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Abstract

Long-running server applications can easily execute millions of common data-intensive system calls each day,
incurring large data copy overheads. We introduce a new framework, Compound System Calls (Cosy), to enhance
the performance of such applications. Cosy provides a mechanism to safely execute data-intensive code segments in
the kernel. Cosy encodes a C code segment containing system calls in a compound structure. The kernel executes
this aggregate compound directly, thus avoiding data copies between user-space and kernel-space. With the help of a
Cosy-GCC compiler, regular C code can use Cosy facilities with minimal changes. Cosy-GCC automatically identi-
fies and encodes zero-copy opportunities across system calls. To ensure safety in the kernel, we use a combination of
static and dynamic checks, and we also exploit kernel preemption and hardware features such as x86 segmentation.
We implemented the system on Linux and instrumented a few data-intensive applications such as those with database
access patterns. Our benchmarks show performance improvements of 20-80% for non-1/0O bound applications.

1 Introduction

Applications like FTP, HTTP, and Mail servers move a lot of data across the user-kernel boundary. It is well under-
stood that this cross-boundary data movement puts a significant overhead on the application, hampering its perfor-
mance. For data-intensive applications, data copies to user-level processes could slow overall performance by two
orders of magnitude [33]. For example, to serve an average Web page that includes five external links (for instance
images), a Web server executes 12 read and write system calls. Thus a busy Web server serving 1000 hits per second
will have executed more than one billion costly data-intensive system calls each day.

One method to address the problem of data movement is to extend the functionality of existing OSs to satisfy the
needs of the application [2, 9, 22, 28]. The problem with such methods is that they require an entirely new framework
with a special OS or special languages to assure the safety of the system. Another way to reduce data copies is simply
to minimize the number of times context switches happen. For example, reading files in large chunks instead of small
ones can reduce the number of times the r ead system call is invoked to read a file entirely. A third method, often
used in networking, is to aggregate network or protocol messages together and send them as one larger message.
NFSv4 [24] defines a compound message as a packed sequence of RPC messages, each specifying a single NFSv4
operation. In this way, an NFSv4 client could send a distant server one message that encodes several requests, thus
reducing network latency and setup time.

Cosy provides a framework that allows user applications to execute their data-intensive code segments in the
kernel, thereby avoiding data copies. Cosy aggregates the system calls and intermediate code belonging to a data-
intensive code segment to form a compound. This compound is passed to the kernel via a new system call (cosy _r un),
which decodes the compound and executes the encoded operations, avoiding data copies.

Zero-copy techniques, sometimes known as fast-path architectures, reduce the number of times data is copied
[1,12,13,16]. Cosy employs zero-copy techniques in three places. First, the Cosy buffer used to encode a compound
is itself a physical kernel memory segment mapped to the user space application; this way both the kernel and the
user process can read from or write to this shared memory space without an explicit copy. Second, the Cosy system
allows a user application to allocate additional contiguous physical kernel memory that is also mapped to the user
application. This memory, called a Cosy shared data buffer, can be used like any other mal | oced memory, only
that using this memory does not require copying between user processes and the kernel; this is particularly useful for
system calls that run frequently (e.g., st at ) or copy a lot of data between the user and kernel address spaces (e.qg.,



read or w i te). Third, Cosy allows compounded system calls to directly share system call arguments and return
values. For example, the file descriptor number returned by open can be passed to a r ead call so it can operate on
that opened file; and a memory buffer (whether a Cosy shared buffer or not) used by a r ead call could be passed to
a subsequentwr i t e call, which can then use it directly.

We provide Cosy-GCC, a modified version of GCC 3.2, to automatically convert data-intensive code into a com-
pound. The user just needs to mark the data-intensive code segment and Cosy-GCC converts the code into a com-
pound at compile time. Cosy-GCC also resolves dependencies among parameters of Cosy statements and encodes
this information in the compound. Cosy uses this information to reduce data copies while executing the compound in
the kernel.

Systems that allow arbitrary user code to execute in kernel mode must address security and protection issues: how
to avoid buggy or malicious code from corrupting data, accessing protected data, or crashing the kernel. Securing
such code often requires costly runtime checking [28]. Cosy uses a combination of static and runtime approaches
to assure safety in the kernel. Cosy explores various hardware features along with software techniques to achieve
maximum safety without adding much overhead.

We have prototyped the Cosy system on Linux. We conducted a series of general-purpose benchmarks and micro-
benchmarks comparing regular user applications to those that use Cosy. We found overall performance improvements
of Cosy to be up to 20-80% for common non-1/0 bound user applications.

The rest of this paper is organized as follows. Section 2 describes the design of our system and includes safety
features in detail. We discuss interesting implementation aspects in Section 3. Section 4 describes the evaluation of
our system. We review related works in Section 5 and conclude in Section 6.

2 Design

Often only a critical portion of the application code suffers due to data movement across the user-kernel boundary.
Cosy encodes the statements belonging to a bottleneck code segment along with their parameters to form a compound.
When executed, this compound is passed to the kernel, which extracts the encoded statements and their arguments
and executes them one by one, avoiding extraneous data copies. We designed Cosy to achieve maximum performance
with minimal user intervention and without compromising security. The three primary design objectives of Cosy are
as follows:

Per for mance We exploit several zero-copy techniques at various stages to enhance the performance. For example,
we use shared buffers between user and kernel space for fast cross-boundary data exchange.

Safety We use various security features involving kernel preemption and hardware-specific features such as Intel’s
segmentation, to assure a robust safety mechanism even in the face of errant or malicious user programs. We
use a combination of static and dynamic checks to assure safety in the kernel without adding much runtime
overhead. We discuss safety design issues in Section 2.6.

Simplicity We have automated the formation and execution of the compound so that it is almost transparent to the
end user. Thus, it is simple to write new code as well as modify existing code to use Cosy. The Cosy framework
is extensible and adding new features to it is easy.

2.1 Architecture

To facilitate the formation and execution of a compound, Cosy provides three components: Cosy-GCC, Cosy-Lib and
the Cosy Kernel Extension. Users need to identify the bottleneck code segments and mark them with the Cosy specific
constructs COSY_START and COSY_END. This marked code is parsed and the statements within the delimiters are
encoded into the Cosy language. We call this intermediate representation of the marked code segment a compound.
Encoded statements belonging to a compound are called Cosy operations.

The Cosy system uses two buffers for exchanging information. First, a compound is encoded in a compound
buffer. Second, Cosy uses a shared buffer to facilitate zero-copying of data within system calls and between user
applications and the kernel.

2.2 Cosy-GCC

Cosy-GCC automates the tedious task of extracting Cosy operations out of a marked C-code segment and packing
them into a compound, so the translation of marked C-code to an intermediate representation is entirely transparent
to the user.

Cosy-GCC also resolves dependencies among parameters of the Cosy operations. Cosy-GCC determines if the
input parameter of the operations is the output of any of the previous operations. It is necessary to encode this



dependency, as the real values of the parameters are not known until the operations are actually executed. While
parsing the marked code, Cosy-GCC maintains a symbol table of output parameters of the operations and labels. It
compares each of the input parameters of any new operation against the entries in the symbol table to check for any
dependencies. This dependence is marked in the f | ags field (Section 2.3.1) of the compound buffer. For conditional
statements or jumps, the control flow within the compound may vary depending on the outcome of the conditional
statement. Cosy-GCC determines the next operation to execute in case that a branch is taken or not taken. To resolve
forward references in such cases, Cosy-GCC uses a symbol table.

Cosy supports loops (i.e., f or, do-whi | e, and whi | e), conditional statements (i.e., i f, swi t ch, got 0),
simple arithmetic operations (i.e., increment, decrement, assignment, add, subtract) and system calls within a marked
code segment. Cosy also provides an interface to execute a piece of user code in the kernel. Applications like gr ep,
volume rendering [31], and checksumming are the main motivation behind adding this support. These applications
read large amounts of data in chunks and then perform a unique operation on every chunk. To benefit such applications
Cosy provides a secure mechanism to call a user supplied function from within the kernel.

