
Compiler-Assisted Software Verification Using Plug-Ins
Sean Callanan, Radu Grosu, Xiaowan Huang, Scott A. Smolka, and Erez Zadok

Stony Brook University

Appears in the proceedings of the 2006 NSF Next Generation Software Workshop, in conjunction with the
2006 International Parallel and Distributed Processing Symposium (IPDPS 2006)

Abstract

We present Protagoras, a new plug-in architecture for
the GNU compiler collection that allows one to mod-
ify GCC’s internal representation of the program under
compilation. We illustrate the utility of Protagoras by
presenting plug-ins for both compile-time and runtime
software verification and monitoring. In the compile-
time case, we have developed plug-ins that interpret the
GIMPLE intermediate representation to verify proper-
ties statically. In the runtime case, we have developed
plug-ins for GCC to perform memory leak detection, ar-
ray bounds checking, and reference-count access moni-
toring.

1 Introduction
In this paper we discuss compiler-assisted instrumenta-
tion, a form of instrumentation in which the compiler
is enlisted to insert patch code. Patch code is inserted
at specific locations in an existing program for diagnos-
tic or repair purposes without altering its source code.
The instrumentation is performed as the compiler trans-
forms the source code into object code. The compiler
is highly suitable for use in instrumentation for two rea-
sons. First, it is aware of the source-level structure of
the program being instrumented, and can therefore be
both flexible and precise in selecting points at which
patch code should be inserted. Second, it is aware of
the assignment of variables to registers, making it easy
for patch code to extract information about its environ-
ment. This makes it possible to instrument and debug
code with full optimization, for instance.

We also present a technique called compiler-assisted
verification, in which compile-time information is used
to verify the correctness of a program while its inter-
mediate representation is transformed. The compiler is
a particularly suitable environment for verification be-
cause the internal structure of the program in the com-
piler is in an easy-to-parse format that retains much of
the program’s high-level semantics while nevertheless
being reducible to the actual generated code accurately.

Compiler-assisted instrumentation and verification
have the following three advantages:

Versatility: Access to the full parse tree and control
flow graph of a program allows instrumentation of
a wide variety of code patterns with full type infor-
mation; furthermore, it allows verification of any
program in any language supported by the com-
piler.

Accuracy: Instrumentation can be used in combination
with full compiler optimization, making results as
close as possible to the uninstrumented program.
Verification is performed on the same intermedi-
ate representation that is compiled to make the ex-
ecutable.

Speed: Compiler-assisted instrumentation makes mon-
itoring functionality part of the program itself.

We believe that the potential exists for many compiler-
assisted instrumentation tools with applications in a
wide range of areas. We have developed a plug-in archi-
tecture called Protagoras, which permits insertion of new
code into GCC, the GNU compiler collection [5]. (Pro-
tagoras is named after the first Greek sophist, who was
interested in using criticism and modification to extract
hidden truths from arguments.) GCC is the compiler of
choice for most open-source software, and is also used
for many commercial programs, including the MacOS-X
operating system. We are developing program under-
standing, verification, and debugging tools using Pro-
tagoras. However, GCC’s internals were not designed
with this kind of tool in mind, so the learning curve for
writing such a tool can be quite steep. In this paper, we
present relevant aspects of GCC’s internals, as well as
several examples of instrumentation tools we have de-
veloped.

The rest of this paper is structured as follows. In Sec-
tion 2 we present related techniques and compare them
to compiler-based instrumentation and verification. In
Section 3 we outline the facilities that GCC provides for
analysis of the GIMPLE intermediate representation. In-
strumentation tools use these to construct code, and ver-
ification tools use them to check code. In Section 4 we
describe Protagoras’s role in compilation, and we enu-
merate several plug-ins we have created using it. Finally,
in Section 5, we discuss future tools we would like to
implement, as well as extensions to GCC which would

1

further facilitate compiler-assisted instrumentation and
verification.

