
Analysis and Management to Hash-Based
Graph and Rank

Yangtao Wang1, Yu Liu1, Yifei Liu1, Ke Zhou1(B), Yujuan Yang1,
Jiangfeng Zeng1, Xiaodong Xu1, and Zhili Xiao2

1 Huazhong University of Science and Technology, Wuhan, China
{ytwbruce,liu yu,yifeiliu,k.zhou,gracee,

jfzeng,xiaodong-xu}@hust.edu.cn
2 Tencent Inc., Shenzhen, China

tomxiao@tencent.com

Abstract. We study the problem of how to calculate the importance
score for each node in a graph where data are denoted as hash codes.
Previous work has shown how to acquire scores in a directed graph.
However, never has a scheme analyzed and managed the graph whose
nodes consist of hash codes. We extend the past methods and design the
undirected hash-based graph and rank algorithm. In addition, we present
addition and deletion strategies on our graph and rank.

Firstly, we give a mathematical proof and ensure that our algorithm
will converge for obtaining the ultimate scores. Secondly, we present our
hash based rank algorithm. Moreover, the results of given examples illus-
trate the rationality of our proposed algorithm. Finally, we demonstrate
how to manage our hash-based graph and rank so as to fast calculate
new scores in the updated graph after adding and deleting nodes.
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1 Introduction

Using graph structure [1,3] to construct data correlation and manage data is a
popular method for data experts to mine data and extract knowledge. Calculat-
ing the global importance rank for each data contained in a graph has always
been an important research topic in data analysis and information retrieval
domain [13,14]. Graph-based algorithms have achieved great success in this
aspect. Especially, as one of the most important graph-based algorithms, PageR-
ank [11] has been widely applied and extended. However, one of the difficulties is
to define the correlation between nodes on a graph. Several previous researches
have explored this issue. PageRank [11] considers out-degree of related nodes
as impact factor for data rank. [12] applies random walk to ranking community
images for searching. [7] introduces the concept of probability to improve the
RegEx in PageRank. However, above graph-based rank algorithms all focus on
in-degree and out-degree, neglecting the weight on edges, resulting that they are
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not competent for quantization with weighted graphs. TexRank [10] and Sen-
tenceRank [5] take the weights on edges into consideration, both of which apply
PageRank to improving their respective algorithms, but none of them provide
detailed proof of convergence.

Above researchers generally use feature vectors represented by floating point
numbers to measure the correlation between nodes while dealing with weighted
graphs. However, vast resource cost caused by feature vectors makes it not appli-
cable to utilize this method with the increase of scale of data. Especially for anal-
ysis of large-scale image data, the dimension and complexity of image features
lead to greater complexity. For example, [2,4] extracted image features through
content perception, built the graph using Euclidean or Cosine distance, and fur-
ther acquired recommended result using improved PageRank algorithm. However,
feature vectors will inevitably lead to huge storage overhead. At the same time,
the metrics just like Euclidean distance will also bring unacceptable time cost.
Moreover, along with massive data quantity expansion recent years, it becomes
more and more computationally complex to obtain the correlation between nodes
which denote high-dimensional floating point numbers. On the other side, hash
techniques are often used in storage and retrieval fields. For example, Hua et al.
[6] map data to hash code using Locality-Sensitive Hashing (LSH). Taking advan-
tage of hash in retrieval, they can fast perform some operations like query. Besides,
due to the easy “XOR” operation, it will be simple and convenient to measure the
correlation between two objects denoted as hash codes.

In this paper, we combine hash with graph structure to establish a semantic
information management theory paradigm, which can not only serve for big data
analysis but also enrich the operations for graph database. Assuming that we
have obtained corresponding hash codes, we can build a undirected weighted
hash-based graph by leveraging the Hamming distance [8,15] between nodes.
Our defined hash-based graph is a kind of graph of which the node value is
a hash value and edge value is the Hamming distance between nodes. Based
on this, we design a hash-based rank algorithm which can effectively compute
the importance of each node. We will give a complete mathematical proof and
analysis of our algorithm. In addition, in order to reduce computational overhead
as much as possible when graph changes, we also provide a series of graph data
management operations such as addition and deletion.