In order to assure completely secure execution of the code in the kernel, we restrict Cosy-GCC to support a subset
of the C-language. Cosy-GCC ensures there are no unsupported instructions within the marked block, so complex
code may need some small modifications to fit within the Cosy framework. This subset is carefully chosen to support
different types of code in the marked block, thus making Cosy useful for a wide range of applications.

2.3 Cosy-Lib

The Cosy library provides utility functions to create a compound. Statements in the user-marked code segment are
changed by the Cosy-GCC to call these utility functions. So the functioning of Cosy-Lib and the internal structure of
the compound buffer are entirely transparent to the user.

Cosy-Lib is also responsible for maintaining the shared data buffer. The library extends the malloc library to
efficiently handle the shared data buffer. User applications that wish to exploit zero-copy can manage memory from
the shared data buffer with the cosy _nal | oc and cosy _f r ee functions provided by our library.

2.3.1 Structure of a Compound

In this section we describe the internal structure of a compound, which is stored within the compound buffer (see
Figure 1). A compound is the intermediate representation of the marked code segment and contains a set of operations
belonging to one of the following types:

System calls

Arithmetic operations

Variable assignments

whi | e and do-whi | e loops
Optimized f or loops (See Section 3)
User provided functions

Conditional statements

Swi t ch statements

Labels

got os (unconditional branches)

The compound buffer is shared between the user and kernel space. The operations that are added by the user
into the compound are directly available to the Cosy Kernel Extension without any data copies. The first field of a
compound is the global header that contains the total number of operations encoded in the compound. The “End of
Compound” field is required since each Cosy operation may occupy a variable length. The compound also contains
a field to set the upper limit on the maximum number of operations to be executed. This limit is necessary to avoid
infinite loops inside the kernel. The remaining portion of the compound contains a number of operations. The
structure of each operation is of the following form: a local header followed by a number of arguments needed for
the execution.

Each type of operation has a different structure for the local headers. Each local header has a t ype field, which
uniquely identifies the operation type. Depending on the type of the operation, the rest of the arguments are analyzed.
For example, if the operation is of the type “system call,” then the local header will contain the system call number and
flags. The flags indicate whether the argument is the actual value or a reference to the output of some other operation.
The latter occurs when there are argument dependencies. If it is a reference, then the actual value is retrieved from
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Figure 1: Internal structure of cosy compound: An example of a compound of a system call, a conditional, an assignment, and
an addition.



the reference address. The local header is followed by a number of arguments necessary to execute the operation. If
the execution of the operation returns any value (e.g., a system call, math operation, or a function call) one position
is reserved to store the result of the operation. Conditional statements affect the flow of the execution. The header of
a conditional statement specifies the operator, and if the condition is satisfied, the next instruction is then executed.
Cosy-GCC resolves dependencies among the arguments and the return values, the correspondence between the label
and the compound operation, and forward references for jump labels.

2.4 The Cosy Kernel Extension

The Cosy kernel extension extracts the operations encoded in a compound and executes them one by one. The Cosy
kernel extension provides three system calls:

e cosy.i nit allocates both the compound buffer and the shared data buffer that will be used by the user and
the kernel to exchange encoded compounds and return results.

e cosy._r un decodes the compound and executes the decoded operations one by one.

e cosy_f r ee releases any resources allocated for Cosy on behalf of this process. This is optional: the kernel
will also garbage collect such resources upon termination of the process.

2.4.1 Executing the Compound

The Cosy kernel extension is the heart of the Cosy framework. It decodes each operation within a compound buffer
and then executes each operation in turn.

The normal behavior of any user application is to make system calls, and based on the results, decide the next
set of system calls to execute; so the sequence in which the system calls are executed is not constant. Therefore,
it is not sufficient to execute the system calls belonging to a compound in the order that they were packed. After
executing one system call, the Cosy kernel extension checks the result and decides the next system call to execute.
The Cosy framework supports programming language constructs such as loops, conditionals, and math operations.
This way the user program can encode conditional statements and iterative instructions into the compound. The Cosy
kernel extension executes the system calls in the sequence that they were packed unless it reaches a condition or loop
statement. At that point, it determines the next call to execute depending on the result of the conditional statement.
Cosy also supports another mode, where the Cosy kernel extension exits on the first failure of any Cosy operation.
This mode is useful while executing a long loop in the kernel that has error checking after the loop.

We limit the framework to support only a subset of C. One of the main reasons is safety, which we discuss
in Section 2.6. Another issue is that extending the language further to support more features may not increase
performance because the overhead to decode a compound increases with the complexity of the language. The savings
may not be manifested as a result of this overhead.

Efficient decoding of the compound is required to achieve our performance goals. To achieve this, we exploit
various optimizations. To make decoding efficient, Cosy uses lazy caching of decoded data. Thus the first time
any operation is visited it is decoded and this decoded operation is stored in a hash table. The next time the same
operation has to be evaluated, decoding is avoided. During system call execution, the arguments of the system calls
are pushed directly onto the stack and then the system call function is called using a small amount of assembly code.
This avoids any intermediate copying of arguments from the compound buffer to local buffers and hence speeds up
the invocation of system calls. The savings in the decoding time and the time to invoke a system call help to minimize
Cosy’s overhead.

2.5 Zero-Copy Techniques

Many common system calls can realize performance improvements through zero-copy techniques. r ead andwri t e
are especially good candidates as they normally copy large amounts of data between the kernel and user space. Calls
like st at can also benefit from zero-copy techniques because they are invoked very often.

The area where user programs can achieve the largest savings from the shared data buffer is system time. So this
method is particularly useful when the data copies are not 1/0 bound. The Cosy framework uses the shared data buffer
to support zero-copy data transfers by modifying the behavior of copy_t o_user and copy f r omuser. Many
system calls including r ead and wr i t e utilize these copy calls and will enjoy the benefits of using the shared data
buffer by avoiding redundant data copies.

Whenever a user makes a r ead system call using the shared buffer, Cosy checks for the use of a shared buffer
and skips the copy _t o_user call avoiding a data copy back to user-space. Cosy stores the physical address of the
page that contains the read data in st r uct t ask. After that, if the user makes any call that uses the same shared



buffer, then the stored physical address is provided to that call. For example, if the user makes a wr i t e call which
also uses the same shared buffer, Cosy uses the stored physical address in copy f r omuser .

As the check for zero-copy is performed in copy_t o_user and copy _f r omuser, which are generic calls,
any system call that performs data copies receives the benefit of zero-copy by using the shared buffer. Cosy is not
skipping any validation checks, so safety is not violated. So in the worst case a bad address provided by a buggy or
malicious program will be passed to the system call. The system call still checks the validity of all arguments, so a
segmentation fault will be generated as normal.

System calls like st at copy information about a file from kernel kernel to user space. In this case Cosy saves
copies by allocating the st at buffer in physical kernel memory that is shared between the kernel and the user
process. Cosy can take this one step further and exploit the relationships between system calls that share data buffers.
For instance, data is often read from one file and written to another. If we allocate this buffer in physical kernel
memory, then we can share it directly between calls within the kernel.

Cosy supports special versions of existing system calls to enable zero-copy by default using the shared data buffer.
These system calls are accessible only through Cosy. Currently we support st at , r ead, and wr i t e as described
in Section 3. When applications use memory allocated using cosy mal | oc and use itinread, wri t e, or st at
system calls, Cosy-GCC detects the possible optimization and converts these calls to their zero-copy versions.