2 Related Work
Instrumentation is not limited to the compiler. After
the binary has already been generated, tools like the
ATOM library are capable of instrumenting arbitrary bi-
naries [11]. Such tools can be used with programs whose
source is not available. However, to find locations to
instrument, one must know the specifics of how the bi-
nary was generated by the compiler. Additionally, it is
difficult (and, in the case of optimized code, virtually
impossible) to extract higher-level information from as-
sembly code. Instrumentation can also be performed by
modifying a program’s source code directly. For exam-
ple, Lockmeter wraps the spinlock-access macros in the
Linux kernel with accounting code [2]. The wrappers
record how much time was spent waiting for the lock,
how long the lock was held, and where in the code it
was taken. Finally, instrumentation can be added at run-
time, such as with DTrace [3]. However, this requires
that instrumentation hooks have been inserted into the
program.

Debuggers are a competing technology for instru-
mentation. Compilers already provide debugging infor-
mation, which contains information about a program’s
stack structure and original source code, and can be
used by debuggers to investigate the state of a paused
or crashed program. However, a debugger is an ineffi-
cient mechanism for monitoring and verifying proper-
ties at many points in a program. There are three rea-
sons for this. First, because the debugger and the pro-
gram run in separate memory spaces, there are two con-
text switches at each instrumentation point. Second, the
debugger must traverse the debugging data structures,
which are frequently complex. Third, in some common
debugging formats like STABS, debugging information
is spread throughout the binary [10].

Compiler-assisted instrumentation itself is not a new
idea: the gprof utility also uses the compiler to instru-
ment a program [6]. gprof relies on the GNU C com-
piler to add patch code to each location where a function
returns to its caller. This patch code increments a counter
corresponding to the current 〈caller, callee〉 pair. These
counters are stored in a file which can then be processed
using gprof to provide a weighted call graph for the
program. In a similar fashion, the gcov tool provides
coverage information for all code lines, as well as infor-
mation about how often conditionals were satisfied [4].

A great deal of work has been done on model check-
ing; however, most model checkers verify properties
in programs written in specialized modeling languages.
The SLAM toolkit perform model-checking on C [1];
however, since it is not integrated into a compiler, the

variant of C that it supports does not track the style of C
that is used in many programs, particularly open-source
software. A model checker that resides in the middle-
end of a production compiler is able to check all pro-
grams supported by the compiler, which, in GCC, means
programs in C++, Java, and Fortran, in addition to C.

3 Code Analysis with GCC
Figure 1 shows the phases of compilation in GCC ver-
sion 4. We will briefly describe what is done at each
level, and describe the information that is available to
compiler-aided instrumentation and verification code at
that level.

GENERIC

Parser

Lowering

GIMPLE

GIMPLE / CFG

BuildCFG

RTL

C/C++/Java Source

RTL Generation

Code Generation

Assembly Code

Frontend
M

iddle−end
B

ackend

Figure 1: GCC Architecture

Source code is accepted from the preprocessor, and
passed to a language-specific parser. The parser trans-
forms the code into a language-dependent tree represen-
tation, which is either the GENERIC intermediate rep-
resentation or is converted into GENERIC at the end of
parsing [9]. GENERIC is a language of complex state-
ments, where expressions can be nested several state-
ments deep. To simplify processing, GENERIC is low-
ered, or decomposed, into a three-address code called
GIMPLE. GIMPLE is a subset of GENERIC with tem-
porary variables created to hold intermediate values of
computations. This process is known as gimplification.
GCC then builds a control-flow graph from the GIM-
PLE code and passes the resulting structure to the back-
end for conversion into RTL, an assembly-like notation

2

which is well-suited for subsequent conversion to native
code. Code can be modified and optimized at each of
these three layers:

• At the GENERIC level, many language-specific
structures are preserved. For example, loops are in-
tact here, whereas they are reduced to conditionals
and goto statements in the GIMPLE representa-
tion. Code that specifically diagnoses for state-
ments as distinct from while and if statements,
for example, should operate at the GENERIC level.

• At the GIMPLE/CFG level, complicated structures
have been gimplified, making them easier to parse
and modify. This is a good place for tools that are
less concerned with specific code constructs and are
instead concerned with data modifications and con-
trol flow. Additionally, control flow information
can be exploited to verify and instrument temporal
patterns.

• At the RTL level, higher-level structural informa-
tion has been largely replaced with low-level infor-
mation. This is a good place for verification and in-
strumentation that is specific to the underlying ma-
chine, and needs to know about the instructions that
will be generated.