2 Convergence Analysis

Matrix A and B are both n × n square matrix and each column sum of them is
1. i and j are positive integers. Generally, we respectively denote A and B as

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

b11 b12 · · · b1n
b21 b22 · · · b2n
· · · · · · · · · · · ·
bn1 bn2 · · · bnn

⎤
⎥⎥⎦ (1)

where ∀ i ∈ [1, n] satisfies
n∑

j=1

aji = 1 and
n∑

j=1

bji = 1.
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2.1 Matrix Product Convergence

Given matrix C = AB, we denote C as

⎡
⎢⎢⎣

c11 c12 · · · c1n
c21 c22 · · · c2n
· · · · · · · · · · · ·
cn1 cn2 · · · cnn

⎤
⎥⎥⎦. We find that each

column sum of C also satisfies: ∀ i ∈ [1, n],

n∑
j=1

cji =
n∑

j=1

a1jbji +
n∑

j=1

a2jbji + · · · +
n∑

j=1

anjbji

= b1i

n∑
j=1

aj1 + b2i

n∑
j=1

aj2 + · · · + bni

n∑
j=1

ajn

= b1i + b2i + · · · + bni = 1

(2)

2.2 Vector Convergence

R is a column vector whose column sum is r. We denote R as R = [r1 r2 · · · rn]T ,

where
n∑

j=1

rj = r. Given R′ = AR = [r′
1 r′

2 · · · r′
n]T , we find that the column

sum of R′ satisfies:
n∑

j=1

r′
j =

n∑
j=1

a1jrj +
n∑

j=1

a2jrj + · · · +
n∑

j=1

anjrj

= r1

n∑
j=1

aj1 + r2

n∑
j=1

aj2 + · · · + rn

n∑
j=1

ajn

= r1 + r2 + · · · + rn = r

(3)

Also, for ∀ k ∈ Z+, we can conclude that each column sum of AkR is also 1.
Consequently, AkR will never diverge as k becomes larger if Ak converges.

3 Hash-Based Graph

Given a graph G consisting of n nodes, each node is denoted as a l-bits hash
code. N∗ denotes the ∗-th node of Graph G and H(N∗) denote the hash code of
N∗. We define XOR operation as ⊕ and threshold Ω ∈ [1, l] ∩ Z+. Different from
the work of the predecessors [9], we stipulate that two nodes are connected only
if the Hamming distance between them does not exceed threshold Ω. Therefore,
the Hamming distance weight on undirected edge between Ni and Nj is defined
as:

dij =

{
H(Ni) ⊕ H(Nj) i �= j,H(Ni) ⊕ H(Nj) ≤ Ω,

NULL otherwise.
(4)

As a result, our hash-based graph has been established.
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4 Hash-Based Rank

In this Section, we demonstrate our designed hash-based rank algorithm on our
weighted undirected hash-based graph. Our goal is to calculate the importance
score of each node. For ∀ i ∈ [1, n], Ti is defined as the set including orders of
all nodes connected with Ni, where Ti ⊂ [1, n].

As defined in Sect. 3, l denotes the length of hash code and dij denotes weight
of the edge between Ni and Nj . We denote R(N∗) as the importance score of
N∗. Referring to PageRank, we also intend to calculate the ultimate R(N∗) by
means of iteration. Draw impact factor I(Nij) for Nj to Ni which measures how
Nj contributes to Ni, where I(Nij) is defined as:

I(Nij) =

⎧
⎪⎪⎨
⎪⎪⎩

l − dij∑
t∈Tj

l − dtj
R(Nj) ∃dij ,

0 otherwise.