2.6 Safety Features

Cosy applies runtime bound checking to prevent possible overruns of the shared buffer. Cosy is not vulnerable to bad
arguments when executing system calls on behalf of a user process. The system call invocation by the Cosy kernel
module is the same as a normal process and hence all the necessary checks are performed. However, when executing
a user-supplied function, more safety precautions are needed. Cosy makes use of the hardware and software checks
provided by the underlying architecture and the operating system to do this efficiently. We describe two interesting
Cosy safety features in the next sections: a preemptive kernel to avoid infinite loops, and x86 segmentation to protect
kernel memory.

2.6.1 Kernel Preemption

One of the critical problems that needs to be handled while executing a user function in the kernel is to limit its
execution time. To handle such situations, Cosy uses a preemptible kernel. A preemptible kernel allows scheduling
of processes even when they are running in the context of the kernel. So even if a Cosy process causes an infinite loop
it is eventually scheduled out. Every time a Cosy process is scheduled out, Cosy interrupts and checks the running
time of the process inside the kernel. If this time has exceeded the maximum allowed kernel time then the process
is terminated. We modified the scheduler behavior to add this check for Cosy processes. The added code is minimal
and is executed only for Cosy processes and hence does not affect the overall system performance.

2.6.2 x86 Segmentation

To assure the secure execution of user supplied functions in the kernel, we use the Intel x86 segmentation feature. We
support two approaches.

The first approach is to put the entire user function in an isolated segment but at the same privilege level. The
static and dynamic needs of such a function are satisfied using memory belonging to the same isolated segment.
This approach assures maximum security, as any reference outside the isolated segment generates a protection fault.
Also, if we use two non-overlapping segments for function code and function data, concerns due to self modifying
code vanish automatically. However, to invoke a function in a different segment involves overhead. Before making
the function call, the Cosy kernel extension saves the current state to resume execution. Saving the current state and
restoring it back is achieved by using the standard task-switching macros, SAVE_ALL and RESTORE_ALL, with some
modifications. These macros involve around 12 assembly pushl and popl instructions, each. So if the function is
small and it is executed a large number of times, this approach could be costly due to the added overhead of these two
macros. The important assumption here is that even if the code is executing in a different segment it still executes
at the same privilege level as the kernel. Hence, it is possible to access resources exposed to this isolated segment,
without any extra overhead. Currently, we allow the isolated code to read only the shared buffer, so that the isolated
code can work on this data without any explicit data copies.

The second approach uses a combination of static and dynamic methods to assure security. In this approach we
restrict our checks to only those that protect against malicious memory references. This is achieved by isolating the
function data from the function code by placing the function data in its own segment, while leaving the function



code in the same segment as the kernel. In Linux, all the data references are resolved using ds segment register,
unless a different segment register is explicitly specified. In this approach, all accesses to function data are forced
to use a different segment register than ds (gs or f s). The segment register (gs or f s) points to the isolated
data segment, thus allowing access only to that segment; the remaining portion of the memory is protected from
malicious access. This is enforced by having Cosy-GCC append a %gs (or % s) prefix to all memory references
within the function. This approach involves no additional runtime overhead while calling such a function, making it
very efficient. However, this approach has two limitations. It provides little protection against self modifying code,
and it is also vulnerable to hand-crafted user functions that are not compiled using Cosy-GCC.

2.7 Cosy Examples

To understand the phases of Cosy in greater detail we demonstrate a simple C program that reads a file using Cosy
features, and then show its internal representation after the Cosy-GCC maodification.

The C code below reads an input file nane until the end of the file. For simplicity we do not include any error
checking in this example:

1  COSY_START;

2 fd = open(nane, f,n;

3 do {

4 riln = read(fd, bf,In);
5 } while(rln ==1n);

6 cl ose(fd);

7  COSY_END;

The code segment is marked with COSY_START and COSY_END. When this program is compiled using Cosy-
GCC it replaces the statements with calls to Cosy-L.ib functions to add the statements into a compound. We show the
converted code after the Cosy-GCC compilation below:

1 cosy_add(&fd, NR open, 0, nane, 0,f,0,m;

2 cosy_do();

3 cosy_add(&In,NR read, 1,fd, 0, bf,0,1n);
4 cosy while(1,rln,"==",0,1n);

5 cosy_add(__NR close, 1,fd);

6 cosy _run();

Statements 1 through 5 add operations to the compound. Statement 6 is a Cosy Kernel Extension call that informs
the Cosy kernel to execute the compound. In statement 3, the third parameter is a flag indicating that the parameter
value f d is not known and should be retrieved from the output of the first operation (open).

3 Implementation

We implemented a Cosy prototype on Linux 2.4.20. This section highlights the following five implementation issues:
kernel changes, shared buffers, zero-copy, faster system call invocation, and loop constructs.

Kernel Changes and Maintenance The number of lines of code that we have changed is a good indicator of the
complexity of our system. We applied the kernel preemption patch to the kernel proper. This is a well maintained
patch and is going to be incorporated in the upcoming versions (2.5 on wards).

Another kernel patch which is Cosy specific is only needs a 42 line patch, which is only necessary so that the
Cosy kernel module can interface with the static kernel to modify the task structure. This patch has three components.

e New entriesin task structure (3 Lines: Adds two new entries in the task structure.

e Cleanup codein do_exit (2 Lines): This is cleanup code to release any resources in case of abnormal termi-
nation of a Cosy process.

e Changesto copy_to_user and copy_from_user (24 Lines): These changes are made to facilitate zero copy.

e Scheduler Changes (13 Lines): A small piece of code in the scheduler enables terminating a Cosy process
which has used its allocated kernel execution time.

Our system consists of three components: Cosy-GCC, a user-level library, and a kernel module. The patch to
GCC is 600 lines, the kernel code is 1877 lines, and the library is 4002 lines. Most of the kernel code handles the



decoding of the compound call. To make it easier for the user to write programs using Cosy we provide an interface
that for a subset of C. To support this feature we created a small database containing the list of all the system calls. We
auto-generate the code to support these system calls. This auto-generation makes code development and maintenance
simpler.

The changes to the task structure involve addition of three fields. Cosy allocates kernel buffers for each process,
because kernel buffers are a scarce resource, it is the responsibility of the allocator to release this memory after the
process’s termination. To facilitate this resource reclamation we added a field to the task structure that points to a
structure containing all the kernel allocated addresses, and a field that contains a pointer to a cleanup function that
releases these resources. The third field contains the total amount of time that this Cosy compound has been executing
in the kernel. This timer is used to terminate the process when the process exceeds its allowed time span.

Shared Buffers There are some standard mechanisms that enable sharing of data between user and kernel space.
We explored two such approaches to determine which one provides the fastest way to share data. The first approach
is using ki obufs. ki obuf s facilitate user-mode DMA. A user application allocates a buffer in user space and
passes the virtual address to the kernel. The kernel determines the physical address of the page and stores it in a
ki obuf . Whenever the kernel wishes to access this data it can just look into the ki obuf for the physical address
of the page. The limitation of this approach is that multiple pages may not be allocated contiguously in the physical
address space. To compensate for this, the kernel needs to check which page is under consideration and determine its
physical address. This would decrease performance for large memory segments. Instead, we chose to have the kernel
kmal | oc a set of pages in the memory and map these pages to the process’ address space. As kmal | oc always
returns physically contiguous memory, both the user and the kernel can access our shared buffers sequentially.