In our work thus far, we have used the middle-end,
and specifically the GIMPLE/CFG level. This was done
for three reasons. First, the middle-end has access to
high-level semantic information such as symbol names
and types, making it easier to find specific locations in
the source code without needing to know details of how
they are transformed into assembly. These details dif-
fer between compilers and even compiler versions. Sec-
ond, the middle-end is both language and platform inde-
pendent, making code written there portable to all lan-
guages and platforms which GCC supports. Third, APIs
in the middle-end, in particular the GIMPLE interme-
diate representation, are deliberately preserved between
GCC versions. This is because they are used by GCC’s
tree optimizations, such as loop unrolling.

basic_block

FOR_EACH_BB

bsi_next

TREE_OPERAND

tree

Figure 2: The GIMPLE CFG and tree traversal API

The GIMPLE intermediate representation of a func-
tion has the structure of a control flow graph, as seen in
Figure 2. The basic block structure contains con-
nections to other basic blocks, as well as forward and
backward pointers representing the order in which basic
blocks appear in the code. These can be traversed using
the FOR EACH BB macro. Each basic block consists of
statements, which may be traversed using a statement it-
erator. The following example code traverses an entire
function:

basic block bb;
block stmt iterator iter;

FOR EACH BB(bb) {
for(iter = bsi start(bb);

! bsi end p(iter);
bsi next(& iter)) {

tree stmt = bsi stmt(iter);
}

}

The tree structure is the central data structure in
GIMPLE, representing a node in the abstract syntax tree.
Trees can represent expressions, types, and declarations,
among other syntactic structures. The full set of tree
types is specified in the file tree.def, which contains
lines of the form:

DEFTREECODE(id, name, flags, parameters)

These can be used to handle all possible GIMPLE tree
types by defining DEFTREECODE as a macro as in the
following example:

#define DEFTREECODE(i, n, f, p) \
case i: walk(subtree, n); \

break;

void walk expr(tree curr, int numargs)
{

int i;
for(i = 0; i < numargs; i++) {

tree subtree =
TREE OPERAND(curr, i);

if(subnode)
switch(TREE CODE(subtree)) {
#include <tree.def>

}
}

}

This function uses the entries in tree.def as the
cases for a large switch statement which is applied to
all subtrees of the current tree, passing the number of
subtrees of the subtree to itself in a recursive manner.

3

In the rest of this section, we describe the technical
aspects of creating trees. Although these are presented
as ways of creating GIMPLE trees, the techniques also
apply equally to the GENERIC abstract syntax tree, be-
cause GIMPLE is a subset of GENERIC. We first dis-
cuss types, which must be specified for all expressions,
in Section 3.1. We discuss the basic API for creating an
expression node, the buildn macros, in Section 3.2.
Finally, we discuss function calls in Section 3.3.

3.1 Types
Every GIMPLE expression has a type. These types
can be specific to a particular language, but there
are also common types. The TREE TYPE macro
returns the type of an existing expression, suit-
able for reuse. Some standard C integer types,
like unsigned char type node, are defined in
tree.h. Pointer types can be derived by applying
build pointer type to an existing type. Com-
pound types can be constructed via macros; for exam-
ple, the following example code creates a type node for
an array of three characters:

tree array3 =
build array type(

char type node,
build index type(size int(3))

);

When calling a function that has not yet been seen
(such as when inserting patch code that will be linked
in), one must construct a function declaration for it. This
involves both creating a symbol name for it and declar-
ing its type. The build function type function
takes two parameters: the return type and the parame-
ter types. In practice, however, the return type is the
only important type: the parameter types can be omitted.
The following code creates a declaration for a function
named logger, which returns void.

tree logger name =
get identifier(" logger");

tree logger type =
build function type(

void type node,
NULL TREE /* omitted */

);

tree logger decl =
build decl(

FUNCTION DECL,
logger name,
logger type

);

3.2 Expressions
Once a type has been derived from an existing expres-
sion or created anew, its corresponding expression can
be constructed. The simplest expression types are con-
stants, for which special helper functions usually ex-
ist. For example, the build int cst function takes
a type and an integer value, and returns a tree corre-
sponding to that integer constant. A string constant is
constructed using the build string function, but its
type must be set manually using the TREE TYPE macro
as follows:

TREE TYPE(mystr) = array3;

Another basic expression type is a variable access.
In many cases, variables are reused by extracting them
from an existing function. However, if a new variable
is to be constructed, this can be done by constructing
a declaration in a similar way to the way a function is
declared, except that the type should not be a function
type and VAR DECL should be passed to build decl
instead of FUNCTION DECL.