(5)

Theoretically, we design Eq. (5) according to two principals. Firstly, the less
dij is, the greater influence Nj contributes to Ni is. Meanwhile, the longer
hash code (l) is, the more compact the similarity presented by dij is. Secondly,
PageRank considers all (unweighted) edges as the same, but we extend it to be
applied to different weights on edges. Specially, when all weights on edges are
the same, our hash-based rank algorithm will turn into undirected PageRank.
Consequently, R(Ni) should be equal to the sum of the impact factors of all

nodes connected to Ni, where Ni is expressed as: R(Ni) =
n∑

j=1,j �=i

I(Nij).

Let fij represent the coefficient of R(Nj) in I(Nij), where

fij =

⎧
⎪⎪⎨
⎪⎪⎩

l − dij∑
t∈Tj

l − dtj
∃dij ,

0 otherwise.

(6)

We define coefficient matrix D as

⎡
⎢⎢⎣

0 f12 · · · f1n
f21 0 · · · f2n
· · · · · · · · · · · ·
fn1 fn2 · · · 0

⎤
⎥⎥⎦ and calculate each column

sum of D according to Eq. (6), we take the jth column as

f1j + f2j + · · · + fnj

=
l − d1j∑

t∈Tj

l − dtj
+

l − d2j∑
t∈Tj

l − dtj
+ · · · +

l − dnj∑
t∈Tj

l − dtj

=
∑
t∈Tj

l − dtj∑
t∈Tj

l − dtj
= 1

(7)
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Usually, the initial value is set as R0 = [R0(N1) R0(N2) · · · R0(Nn)]T = [1 1
· · · 1 ]T . We draw iteration formula as

Rk+1 = DRk (8)

where Rk=[Rk(N1) Rk(N2) · · · Rk(Nn) ]T , and k is the number of iteration
rounds. According to Eq. (3), vector Rk will converge when k becomes larger.

We define the termination condition as Rk+1(Nm) − Rk(Nm) ≤ ε, where
m ∈ [1, n]. Meanwhile, ε is set to a small constant (say 0.0001).

Thus, our designed hash-based rank algorithm converges. Then we will illus-
trate the result of the algorithm. As shown in Fig. 1, we use a graph G1 with 10
nodes to verify our algorithm. Each node is a 48-bits hash code. We set termina-
tion condition ε = 1.0E−8, threshold Ω = 24 (see Eq. (4)) and [R0(N1) R0(N2)
· · · R0(N10)]T = [1 1 · · · 1]T . The score and rank for each node are displayed in
Table 1.

Fig. 1. Example graph G1 with 10
nodes.

Table 1. Score and rank in graph G1.

Node Hash code Score Rank

N1 FFFFFFFFFFFF 1.14788732 1

N2 FFFFFF800000 1.05633802 6

N3 FFFFFFFE0000 1.09859154 2

N4 0000000000000 0.38028169 10

N5 C000007FFFFF 1.0774648 5

N6 0000001FFFFF 1.09154931 3

N7 FBFF7F8000E0 1.00704224 9

N8 FFFFFF7E0080 1.08450703 4

N9 C0003079FFFF 1.02112677 8

N10 0300001FFE7F 1.03521128 7

As shown in graph G1, each node is influenced by both of the edges and
weights. If a node owns more edges with lower weights, it will obtain higher
score and rank. For example, N1 owns the most connections, so it acquires the
highest score and rank. N3 has the same number of connections as N9, but the
weights on edges connected with N3 are lower than that of N9. Thus, N3 owns
a higher rank than N9. N4 obtains the lowest score and rank because of fewest
connections with high weights. The result in Table 1 is deemed reasonable.

5 Management to Hash-Based Graph and Rank

In this Section, we demonstrate how to manage our hash-based graph and rank
algorithm when adding or deleting nodes.
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Actually, if we intend to calculate the score and rank for each node in a
updated graph, we have to obtain the corresponding updated coefficient matrix
D. In Sect. 4, without isolated nodes, the graph consists of n nodes and the
coefficient matrix D has been calculated according to Eq. (6). In the next part
of this Section, we mainly introduce how to perform minimal change to coefficient
matrix D when adding and deleting a node in the graph.