Zero-Copy Supporting zero-copy without major kernel changes was the biggest challenge we faced. We explored
different options to do a zero-copy r ead and wr i t e operation. It is possible to modify the read and write
system calls to make them support zero-copy. We can also implement different versions of these calls which support
the zero-copy data transfer. Both of the above mentioned solutions are specific to particular calls. We adopted a more
generic approach to implement zero-copy transfer. Both r ead and wr i t e and their variants that deal with data copy
make use of the macros copy _t o_user and copy_f r omuser . To provide a generic solution, we modified these
two macros. In copy_t o_user we avoid the data copy and instead save the source page address belonging to the
disk block. When the read data is to be written, sys wr i t e calls copy f r omuser to copy the data from the user
buffer. At this point the address copy t o_user stored in the task structure is fed to the write as the source for data.

st at requires different techniques than read and write because it returns only a 64 byte structure and the mapping
techniques we use for copy _t o_user are less efficient with small segments of memory. Cosy defines cosy _st at ,
which is a special version of sys_st at that operates only on shared buffers. sys_st at reads some information
about a requested file into a kernel buffer and then copies it to a supplied user buffer. Unlike sys st at , Cosy _stat
writes directly into the user-supplied shared buffer, which is accessible to the user application. Thus Cosy stat avoids
one data copy of the stat buffer. The user can allocate a chunk in the shared buffer by calling cosy 1mal | oc, which
is then used by cosy _st at to execute a zero-copy stat.

Loop Constructs Cosy has three forms of loops: whi | e, do-whi | e, and f or . In the most general case a f or
loop is converted to an equivalent whi | e loop, but many f or loops are of the form:

for (i =1; i conditional C i += N)

In this case converting the f or loop to a whi | e loop will require three Cosy operations: the initialization (i = I),
the loop (whi | e (i conditional C')), and the addition (i += IN). However, if the loop is in this common form, we
use a special f or operator, which encodes the parameters I, C', and N into a single operation. Using a single Cosy
operation avoids decoding the addition operation during each loop iteration.

3.1 Implementation of Cosy Components

In this section, we explain the low-level implementation details of various Cosy components. We explain the data
structures used by these components for Compound passing. We also discuss limitations due to the current design
and possible extensions to it if necessary. We explain all the three Cosy components: Cosy-Lib, Cosy-GCC and the
Cosy kernel module in detail.



3.1.1 Cosy-Lib

As explained earlier, this library makes Cosy easier to use. The structure of the compound is defined in this library.
It provides functions to add entries into the compound buffer, and all the system calls are redefined in this library.
All the system calls within a marked code segment are replaced by a function call to one of the library routines that
understands how to add this system call entry into the compound buffer. For example, suppose an open system call
is enclosed in the Cosy block.

fd = open{"/tnp/testfile", O RDONLY);

Cosy-Lib redefines this open system call, as a result this system call is no longer a direct system call or a call to
glibc. The redefinition of this system call is shown below.

fd =cosy_add(__NR open, uhandle, "/tnp/testfile", O RDONLY);

Thus open is replaced by a call to cosy _add, in Cosy-Lib. cosy_add is a function provided by Cosy-Lib to add
any system call to the compound buffer. We list all the important functions provided by the library to add entries into
the compound.

1. cosy_add - Adds system call along with the parameters to the compound buffer.
cosy_if - Addsani f statement and its parameters to the compound buffer.
cosy_while- Adds a while loop statement to the compound buffer.

cosy_for - Adds a for loop statement to the compound buffer.

cosy_inc_dec - Adds an increment or decrement statement to the compound buffer.
cosy_math - An arithmetic operation is added to the compound buffer.

All C code within the Cosy block is ultimately calls one of the above mentioned functions, which in turn encode
the entry into a compound. The actual C code and the code after replacing the original calls by library calls is shown
in section 2.7. The current Cosy framework supports only simple programming language constructs. Hence, no
complex loops or complex instructions are allowed. For example, the structure of a while loop should be of type

ourwd

whil e(first_operand <> =1, = second_operand);
A complex while loop such as
whi | e(((op/ 1000 - 2000)*100 < (opl)) && (op2/3 - 20))

is not supported. There is two main reasons why we limit the language to some simple constructs. First, the
complexity of encoding the complex construct in the compound buffer is a tedious process. There is no limit on the
variety of conditional statements. To support all of them we end up building a syntax tree again. Second, the more
complex the language is, the more the overhead associated with encoding and decoding becomes. It has been well
known that interpretation in kernel is a costly affair. Hence, previous attempts to interpret the code in kernel were
not very successful. That is the reason we have kept the kernel decoder small and we see significant improvement.
The reason we have supported these programmatic constructs is that user application code consists of system calls
and between system calls there is some intermediate code. By using the library functions it is possible to add the
system calls and some small piece of intermediate code into the compound buffer, thereby enabling executing of a
larger chunk of user code in the kernel. If the intermediate code involves complex code then it has to be manually
reconstructed to fit in the allowed structure. If the system calls are separated by a significant number of instructions,
then it is possible to put that intermediate code into a separate function and encode that entire function into the
compound buffer.

3.1.2 Cosy-GCC

The modified version of GCC is used to find out the dependency among entries within compound buffer. To make
this point more clear let us consider a sample C code that opens a file and read one page.

fd = open(filenanme, flags);
len = read{fd, buf, 4096);

The above code is converted to the code shown below as a result of redefinition of system calls.



fd = cosy_add(__NR open, uhandle, filenane, flags);
| en = cosy_add(__NR read, uhandle, fd, buf, 4096);

One key observation in the above example is that while adding the two system calls in the compound buffer the
parameters are added by value. The problem is that the value of first parameter to read system call, fd, is not known
at this moment. It will be known only after the Cosy Kernel Module executes the first entry in the compound buffer,
open system call. So before executing the read system call it is necessary to retrieve the output of the open system
call and use it as the first parameter. To solve this problem, it is necessary to mark this dependency in the compound
buffer (flags field in section 2.3.1). To mark this dependency every parameter is preceded by the flag parameter while
making the library call. The actual library call looks like

fd
fd

cosy_add(__NR open, uhandle, flagl, filenane, flag2, flags);
cosy_add(__NR read, uhandle, flag3, fd, flag4, buf, flag5, 4096);

In this example only f | ag3 is set and all the remaining flags are unset. f| ag3 is set indicating that the first
parameter to read system call is actually not known at the formation of the compound, but rather it should be retrieved
from the output of the first entry in the compound. This setting of flags and making them point to the corresponding
system call is done entirely by Cosy-GCC and the user does not need to bother about it.

Cosy-GCC adds the output parameter of the calls in the Cosy block to a symbol table. It also adds the location
where the output of this call is found within the compound buffer. Whenever it comes across a call it compares the
name of the parameter against the names stored the symbol table. If a match is found, then it copies the location of
the output parameter. If no match is found then the flag is set to zero.

As explained in the earlier section, Cosy does not support complex instructions. While reading the call names

within the Cosy block if Cosy-GCC comes across any call that is not supported it produces an error. Cosy-GCC also
auto converts the while loops into a corresponding library call. It is a bit tricky and deserves some discussion. We
have modified GCC at the stage where the abstract syntax tree has already been built. If a Cosy block containswhi | e
instruction, then the AST contains the node corresponding to the whi | e loop. It also contains node corresponding to
the condition statement for the while. Cosy-GCC allows the compilation of while to proceed normally. As explained
earlier in the current implementation of Cosy-GCC, only simple conditions are supported for a while loop. So, any
while loop will be of the form
while(first_param operator second_param);
Cosy-GCC traps at the moment the while condition expression is being compiled. It stores the nodes corresponding
to the two parameters and the condition operator. Then, it removes the while loop node from the tree. And inserts a
cosy_whi | e instruction node at that position. It also plugs in the parameter and operator node in this instruction
node. Thus, a while loop node is replaced by a cosy whi | e statement node.

3.1.3 Cosy Kernel Module

The Cosy kernel modules reads the first entry in the compound that contains the total number of compound entries
and compound size. Next, it executes a loop until the end of compound is reached. Each iteration reads the header of
each entry, which contains the type. The Cosy kernel modules calls a specific function to parse that particular entry.
These functions read the flags field to determine any dependencies among parameter, as explained in the previous
section. If there are dependencies, then it retrieves the parameter by reading the specified location. Otherwise the
parameter is used as is. The function then executes the specific entry by using these parameters. After execution the
result is stored in the compound buffer (Section 2.3.1). The header also contains the length of the entry. This entry is
used to find the next entry to be executed within the compound.