There is a separate tree type for each possible opera-
tor. For example, PLUS EXPR represents binary addi-
tion, and ADDR EXPR takes the address of its operand.
It is important to bear in mind that at this point in the
compilation process, GCC cannot infer the type of such
an expression, and the type must be explicitly speci-
fied. The buildn family of macros constructs n-ary
tree nodes; for example, the following code creates a
tree that represents the sum of two integers:

tree sum tree =
build2(

PLUS EXPR,
integer type node,
addend1,
addend2

);

For some purposes, such as when specifying the pa-
rameters of a function, a variable-length list of elements
is required. In this case, a container node is required:
specifically, a TREE LIST. Lists are created by using
the tree cons function. We show how to construct a
list in Section 3.3.

3.3 Function Calls
A function call is one of the more complex constructs
in GIMPLE. The function declaration must first be con-
structed, as seen in Section 3.1. Next, a function pointer
must be constructed using special type qualifiers as fol-
lows:

4

tree logger pointer =
build1(

ADDR EXPR,
build pointer type(

build type variant(
TREE TYPE(logger decl),
TREE READONLY(logger decl),
TREE THIS VOLATILE(logger decl),

),
logger decl)

);

The parameters are then composed into a list using
the tree cons function. This function takes three pa-
rameters. The first is a key called a purpose, which
is unused in function calls. The second parameter is
the value of the list entry. The third parameter is the
list to prepend it to (or NULL if a new list is to be cre-
ated). Finally, the function call is constructed using the
build function call function:

tree arguments =
tree cons(NULL, mystr, NULL);

new call =
build function call(

logger pointer,
arguments

);

4 Applications
Having discussed the fundamental techniques used to
implement compiler-assisted instrumentation and verifi-
cation, we now turn to some applications we have devel-
oped using this technique. For these applications, we
have developed a plug-in architecture for GCC called
Protagoras. Protagoras is a set of modifications to the
compiler, which allow it to load plug-ins that analyze or
modify the GIMPLE representation of each function af-
ter the control-flow graph has been generated. We also
modified the build process of GCC to make the com-
piler export symbols to plug-ins. We instrument code
by adding calls to separately compiled patch functions
which are linked in after compilation. The architecture
of this system is shown in Figure 3.

This system has two advantages, both directly related
to speed of development. First, the development of plug-
ins separately from the GCC code-base eliminates time-
consuming link phases. Second, the use of separately
compiled and linked patch code obviates the need to con-
struct large amounts of C code in raw GIMPLE, which
is a time-consuming and error-prone process as seen in
Section 3.

We will discuss three applications of compiler-
assisted instrumentation: a malloc() debugger in

source code

GCC tree
optimization

GCC code
emission

Runtime
monitor

Unmodified

Linking

Compile time

Run time

plug−in
Instrumenter

Verifier
plug−in

system
Instrumented

Figure 3: Our instrumentation system. The components of Pro-
tagoras are highlighted.

Section 4.1, a bounds checker in Section 4.2, and a
reference-count checker for the Linux kernel in Sec-
tion 4.3. Additionally, we will discuss an example of
compiler-assisted verification, a model-checking plug-in
that interprets GIMPLE code, in Section 4.4.

4.1 malloc() Debugging
We have implemented a malloc debugger for GCC that
locates all uses of the malloc and free functions in
a program’s source code and appends a call to an ap-
propriate logging function which is defined in a separate
static library as shown in Figure 3. While the program
runs, the logging functions maintain a list of existing al-
locations; it reports any invocations of free on unallo-
cated areas, and any malloced areas that have not been
freed by the end of the program’s execution.

The way we perform the instrumentation of a
malloc invocation in GCC is by deconstructing its par-
ent assignment expression. Even if the result of the
malloc is directly passed to a function, say f, in the
C source code, in the GIMPLE representation it is put
into a temporary variable, which in turn is passed to f.
The tree representing the assignment of the result of
malloc to a variable is a MODIFY EXPR, with the vari-
able as its first parameter and a CALL EXPR to malloc
as the second. We construct a call to the logger, pass-
ing the result variable and the parameter of the malloc
call—which specifies the size of the area—as well as the
location of the call in the C source code.

