i). This

value is 24046 and it is calculated as
P

DCost(i)<RCost(i) DCost(i) +
P

DCost(j)�RCost(j)RCost(j). A

reasonable method will have a CCost measurement betweenMaximal andMinimal losses. We define

reduction as%rdc = Maximal�CCost
Maximal�Minimal

� 100% to compare different models. As a comparison, we show

the results of both “cost sensitive” and “cost insensitive” methods. A cost sensitive method only initiates a

response ifDCost � RCost, and corresponds to the cost model in Table 2. A cost insensitive method, on

the other hand, responds to every predicted intrusion and is representative of current brute-force approaches

to intrusion detection. The last row of the table shows the error rate (%err) of each model.

As shown in Table 4, the cost sensitive methods have significantly lower CCost than the respective cost

insensitive methods for both single and multiple models. The reason is that a cost sensitive model will only

respond to an intrusion if its response cost is lower than its damage cost. The error rates for all 6 models

are very low (< 0:2%) and very similar, indicating that all models are very accurate. However, there is

no strong correlation between error rate and CCost, as a more accurate model may not necessarily have

detected more costly intrusions. There is little variation in the total CCost of single and multiple models in

both cost-sensitive and cost-insensitive settings, showing that the multiple model approach, while decreasing

OpCost, has little effect on CCost. Taking both OpCost and CCost into account (Tables 3 and 4), the highest

performing model is���+.

It is important to note that all results shown are specific to the distribution of intrusions in the test data

set. We can not presume that any distribution may be typical of all network environments.

6 Related Work

Several researchers and experts have pointed out the importance of using intrusion detection (and computer

security in general) as a means of risk management [8, 3, 19]. Our work in cost-sensitive modeling for IDSs

has benefited from their insightful analysis and extensive real-world experiences.
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As discussed throughout the papers, our work draws from research in computer security assessment and

intrusion taxonomies. In particular, Glaseman et al. discussed a model for evaluating the total expected cost

in using a security systems as C(s) = O(s) + D(s), where O(s) is the operational cost ofs and D(s) is

the expected loss [11]. D(s) is calculated by summing the products of exposed value and the probability of

safeguard failure over all possible threats. This model is similar to our cost model for IDSs, as defined in

Equation 1. However, our definition of consequential cost allows cost-based optimization strategies to be

explored because it includes the response cost and models its relationship with damage cost.

Credit card fraud detection and cellular phone fraud detection are closely related to intrusion detection

because they also deal with detecting abnormal behavior. Both of these applications are motivated by cost-

saving and therefore use cost-sensitive modeling techniques. In credit card fraud detection, for example, the

cost factors include operation cost, the personnel cost of investigating a potentially fraudulent transaction

(known as challenge cost), and loss (damage cost). If the dollar amount of a suspected transaction is lower

than the challenge cost, the transaction is authorized and the credit card company will take the potential loss.

Since the cost factors in fraud detection can be folded into dollar amounts, the cost-sensitive analysis and

modeling tasks are much more simple than in intrusion detection.

Cost-sensitive modeling is an active research area in data mining and machine learning because of the

demand from application domains such as medical diagnosis and fraud and intrusion detection. Several

techniques have been proposed for building models optimized for given cost metrics. In our research we

study the principles behind these general techniques and develop new approaches according to the cost

models specific to IDSs.

7 Conclusion and Future Work

It is very important to establish the cost-effectiveness of intrusion detection because the ultimate goal of an

IDS is to protect the information assets that are at risk and are most valuable to an organization. In this
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paper, we have examined cost factors that are relevant to intrusion detection, which include development

cost, operational cost, damage cost, and response cost. We have shown that it is necessary to use an attack

taxonomy along with organization-specific security policies and priorities to measure these cost factors.

We studied the trade-off relationships among these factors and defined consequential cost to be the cost

associated with the predictions of an IDS. The total expected cost of an IDS is the sum of the operational

and consequential costs. The cost-benefit of an IDS is manifested in its abilities to reduce this total expected

cost. We presented a multiple model machine learning approach for reducing operational cost and a post-

detection decision module for reducing consequential cost. Empirical evaluation using the DARPA Intrusion

Evaluation dataset shows that our approaches are indeed effective.

As pointed out by Dorothy Denning, cost analysis (and risk assessment in general) is not an exact science

because precise measurement of relevant factors is often impossible [8]. Cost-benefit analysis and modeling,

however informal or incomplete, is often very helpful for an organization to determine appropriate protection

mechanisms. The study of cost-sensitive modeling for intrusion detection is both challenging and extremely

important. Our main contributions to this study are in the development of a framework for analyzing cost

factors and building cost-sensitive models. In doing so, we offer a better understanding of the development

and deployment of cost-effective IDSs.

One limitation of our current modeling techniques is that when cost metrics change, it is necessary

to reconstruct new cost-sensitive models. For future work, we will study methods for building dynamic

models that do not require re-training. These techniques will help reduce the cost of re-learning models due

to changes in intra-site cost metrics and deployment at diverse sites with inherently different cost models.

We will also study how to incorporateuncertaintyof cost analysis due to incomplete or imprecise esti-

mation, especially in the case ofanomaly detectionsystems, in the process of cost-sensitive modeling. We

will also perform rigorous studies and experiments in a real-word environment to further refine our cost

analysis and modeling approaches.
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