Special safety precautions are necessary to bound the execution time of a compound and while executing a user
provided function. As explained earlier to limit execution time Cosy uses a preemptible Linux kernel. We identify a
Cosy process by setting a specific flag in the task structure. In the scheduler we modified a function that gets called
whenever a process is scheduled out. In this function we check if the flag is set. If so, we check the total execution
time for that particular Cosy process. If it has exceeded a specific amount (we have hard coded it to 300 seconds but
is configurable), then that process is killed by calling the do_exi t function. The key idea here is identification of
this function in scheduler where the kernel is still running in the context of the Cosy process but running code other
than the encoded compound. If we call do_exit from this function, then it is same as the Cosy process calling the
exit(), and thus, terminates cleanly.

Another safety feature that Cosy enforces is while executing a user provided function. This is the piece of code
that could have any type of malicious code, and the kernel only knows its physical location in memory. If it just calls
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this function, then no more checks could be enforced by the Cosy kernel module. To overcome this limitation and add
dynamic checks the Cosy kernel module uses x86 segmentation. There are two ways supported by Cosy Kernel: one
provides more safety than the other but at the cost of more overhead. We explained both the approaches in section
2.6. In this section, we elaborate on how secure access is allowed to such an isolated function. The isolated functions
are allowed access to a specific memory area outside their own segment. This is achieved in the first approach by
prefixing the outside the segment access by %fs, with f s pointing to the main kernel data segment. The prefix
addition is done by trusted compiler. Cosy assumes that the memory address outside the isolated segment is provided
to the function as an input parameter. Hence, all the memory references using this parameter are prefixed. This way
Cosy Kernel ensures that there is no security hole that could be maliciously exploited. In the second approach, where
we just protect against malicious data access by prefixing all the memory references by %fs, this problem is solved
by not prefixing memory accesses using the input parameter.

4 Evaluation

To evaluate the behavior and performance of compound system calls we conducted extensive benchmarking on Linux
comparing the standard system call interface to various configurations using Cosy. In this section we (1) discuss the
benchmarks we performed using these configurations, (2) demonstrate the overhead added by the Cosy framework
using micro-benchmarks, and (3) show the overall performance on general-purpose workloads.

4.1 Experimental Setup
We ran each benchmark using a subset of the following three configurations:

1. VAN: A vanilla setup where benchmarks use standard system calls, without Cosy.

2. cosy: A modified setup where benchmarks use the Cosy interface to form compounds and send them to the
kernel to be executed.

3. cosy-FAST: A setup identical to the cosy setup except that it uses a fast shared buffer to avoid memory copies
between user-space and kernel-space.

Our experimental testbed was a 1.7GHz Intel Pentium 4 machine with 128MB of RAM and a 36GB 10,000 RPM
IBM Ultrastar 73LZX SCSI hard drive. All tests were performed on an Ext2 file system, with a single native disk
partition that was the size of our largest data set to avoid interactions with rotational delay [8].

We installed the vanilla Linux 2.4.20 kernel and applied the Cosy kernel patch and the kernel preemption patch.
All user activities, periodic jobs, and unnecessary services were disabled during benchmarking. We measured Cosy
performance for a variety of CPU speeds. However, we only report the results for the 1.7GHz Pentium 4 because the
results are not significantly different for the other CPU speeds.

We ran each experiment at least 20 times and measured the average elapsed, system, user, and 1/O (wait) times.
Finally, we measured the standard deviations in our experiments and found them to be small: less than 5% of the
mean for most benchmarks described. We report deviations that exceeded 5% with their relevant benchmarks.

4.2 Cosy Overhead

Using the configurations mentioned in Section 4.1 we performed a get pi d micro-benchmark to evaluate the effi-
ciency and overhead of the Cosy framework. This benchmark shows the overhead involved with forming a compound
and executing it using the Cosy framework. We chose get pi d because it performs a minimal amount of work in the
kernel.

We ran this benchmark for the VAN and cosy setups. We omitted the cOSY _FAST configuration because the fast
buffer does not serve a purpose for get pi d.

The VAN benchmark program executes a number of independent get pi d system calls within a f or loop. The
COSyY setup constructs a f or loop to be decoded by cosy _r un and evaluated in the kernel. For each test we ran the
benchmark for an exponentially increasing number of get pi d calls: 2, 4, 8, ..., 256. This helped us measure the
scalability of the Cosy framework.

Figure 2 shows that cosy is more efficient than VAN. The improvements range from 12-90% in elapsed time,
36-85% in system time, and -10-100% in the user time.

When the number of get pi ds is 2 or less cosy shows 10% penalty in user time. This is because cosy has
an overhead of creating the compound in user space. cosy adds two operations in the compound: a f or loop and
a system call get pi d. Even if the number of get pi ds is increased, the size of the compound remains the same
and hence the user-space overhead remains the same. On the other hand, as the number of get pi ds increases, the
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Figure 2: Elapsed, system, and user time percentage improvements of cosy over VAN for getpid.

amount of work VAN does in user space increases linearly. Hence, initially when the number of get pi ds is small
(less than 3), VAN looks better in user time; but, as the number of get pi ds increases, cosy performs better than
VAN.

COosY shows improvement in system time, even though it is decoding and executing a loop inside the kernel. This
is because the loop overhead is less costly than context switching. The benchmark indicates that even after paying
the overhead of decoding a loop, cosy performs 36-85% better than VAN. The results indicate that the decoding
overhead in Cosy is minimal.

Elapsed time results always show improvement, irrespective of the number of get pi ds. Thus, even if COSY has
some overhead for small compounds in user time, the system time savings more than compensate, resulting in overall
performance improvement.

4.3 General Purpose Benchmarks

Using the configurations defined in Section 4.1 we conducted four general purpose benchmarks to measure the overall
performance of the Cosy framework for general-purpose workloads: database, Bonnie, | s, and gr ep.

Database Simulation In this benchmark we find the benefits of Cosy for a database-like application. We wrote a
program that seeks to random locations in a file and then reads and writes to it. The total number of reads and writes
is six million. We followed similar techniques as used by Bonnie [7] and pgmeter [4] to simulate the database access
patterns. The ratio of reads to writes we chose is 2:1, matching pgmeter’s database workload.

We used the three configurations VAN, cOSY, and cosy _FAST. The Cosy versions of the benchmark program
create a compound and executes it for a user-specified number of iterations. This compound executes a function to
generate a random number, for use as an offset into the file. The next operation in the compound is to seek to this
random offset, and then read from that location. On every alternate iteration, the compound executes a write after
the read. cosy _FAST exploits zero-copy while reading and writing the same data, while cosy is the non-zero-copy
version of the same benchmark.

We ran the benchmark for increasing file sizes. We kept the number of transactions constant at six million. We
also ran this benchmark with multiple processes to determine the scalability of Cosy in a multiprocess environment.

Bonnie We used the Bonnie benchmark [7] to measure the benefits of Cosy’s zero-copy techniques. Bonnie is a file
system test that intensely exercises both sequential and random reads and writes. Bonnie has three phases. First, it
creates a file of a given size by writing it one character at a time, then it rewrites the file in chunks of 4096, and then it
writes the same file one block at a time. Second, Bonnie reads the file one character at a time, then a block at a time;
this can be used to exercise the file system cache, since cached pages have to be invalidated as they get overwritten.
Third, Bonnie forks 3 processes that each perform 4000 random | seeks in the file, and read one block; in 10% of
those seeks, Bonnie also writes the block with random data. This last phase of Bonnie simulates a random read+write
behavior, often observed in database applications.