The location of a particular GIMPLE expression in
the original C source code can be extracted using the

5

EXPR LINENO and EXPR FILENAME macros. Addi-
tionally, we can check for coding anomalies like passing
a literal to free by checking what kind of a tree the
parameter to free is. We dispatch compiler warnings
using the warning function.

4.2 Bounds Checking
We have also implemented a bounds checker for GCC
that identifies all valid memory areas in the text segment
of a binary, all stack areas, and all heap allocations used
by a function; it then inserts patch code to verify that
every memory access of that function lies within those
bounds. These areas are not limited to arrays; we also
allow dereferencing of char pointers that point to por-
tions of a 32-bit int variable, for instance. As in Sec-
tion 4.1, this is achieved using logging functions: one
to register an area, one to deregister an area, and one to
check an access for validity, while the program is exe-
cuted.

In the case of heap areas, accounting is simple,
since heap areas are made valid explicitly through the
malloc function and invalidated using the free func-
tion. Text areas are registered at the start of the first func-
tion that uses them; stack areas are registered at the start
of their corresponding functions, and deregistered when
the functions exit. We invoke a compiler pass to collect
all variables referenced in a function as follows:

pass referenced vars. execute();

for(i = 0;
i < VARRAY ACTIVE SIZE(

referenced vars
);

i++) {
tree variable =

VARRAY TREE(referenced vars, i);
if(DECL ARTIFICIAL(variable))
/* temporary variable */

else if(TREE STATIC(variable))
/* text variable */

else
/* stack variable */

}

Now that accounting for stack, heap, and text areas
has been inserted, what remains is to instrument pointer
dereferences. This is done by finding tree entities with
type INDIRECT REF. The argument of the dereference
operator is passed to the validator function, which re-
ports an access that is not inside a valid area.

4.3 Reference Count Verification
We implemented a tool that locates modifications of ref-
erence counters in the Linux kernel and verifies the cor-

rectness of these operations, as well as checking for
leaks, while the system runs. A reference count leak
causes not only resource leakage but also faulty sys-
tem operation as synchronization based on reference
counts malfunctions [12]. This tool identifies all loca-
tions where variables of type atomic t (the type used
in the Linux kernel for reference counters) are modi-
fied. Linux includes a set of functions that modify these
variables correctly, but atomic variables are modified di-
rectly without using these functions at several locations
in the kernel code.

The type name for a complex type can be ex-
tracted using the TYPE NAME macro, but it is rep-
resented as an identifier node. As a result, the
IDENTIFIER POINTER macro must be applied to the
identifier to return a standard C string. Since Linux
kernel atomic types are not standard C types, we must
compare this name with the string atomic t to locate
atomic variables.

Our reference-count monitor computes error rates and
disables instrumentation once a high enough confidence
has been achieved that the error rate is very close to
zero. Additionally, we found it desirable to maintain per-
category confidence levels. Different kinds of objects
are handled by different parts of the kernel, and these
parts may be different both in the frequency with which
they access reference counters and in their correctness.
To do this, we needed a way to determine the container
object type of a reference count. If the reference counter
is being directly accessed inside a structure, then we can
simply look at its parent structure’s type as follows:

tree container type =
TREE TYPE(

TREE OPERAND(object, 0)
);

However, if the address of the reference counter has
been placed in a temporary variable, then we must keep
track of the type of the container of the object whose
address is in the temporary. To do this, we maintained a
hash of tree nodes to container types, which is updated
each time the address of an atomic t is placed into
another variable.

4.4 Model Checking
The GCC middle-end is useful for more than just in-
strumentation tools and optimizers that change the run-
time characteristics of an application. We have also de-
veloped a Protagoras plug-in application that performs
compiler-assisted verification: a model checker named
GMC2. It operates on the gimplified source code of a
concurrent program and performs multiple randomized
executions on a simulated machine supporting channel-
based IPC [7].