Fig. 2. Example graph G2 by addition
operation.

Fig. 3. Example graph G3 by deletion
operation.

5.1 Addition

Generally, when a new node is added to graph G, this node will be marked as
Nn+1 by default if it is connected with one of the n nodes. (As shown in Fig. 2,
N∗ is added to graph G2 which contains 4 nodes. We directly mark N∗ as N5

because N∗ is connected with N1 and N4.) And Tn+1 (defined in Sect. 4) denotes
the set including orders of all nodes connected with Nn+1 where Tn+1 ⊆ [1, n].
Then we analyze how matrix D will change and calculate the scores and ranks
for n + 1 nodes.

Algorithm 1. Calculate Dn+1 and scores for n + 1 nodes when adding a node.

1: Calculate di(n+1) and set Tn+1 for ∀ i ∈ {1, 2, · · · , n}.
2: Judge whether Tn+1 is a empty set and calculate the following Dn+1.
3: Directly Calculate the ith column elements of Dn+1 based on Dn and update Ti

for ∀ i ∈ {1, 2, · · · , n} ∩ Tn+1.
4: Directly Calculate the ith column elements of Dn+1 based on Dn for ∀ i ∈

{1, 2, · · · , n}\Tn+1.
5: Calculate the (n+ 1)th column elements of Dn+1 according to Equation (6).
6: Calculate scores for n+ 1 nodes according to Equation (8) using Dn+1.

For convenience, we denote the n×n matrix D as Dn. When adding a node,
we need to calculate Dn+1 based on Dn. As shown in Algorithm 1, we describe
the steps that calculate matrix Dn+1 and scores for n + 1 nodes.

5.2 Deletion

Similarly, if we delete a node from graph G, how can we fast adjust the matrix
Dn and calculate score for each node in the new graph? For example, as shown
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in Fig. 3, N2 is deleted from G3 which contains 6 nodes. However, N1 will be
removed from G4 because N1 is only connected with N2. Also, those edges which
are connected with N2 will also disappear. Generally, for i ∈ {1, 2, · · · , n}, once
we delete Ni from graph G, those edges connected with Ni will be removed from
G. Of course, if Ni is deleted, those isolated nodes will be also removed.

Algorithm 2. Adjust Dn and calculate scores for remaining nodes when deleting
a node.
1: Calculate the set Ii which contains the orders of those nodes that are only connected

with Ni.
2: Judge whether (n − |Ii|) equals 1 and calculate the following Dn−|Ii|−1.
3: Directly adjust the tth column elements of Dn for t ∈ {1, 2, · · · , n} ∩ Ti\Ii.
4: Directly reserve the tth column elements of Dn for t ∈ {1, 2, · · · , n}\Ti.
5: Calculate the expected Dn−|Ii|−1 by deleting the tth rows as well as the tth column

elements of Dn.
6: Calculate scores for the remaining n − |Ii| − 1 nodes according to Equation (8)

using Dn−|Ii|−1.

As shown in Algorithm 2, we describe the steps that analyze how matrix Dn

will change and calculate scores for the remaining nodes after deleting Ni.
In this Section, we demonstrate how to manage our hash-based graph and

rank when faced with addition and deletion operations by giving fast calculation
method of the iteration matrix. Incidentally, the operation of modifying a node
is actually such a process that we first delete (Algorithm 2) a node and then add
(Algorithm 1) a node. We will not elaborate this process due to limited space.

6 Conclusion

This paper builds a hash-based graph using restricted Hamming distance and
proposes an undirected hash-based rank algorithm to calculate importance score
for each node. By analyzing the iterative matrix, we give a full mathematical
proof to verify that our algorithm will converge. Moreover, we illustrate the
rationality of our algorithm. At last, we demonstrate how to manage our hash-
based graph and rank by performing the minimal change strategy after adding
and deleting a node, which can dynamically and fast compute the score and rank
for each node in the updated graph.
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