We modified Bonnie to use Cosy. In the first phase we modified the block write and rewrite sections. We skip
the first section where Bonnie writes to a file using put ¢ since it is a glibc function that uses buffered 1/0 and hence
not applicable to Cosy. In the second phase we modified the block read section. We did not modify the third phase
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as we have demonstrated a database simulation application in the previous benchmark, and ours is more intense than
Bonnie’s. Our database benchmark simulates the database read+write patterns more accurately, because the number
of write operations performed by Bonnie are less than that generally observed in database workloads [4]. Our database
benchmark also runs for 30 seconds doing six million read+write transactions. The third phase of Bonnie executes
just 4000 transactions, which takes less than one second.

For the first Bonnie phase we used two configurations, VAN and COSY _FAST, where we compare f ast r ead
and r ewr i t e performance. cosy _FAST is useful in the first phase as both f ast r ead and r ewr i t e exploit the
zero-copy techniques. When performing block data writes in the second phase it is not possible to save any data
copies. This is why we use VAN and cosy for the second phase. We ran the benchmarks for exponentially increasing
file sizes from 4-512MB.

Is Listing directory contents can be enhanced by the Cosy framework. Here we benchmarked our own Cosy | s
program and compared it to a standard | s program. We ran this program with the - | option in order to force | s to
make a st at system call for each file listed. We used all three configurations defined in Section 4.1: VAN, COSY,
and COSY _FAST.

The Cosy versions of the | s benchmark program creates a compound that performs get dent s and uses its
results to determine the entries to be st at ed. This compound is then sent to the kernel for execution. The COSY _FAST
benchmark uses a special cosy_st at system call, which is a zero-copy version of the generic st at system call
(automatically selected by Cosy-GCC). We performed this benchmark to show the effectiveness of new Cosy system
calls. We benchmarked | s with cold cache to test the performance of the special Cosy systems calls under a worst-
case scenario.

For each configuration we ran this benchmark for 5000 and 50000 files and recorded the elapsed, system, and
user times. We unmounted and remounted the file system between each test to ensure cold cache.

grep gr ep is another common user application that can benefit from Cosy. gr ep represents the class of applica-
tions that read a lot of data and work on that data without modifying it. In this regard, it is similar to checksumming
or volume rendering applications [31].

We used three configurations VAN, cosy, and COSY _FAST to analyze the performance of gr ep. The Cosy
versions of the gr ep benchmark create a compound that opens a specified file, reads each 4096 byte chunk, executes
a user-supplied function that searches the chunk for a particular string, and repeats this process until an end-of-file is
reached. This process is repeated for a specified number of files using a f or loop. The difference between the two
versions of these Cosy benchmarks is that cosy copies the chunk back to the user-space, while cosy _FAST works
on the kernel buffer avoiding the copy back to user space.

We ran this benchmark for an increasing number of 8K files; however, we plot the graphs against the total size
of data read. The total size of data varies from 128K to 2MB. We chose a file size of 8K as it is observed that most
accessed files are small [20].

4.4 General Purpose Benchmarks Results

Database Simulation Both versions of Cosy perform better than VAN. COSY _FAST shows a 64% improvement,
while cosy shows a 26% improvement in the elapsed time as seen in Figure 3. COSY _FAST is better than cosy by
38%. This additional benefit is the result of the zero-copy savings. The improvements achieved are stable even when
the working data set size exceeds system memory bounds, since the I/O is interspersed with function calls.

Figure 4 shows the absolute elapsed and system times for the database benchmark. We show absolute times to
understand the extent of saving achieved by the application. cOSY _FAST is 20 seconds faster than vAN and 12 seconds
faster than cosy. In the user time both versions of Cosy perform better than VAN, saving over 6 seconds. We do not
report the 1/0 (wait) time for this test, because the 1/0 is interspersed with CPU usage, and hence insignificant (less
than 1%).

We also tested the scalability of Cosy, when multiple processes are modifying a file concurrently. We repeated
the database test for 2 and 4 processes. We kept the total number of transactions performed by all processes together
fixed at six million. We compared these results with the results observed for a single process. We found the results
were indistinguishable and they showed the same performance benefits of 60-70%. This demonstrates that Cosy is
beneficial in a multiprocessor environment as well.

Bonnie We explain the results of Bonnie in three phases: fastread, rewrite, and fastwrite.
As shown in Figure 5(a), the Cosy version of f ast r ead showed a considerable performance improvement of
80%, until it is bound by the amount of available memory (in this case 128MB). Cosy provides savings in system time
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Figure 3: Elapsed and system time percentage improvements for the Cosy database benchmark (over VAN).
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by avoiding unnecessary data copies. When an application triggers heavy 1/0 activity, the savings achieved by Cosy
become less significant when compared to 1/0 time. Hence, we observed the drop in the performance improvement
at 128MB.
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Figure 5: Elapsed time percentage improvements for the Cosy Bonnie fastread, rewrite, and fastwrite benchmark (Compared to
VAN.

Ther ewr i t e phase using Cosy shows performance benefits of 30-90% over the VAN. COSY _FAST exploits the
zero-copy technique to bypass the data copy back to the user. The major improvement comes from savings in system
time. The drop in improvement occurs when the benchmark begins to fill up the memory as indicated by Figure 5(b).

Figure 5(c) indicates that the Cosy version of f ast wri t e is better than VAN by 45-90% for file sizes up to
64MB. When the benchmark begins to fill available system memory (128MB), the performance gains observed in
Cosy are overshadowed by the increasing 1/0 time and by Linux’s page flushing algorithm (suspend all process
activity and purge caches aggressively). f ast wri t e is an I/O-intensive benchmark. Currently, Cosy is not designed
to help with 1/0O; hence, as the 1/O activity increases, the Cosy performance benefits become less significant.

Is Figure 6 shows the system, user, and elapsed times taken by VAN, cosy, and cosy _FAST for listing of 5000 and
50000 files. cosy shows an 8% improvement over VAN. COSY _FAST performs 85% better than vAaN for both the
cases. The results indicate that Cosy performs well for small as well as large workloads, demonstrating its scalability.

System time savings for cosy are small when compared to COSY _FAST. COSY _FAST uses the zero-copy version
of st at and hence it is faster than the non-zero-copy version (cosy). We performed this benchmark with a cold
cache. The improvements in the COSY _FAST results indicate that Cosy is useful even when the data is not present in
memory, provided the amount of I/O involved is small.

grep Cosy versions of gr ep perform better than VAN. Figure 7 shows that cosy is 13% better than VAN and
COSY _FAST is 20% better than VAN.

The system time for the Cosy versions of gr ep is large compared to VAN. System time is primarily composed
of three components, (1) the time taken by in-memory data copies, (2) the time taken by the user-supplied function,
and (3) other system call and Cosy overhead. In the Cosy versions of gr ep, major chunks of code are executed in
the kernel, resulting in an increase in the system time taken by user functions. However, the user time for the Cosy
versions of gr ep is reduced by that same amount. The savings in data copies (a component of system time) and in
user time more than compensate for the increase in system time due to the user function. From this result we can
conclude that even if the system time increases, the overall performance can be improved as a result of savings in data
copies and user time.