6

The GMC2 model checker begins interpreting the
GIMPLE source code of a program at a fixed initial state.
Whenever the active thread in the interpreted code in-
vokes a concurrency primitive, such as thread creation
or inter-process communication, a context switch oc-
curs, allowing a different, randomly-selected thread to
run. The state of the system at this point is stored. If a
user-specified property is violated while the program is
being interpreted, GMC2 records a failure and resets the
program’s state. It records a success when a previously
observed state is seen again—that is, a lasso occurs—
with no failure having been observed in the previous ex-
ecution. Confidence in the overall success rate increases
as the number of recorded lassos increases. In contrast to
other model checkers, GMC2 need only remember those
states observed in the current lasso, taking advantage of
the fact that the randomized executions are independent
of each other and error rates are therefore meaningful.
GMC2 executes GIMPLE source code, so additional

intermediate data is required besides the compile-time
information provided by the GIMPLE API. We have
added a hash table which assigns values to all variables
currently in scope. This hash table is used to interpret all
GIMPLE statements. Using the GIMPLE API instead of
the GENERIC API sharply reduces the number of dif-
ferent expression types we must handle, and also allows
us to interpret any language that GCC supports without
adding language-specific interpretation code.

Another challenge we faced while developing this
system was that GCC transforms code one function at a
time. Normally, the resources used to hold the GIMPLE
representation of one function are reused when the next
function is parsed. This is a problem for interpreters,
which require the entire program to be available. For
this reason, we interrupt execution at two points: when
each function has been gimplified and is about to be op-
timized, and when all functions have been processed.
At the first point, a function’s GIMPLE representation
is stored in a separate data structure which is preserved
throughout the compilation. At the second, the code in
the resulting data structure is interpreted.

5 Future Work
Section 4 merely documents a preliminary exploration
of the full space of potential applications for compiler-
assisted instrumentation. However, it is sufficient to
demonstrate the viability of compiler-assisted instru-
mentation in general, and the use of our plug-in architec-
ture, Protagoras, to insert code into the GCC middle-end
in particular. It also identified several areas in which the
existing infrastructure is lacking and could be extended,
to exploit the strengths of compiler-assisted instrumen-
tation while mitigating its weaknesses.

In Section 5.1 we describe two proposed applications

of this technique, including selected choices and chal-
lenges presented by their implementation. In Section 5.2
we describe two techniques we plan to investigate for
improving GCC’s support for compiler-assisted instru-
mentation and verification tools.

5.1 New Applications
Data structure access logger. We will modify every
variable modification, and, as the instrumented program
runs, it will generate a log file which provides a detailed
record of when each variable was modified, where in the
code it was modified, and what it was set to.

We will design a tool to parse these files. It will have
the interface of a standard debugger, with two major dif-
ferences. First, as the run of the application will have
been logged, it will be completely reproducible. This
will make it feasible, for instance, to transmit a detailed
log of an application’s entire run from a test engineer to a
developer, simplifying the task of finding a bug. Second,
the run will be traversable both forward and backward in
time, allowing, for instance, reverse watchpoints, allow-
ing a programmer to trace the provenance of an anoma-
lous value of a variable.

The implementation of this tool could be completely
at the GIMPLE level; however, the tool would need to
handle library functions like memcpy separately. Ad-
ditionally, because the amount of data generated by this
tool could potentially be quite large, this tool will use
bandwidth-reduction techniques like compression, snap-
shotting, and pattern-based encoding (such as recording
the first and last values of a loop counter instead of each
value). Finally, if only specific variables or variables
of a particular type are of interest, the tool could be in-
structed to filter on that basis.

Thread hang detector. We will instrument every loop,
and determine the conditions for leaving each loop. Ad-
ditionally, the instrumentation tool will enumerate the
variables that would be modified if the loop were left.
Based on that information, a multi-threaded application
will be executed in parallel with a monitor, which will
gather information about which threads were looping,
and which loops the threads were in.

The monitor will provide dynamically updated infor-
mation to the user about which threads were looping,
and will furthermore flag two threads as potentially be-
ing deadlocked if each were waiting in a condition that
involved a variable that the other will touch if it left its
loop. The tool will also generate a general warning if a
thread continues looping for a sufficiently long time.

Loops could be detected in one of two ways. First,
a loop could be detected by inspecting a function’s
GENERIC tree, which will potentially make the tool
language-specific. This will have the advantage of mak-
ing while conditions obvious. The alternative is to

7

inspect the function’s GIMPLE control flow graph for
cycles. Although this would be more computationally
intensive, it would also be more general because, for in-
stance, the following construct would be handled:

while(1)
if(x == 0)

goto out;
out:

Another challenge would be to obtain accurate infor-
mation about which variables are still in use after execu-
tion leaves a loop. Although it would be possible to enu-
merate all such variables in the same function, we would
need to perform rudimentary inter-procedural analysis to
find those of its callees.