5 Related Work

The related work section is divided into three parts: composing multiple operations into a single call, zero-copy
techniques, and security techniques for executing user code in kernel mode.
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5.1 Composition of Operations

The networking community has long known that better throughput can be achieved by exchanging more data at once
than repeatedly in smaller units. Analysis of NFSv2 traffic has shown that a large fraction of RPC calls use a READDIR
operation followed by many GETATTR operations [26, 32]. To improve its performance, the NFSv3 protocol includes
a new RPC procedure called READDIRPLUS [5]. This procedure combines READDIR and GETATTR from NFSv2: in
one operation, READDIRPLUS reads the contents of a directory and returns both the entries in that directory and the
attributes for each entry. The NFSv4 design took this idea a step further by creating simple Compound Operations
[24]. An NFSv4 client can combine any number of basic NFS operations into a single compound message and send
that entire message to an NFSv4 server for processing. The NFSv4 server processes each operation in the compound
in turn, returning results for each operation in one reply. Aggregation of NFSv4 operations can provide performance
benefits over slow network channels. In the context of system calls, the slow channels that prohibit the user application
from getting optimal performance are context switches and data copies. We apply the idea of aggregation to make the
slow channel more efficient, thereby improving the performance of applications.

Many Internet applications such as HTTP and FTP servers often perform a common task: read a file from disk
and send it over the network to a remote client. To achieve this in user level, a program must open the file, read
its data, and write it out on a socket. These actions require several context switches and data copies. To speed up
this common action, several vendors created a new system call that can send a file’s contents to an outgoing socket
in one operation. AlX and Linux use a system call called sendf i | e() and Microsoft’s 1S has a similar function
named Transm t Fi | e() . HTTP servers using such new system calls report performance improvements ranging
from 92% to 116% [12]. sendfi | e() and similar system calls require additional effort for each new system call.
Many systems also have a limit on the number of system calls that can be easily integrated into the kernel. Just as the
transition from NFSv3 to NFSv4 recognized that not every conceivable compound should require a new operation,
Cosy can create new compounds without the need for additional kernel modifications or many new system calls.
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5.2 Zero-Copy Techniques

Zero-copy is an old concept and many ideas have been explored by researchers in different contexts. The essence
of all of these attempts is to build a fast path between the user application, the kernel and the underlying device.
IBM’s adaptive fast path architecture [12] aims to improve the efficiency of network servers using a zero-copy path
by keeping the static contents in a RAM-based cache. Zero-copy had also been used on file data to enhance the
system performance by doing intelligent 1/0 buffer management (known as fast buffers) [15] and data transfer across
the protection domain boundaries. The fast buffer facility combines virtual page remapping with shared virtual
memory. Tux is a commercially available in-kernel Web server that utilizes zero-copy techniques for network and
disk operations [19]. Different zero-copy techniques are useful for different applications. We studied these zero-copy
techniques and adopted some of them. Cosy provides a generalized interface to utilize these zero-copy techniques.

5.3 Kernel Space Execution of Untrusted Code

Typed Assembly Language (TAL) is an approach toward safe execution of user programs in kernel mode [28]. TAL
is a safe kernel mode execution mechanism. The safety is verified through the type checker, thus relying on static
code checking to avoid runtime checking. Still, array bounds checking (similar to BCC [3]) is done at runtime adding
overhead. In our approach, we use hardware security mechanisms such as segmentation to protect against malicious
memory references [6]. This reduces runtime overhead.

Extensible operating systems like SPIN [2], ExoKernel [9, 11], and VINO [22] let an application apply certain
customizations to tailor the behavior of the operating system to the needs of the application. The goal of the research
in this area is to let applications extend the behavior of the system without compromising the integrity and safety of
the system.

The ExoKernel allows users to describe the on-disk data structures and the methods to implement them. ExoK-
ernels provide application specific handlers (ASHs) [30] that facilitate downloading code into the kernel to improve
performance of networking applications.

SPIN allows the downloading and running of type-safe Modula-3 code. Depending upon the application SPIN can
be extended by adding a new extension written in Modula-3. Extensions add special features to the existing operating
system in order to enhance the performance of the application.

VINO shares a similar goal as that of the ExoKernel or SPIN. VINO allows extensions written in C or C++ to be
downloaded into the kernel. VINO uses fault isolation via software to ensure the safety of the extensions [23]. It also
uses a safe compiler developed at Harvard to validate memory accesses in the extension. This compiler also assures
protection against self-modifying code. Cosy shares many commonalities with this work such as compiler-assisted
techniques to ensure the safety of the untrusted code. Cosy, however, uses hardware-assisted fault isolation.

The problem with these approaches is their specialization: using specialized operating systems that are not widely
used, or requiring languages that are not common. Conversely, Cosy is prototyped on a common operating system
(Linux) and it supports a subset of a widely used language (C).

Lucco uses the software fault isolation [29] to run applications written in any language securely in the kernel.
They use a binary rewriting technique to add explicit checks to verify the memory accesses and branch addresses.
We provide similar guarantees but instead of using software based memory validation, we use the x86 segmentation
feature to achieve the same goal. Software checks add overhead when working with extensions involving movement
across multiple segments.

Proof carrying code [14] is another technique that allows the execution of untrusted code without adding runtime
checks. While compiling the code, it is verified against a given policy. If the code satisfies that policy, then a proof is
attached. The proof is verified quickly during runtime. For very complex code, generating a safety proof may be an
undecidable task [14]; because of this, tedious hand-crafting of code may be necessary.

Packet filters also address the problem of porting user code to the kernel [10,21]. Mogul et. al. and the BSD
packet filter improve the performance of user-level network protocols by making use of a kernel resident, protocol
independent packet filter. The concept of a packet filter is inherently limited to network protocols. It is useful under
special circumstances; however, it is not meant to be sufficiently general to apply to all sorts of user applications. Our
approach provides a more generic API which is not present in the packet filter.

Java 2 Micro Edition is designed to function as an operating system for embedded devices. Devices such as
cellular phones, handhelds, and consumer electronics can download code and then safely execute it [27]. Java converts
source code into an intermediate form to be interpreted by a Java Virtual Machine within a sandbox. Both Java and
Cosy provide safety through runtime checking. Java, however, interprets its byte code and allows for a greater variety
of extensions; Cosy simply decodes instructions passed to it from user space.
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One closely-related work to ours is Riesen’s use of kernel extensions to decrease the latency of user level com-
munication [18]. The basic idea in both approaches is to move user code into the kernel and execute it in kernel
mode. Riesen’s proposal discusses various approaches that are adopted to address this problem. It compares various
methods to achieve improved performance and then proposes to use the approach of a kernel embedded interpreter to
safely introduce untrusted user-level code into the kernel. Riesen discusses the use of complier techniques to convert
a C program into intermediate low-level assembly code that can be directly executed by the interpreter residing inside
the kernel. Riesen’s work differs from ours in that we do not interpret code to be loaded into the kernel but rather
encode several calls into one structure. Unfortunately, Riesen’s work was neither officially published nor completed,
and hence results are not available for comparison.

6 Conclusions
Our work has the following three contributions:

e We provide a generic interface to several zero-copy techniques. Thus many applications can benefit from Cosy.

e Cosy supports a subset of a widely-used language, namely C, making Cosy easy to work with. Cosy allows
loops, arithmetic operations, and even function calls, thus allowing a wide range of code to be moved into the
kernel.

e \We have prototyped Cosy on Linux, which is a commonly-used operating system. Many widely-used user
applications exist for Linux. We show performance improvement in such commonly-used applications. This
improvement is achieved without compromising safety.

We have prototyped the Cosy system in Linux and evaluated it under a variety of workloads. Our micro-
benchmarks show that individual system calls are sped up by 40-90% for non-1/0 bound common user applications.
Moreover, we modified popular user applications that exhibit sequential or random access patterns (e.g., a database) to
use Cosy. For non-1/0 bound applications, with just very minimal code changes, we achieved a performance speedup
of up to 20-80% over that of unmodified versions of these applications

6.1 Future Work

The Cosy work is an important step toward the ultimate goal of being able to execute unmodified Unix/C programs
in kernel mode. The major hurdles in achieving this goal are safety concerns.

We plan to explore heuristic approaches to authenticate untrusted code. The behavior of untrusted code will
be observed for some specific period and once the untrusted code is considered safe, the security checks will be
dynamically turned off. This will allow us to address the current safety limitations involving self-modifying and
hand-crafted user-supplied functions.

Intel’s next generation processors are designed to support security technology that will have a protected space
in main memory for a secure execution mode [17]. We plan to explore such hardware features to achieve secure
execution of code in the kernel with minimal overhead.

To extend the performance gains achieved by Cosy, we are designing an 1/O-aware version of Cosy. We are
exploring various smart-disk technologies [25] and typical disk access patterns to make Cosy 1/O conscious.

6.2 Current Work

The main problem of extending the current Cosy framework lies in security. The applications of current framework
are limited due to the limitations in the intermediate language supported by Cosy. Adding support for more C code is
not the solution as it increases the overhead of interpreting the encoded segment. This is the main reason why SPIN,
VINO and Exokernel decided to change the underlying principles of the operating system. We do not consider that a
full fledged solution, unless these operating systems are in wide use.

We are planning to extend this framework to such an extent so that an entire application could be moved into the
kernel. There is no need for compiling the code using a special compiler. No need for using an in kernel interpreter.
The plain unmodified C code could be executed in the kernel. The main issue involved is security. Before presenting
the solution we consider the possible threats associated with an untrusted code.

If a code is given highest possible privilege, then it has access to all the kernel data structures. It can write/read
kernel memory and also memory belonging to all the other processes. The careful observation reveals that all the
threats based on the premise that we are allowed unrestricted memory accessed. The privilege level protection, page
level protection are examples of software based security. This security is pretty solid but it costs performance.
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We know what memory access is right and what is wrong. The only problem with the current software based
solutions is that they penalize even the right accesses. We need some mechanism to passively observe the system
behavior and if there is something wrong then interrupt in. Unfortunately in software it is very difficult to implement
this idea. But today’s intelligent hardwares could help in this regard.

We are exploring hardware features of Itanium. One feature provided by Itanium that can be applicable in this
scenario is PMU (Performance Management unit). PMU is designed by keeping hardware extensibility in mind.
It is possible to program a set of control register in the PMU and observe a specific event. Many different and
complex conditions could be programed and observed. For our purpose it is possible to use PMU. PMU registers
could be programmed to observe memory access belonging to a specified area. Whenever a process accesses memory
belonging to that region the count in register is incremented. This is exactly what we want. Whenever some access
to a specified area is observed by the hardware, trigger some event. But, the hardware event that gets triggered just
increments the counter. So what we can do using this is print a statement indicating someone is making malicious
accesses. This is promising but not acceptable. In future, if Itanium or any other hardware supports user controlled
interrupts for user controls events this could be achieved.

Virtual Address

Miss Page Not Page Fault
B = vHpr
Present Handler
Hit Hit

y
Physical Address

Figure 8: Virtual to Physical address conversion using TLB and VHPT

The next approach that we explore is handling TLB misses. Every memory reference has to go through TLB.
If it is a hit the translation is readily available to the requester and hence a HIT is entirely transparent to the OS. In
case of miss the TLB miss handler is invoked which is in software and hence is visible to the OS. Our approach is
as follows. Before executing the untrusted code we flush the TLB. So now on wards any memory reference has to
face a miss. This miss is handled by our modified TLB miss handler. So any reference that the untrusted code makes
goes through our checks and only valid checks are allowed. This is exactly what we want. So what is the difference
between putting static checks before the access and doing it in hardware. In hardware this is one time check and all
the valid accesses will be put in the TLB automatically so this checks will not be performed next time when the same
page is accessed. This is similar to a software based approach that could add intelligence and dynamically turn of
checks once the untrusted code builds sufficient trust.
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6.2.1 Approaches to add code in TLB miss handler

When TLB miss occurs handler in ivt.S is invoked. The first few lines in the handler execute using only Bank zero
(only 16-32 registers). This part of the program is called Bank Zero Handling. Our aim is to insert our checks in this
code.

Creating C callable environment :  In this approach we follow the same procedure that is adopted by TLB miss
handler in case of a page handler. TLB miss handler first tries to access VHPT (Virtual Hashed Page Table) to get
the translation immediately. VHPT is another level of cache that is used to reduce TLB miss penalty. In case the
translation succeeds the TLB miss handler exits. But in case of page fault page a fault handler is invoked. This page
fault handler is written in C and in the initial stages of the TLB miss handler there is absence of C function callable
environment. To create a C callable environment TLB handler uses 2 macros (in page_fault). And then invokes the
ia64_do_page_fault. We use similar technique and the similar macros to invoke our own C function. This allows us
flexibility to add any number of checks in our functions. And it is very easy from extensibility. The problem with this
approach is that every time there is a TLB miss these macros will be called adding to the overhead.

Inserting assembly instructionsin TLB handler :  We can avoid the macros by hand writing assembly code in
the TLB handler. But this is pretty complex approach. It should be noted that only register allowed are bank zero
registers. And all the other registers contain the state of the program. Hence the size of code that should be added
is limited. All functions in Ivt.S are aligned to some specific addresses. While adding code in one of the handler
care should be taken so that the alignment is not changed. These concerns make this approach extremely complex to
implement. The only advantage of this approach is it may reduce the overhead associated with the macros to create
the C callable environment. But it is not clear what will be the effective savings, as even this assembly code has to
access the process’ task structure and hence some part of the macros has to be replicated. And hence the total savings
that would be achieved using this approach is around 30 assembly instructions at the expense of less flexibility and
much more complexity.

6.3 Framework to Execute Unmodified User Function in Kernel

In this section we describe the framework to enable secure execution entire unmodified user function in the kernel
using Itanium’s TLB feature. This framework consists of two main components.

e Kernel Module: Executes the user supplied function in the kernel.
e User Lib: Wraps the system calls by its own call.

This framework does not involve any static checks to protect mainline kernel from the untrusted user function.
All the checks are performed at the time of TLB miss. And thus involves minimal overhead. Handling system calls
within the function deserves some attention. We explain it further.

6.3.1 System Call Invocation

As the user function is executing in the context of kernel there is no need to follow the normal user-level convention to
invoke a system call. It could invoke a system call using pointers directly. To facilitate this User Lib in the framework
wraps the system calls by its own stubs. While invoking user function Kernel Module passes a array of 6 function
pointers. Each function handles the invocation of system calls involving different number of parameters. Maximum
allowed parameters to system call is 6 hence there are 6 functions. A system call in the user function is replaced by a
call to one of these functions. And these functions call the system call.

The checks enforced by the framework prevent the user process to access any of the kernel memory. But it should
be noted that while executing system calls, they access and modify kernel data structure. In order to allow such
accesses the framework disables the checks just before making the system call and enables checks after the system
calls. Though there is a small amount of time when the checks are disabled it does not expose any threat to the kernel
as system calls are trusted kernel code.

In the following example we explain the flow of events that take place during invocation of a user function.

I n Kernel Module

enabl e_checks{};

cal |l _user_function{foo(invoke_sys call[])};
foo{invoke_sys call} {
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ptr = 0x12345;
*ptr = 10; // will cause a DTLB niss and hence will be
/'l validated

bar(); //Normal user function. WII invoke a | TLB ni ss
wi Il be validated.

open("/tmp/amt.txt", O RDONLY);
/1 This will be expanded as shown bel ow.

i nvoke_sys call[3](__NR open, "/tnp/amt.txt", O RDONLY);
}

i nvoke_sys_cal I [3] (sys_cal | _nunber, filenanme, flags)
{

di sabl e_checks();

make _sys_call __using_sys_call _table();

enabl e_checks();

}

6.3.2 Stack Size Problem

Kernel modules uses the kernel stack to invoke user functions. The size of the kernel stack is limited (32K). If the
function requires a large amount of stack, then there is a problem. Currently, we are exploring techniques to get
around this problem.
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