5.2 Compiler Extensions
Saved GIMPLE trees. The solution of using an exter-
nal library to save programmers from writing GIMPLE
code (see Section 4) is unsatisfactory because this in-
troduces a compulsory function call at each point where
patch code runs. Instead, we propose an API that allows
saving a single tree or a list of trees to a file, and loading
them for integration into another program. With this sys-
tem, one could write the patch code in advance and save
it to a file, loading it from the file and binding its vari-
ables and types at all locations where the code should
run.

Instrumentation specification language. In the long
term, we strongly believe that the complexity of compil-
ers and the difficulty of programming inside a compiler
has been a major factor holding back the development of
compiler-assisted instrumentation and verification tools.
Consequently, if such applications were made easier to
develop, many more instrumentation tools would be cre-
ated. We share much of this philosophy with the AspectJ
toolkit [8]. We intend to implement an AspectJ-like sys-
tem for GCC, obviating the need to use the GIMPLE
API completely.

However, the AspectJ API does not exhaust the pos-
sibilities presented by the GIMPLE API. The GIMPLE
API allows the instrumentation writer to specify not only
additions but also transformations of the source code; for
example, GIMPLE can be used to specify loop-unrolling
optimizations. Because a system that allows easy im-
plementation of instrumentation plug-ins would also be
useful for development of optimizations—just as the re-
verse is true for the GIMPLE API—we will attempt to
make an interface that is both easy-to-use and general.

6 Acknowledgments
Abhishek Rai developed an earlier prototype of the con-
tainer type detection mechanism and instrumentation for

reference-count objects, described in Section 4.3. Yan-
hong A. Liu and Scott D. Stoller provided valuable feed-
back to the architectural model, as described in Section 4
and the compiler extensions proposed in Section 5.2.

This work was partially made possible thanks to
a Computer Systems Research NSF award (CNS-
0509230) and an NSF CAREER award in the Next Gen-
eration Software program (EIA-0133589).

References
[1] T. Ball and S. K. Rajamani. The SLAM toolkit. In

CAV ’01: Proceedings of the 13th International Confer-
ence on Computer Aided Verification, pages 260–264.
Springer-Verlag, 2001.

[2] R. Bryant and J. Hawkes. Lockmeter: Highly-
informative instrumentation for spin locks in the Linux
kernel. In Proceedings of the 4th Annual Linux Show-
case and Conference, pages 271–282, Atlanta, GA, Oc-
tober 2000. USENIX Association.

[3] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic Instrumentation of Production Systems. In Pro-
ceedings of the Annual USENIX Technical Conference,
pages 15–28, 2004.

[4] Free Software Foundation. gcov - a Test Coverage
Program. http://gcc.gnu.org/onlinedocs/gcc/

Gcov.html, December 2005.

[5] The GCC team. GCC online documentation, December
2005. http://gcc.gnu.org/onlinedocs/.

[6] S. L. Graham, P. B. Kessler, and M. K. McKusick.
Gprof: A call graph execution profiler. In Proceedings
of the 1982 SIGPLAN symposium on Compiler construc-
tion, pages 120–126, June 1982.

[7] R. Grosu, X. Huang, S. Jain, and S. A. Smolka. Open
source model checking. In Proceedings of the Workshop
on Software Model Checking, Edinborough, Scotland,
July 2005. Elsevier.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of As-
pectJ. Lecture Notes in Computer Science, 2072:327–
355, 2001.

[9] D. Novillo. TreeSSA: A New Optimization Infrastruc-
ture for GCC. In Proceedings of the 1st GCC Develop-
ers’ Summit, Ottawa, Canada, May 2003.

[10] The GDB Project. STABS. http://sources.

redhat.com/gdb/onlinedocs/stabs.html, 2004.

[11] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. SIGPLAN
Not., 39(4):528–539, 2004.

[12] E. Zadok, S. Callanan, A. Rai, G. Sivathanu, and
A. Traeger. Efficient and safe execution of user-level
code in the kernel. In Proceedings of the 2005 NSF Next
Generation Software Workshop, in conjunction with the
2005 International Parallel and Distributed Processing
Symposium (IPDPS 2005), Denver, CO, April 2005.

8

