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Abstract
Image dark data, whose content and value are not clear, consistently occupy the
storage space but hardly produce great value. Blindly applying data mining tech-
niques on these data is highly likely to bring disappointed result and waste large
resource. Therefore, it is of great significance to assess the dark data before data
mining to help the user cognize the data. However, there are several challenges in
dark data assessment work. First, the similarity between images must be objectively
measured under aunified standard to help the user understand the evaluation values
of dark data. Second, it is important to capture semantic features with generalization
ability. Third, it is challenging to design an efficient assessment scheme to support
large-scale datasets. To overcome these challenges, we propose an assessment
framework which includes offline calculation and online assessment. In offline
calculation, we first transform unlabeled images into hash codes by our developed
Deep Self-taught Hashing (DSTH) algorithm which can extract semantic features
with generalization ability, then construct a semantic graph using restricted Ham-
ming distance, and finally use our designed Semantic Hash Ranking (SHR) algo-
rithm to calculate the overall importance score (rank) for each node (image), which
takes both the number of connected links and the weight on edges into consider-
ation. During online assessment, we first translate the user’s query (semantic im-
ages) into hash codes using DSTH model, then match the data contained in the dark
data via a predefined Hamming distance query range, and finally return the weighted
average value of these matched data to help the user cognize the dark data. The
results on real-world dataset show our framework can apply to large-scale datasets,
help users evaluate the dark data by different requirements, and assist the user to
conduct subsequent data mining work.
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1 Introduction

Dark data is defined as the information assets that can be easily collected and stored, but
generally fail to use for data analytics and mining.1 Image dark data are ubiquitous and have
brought economic costs to enterprises. For example, many social platforms store image data
(i.e., albums and chat images) as an independent resource separated from other businesses.
These massive image data quickly turn into dark data, which contain lots of historical records
and thus are not allowed to be removed. However, they consistently occupy the storage space
but can not produce greater value. Therefore, developers are eager to mine image dark data in
order to improve the cost performance of storage [38]. However, owing that the image dark
data lack labels and associations, owners have no idea how to apply these data. For a given
target, blindly conducting data mining techniques on the dark data is highly likely to cause bad
results and waste of resources. For example, as shown in Figure 1, we almost waste all the
mining resource when searching images about dog head on the dark dataset. Faced with image
dark data whose content and value are not clear, the primary issue is to judge whether this
dataset are worth mining or not. Therefore, it is of great significance to evaluate the value of
image dark data and guide users to know about the potential value of these data.

Given this, which way shall be taken for the assessment and what result shall be fed back to
make the user aware of the dark data? Faced with the user’s query, there exist many challenges
when executing association analysis on dark data.

(1) Requirement semantic expression. The user’s requirement, as an idea, is usually
abstract and difficult to understand by computer, although it can be expressed in words.
Especially for image data, directly using image as input is simpler and more intuitive. For
example, if the user need pictures depicting dog, he can just input an image about dog.
Thus, it puts forward a higher request on extracting content semantic of images.

(2) Semantic information extraction. Reasonable semantic extraction method is the key to
correctly understand the user’s requirement and perceive contents of dark dataset. It
remains to be a great challenge to design suitable semantic labels to extract the semantic
information of unlabeled dark data, even though deep learning seems to be a feasible
scheme. Moreover, the label semantics of any model are limited, so it will inevitably
cause a huge semantic bias if directly using existing model trained on other dataset [32,
33]. This so called out-of-sample problem will bring woeful results in deep model.

(3) Semantic feature with generalization ability. Deep model suffers from a poor gener-
alization ability when extracting semantic information. Since almost semantic extraction
models are based on classification, the similar semantic images identified by labels own a
shorter distances between each other. Meanwhile, images with different semantics are
given longer distances between them. An excellent classification model will obtain
desired classification effects by averaging the distances between different classes as
much as possible. However, our goal is not to classify the data, but to get semantic
features with generalization ability when acquiring the cognition of a dataset. For
example, when training semantic model, we shall make that the semantic feature of a
cat similar to that of a dog but different from that of an airplane.

(4) Similarity and extent of relevance. If we intend to manifest relevant data, what kind of
value (threshold) can be used to defined as similarity between the dark data and the

1 https://www.gartner.com/it-glossary/dark-data/
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requirement? Measuring the vectors used to express semantic features seems not hard
(i.e., Euclidean distance and Cosine distance), but it becomes meaningless to directly
return these distances to the user. First, it is impractical to return a large number of
distances to the user for judgment on a million scale dataset. Second, even if all the
distances are counted, it also seems tricky to objectively give a convincing threshold.
Finally, the extent of relevance can hardly be expressed for any given threshold,
especially for the heterogeneous goals. For the assessment task, we need to give an
objective assessment value under a unified standard from an overall perspective which
contains both the number of relevant data and the extent of relevance [39].

(5) Evaluation standard. Setting an objective evaluation standard from an overall perspec-
tive is also a challenge. One of the most common means is clustering. However, whether
the method is based on the number of hypothetical centers [16] or density [20], it needs
many iterations and will take a long time to complete the clustering. This may cause an
unacceptable cost for potentially changeable dark datasets. Moreover, the clustering
results are represented by multiple centers, but one of the original purposes of our
assessment work is to get all the semantic relevant data which are similar to the given
query on the whole dataset instead of several centers. Also, quantization [31] uses the
concept of codebook to specify the evaluation standard in clustering, but codebook is
only suitable for encoding data and thus fails to give the overall assessment. In addition
to the clustering methods, graph-based computing [5] is another way to achieve global
evaluation. The most well-known one is PageRank algorithm [23], which determines the
importance of Web pages according to the links. However, PageRank can only express
directional attributes on a directed graph, so it fail to measure the mutual extent of
relevance between objects. Events detecting [2] can find the hot events though connec-
tions on an undirected graph, but the representative data are very limited. Once the query
data can not match any hot event, no assessment result will be returned, so it does not
apply to our assessment task.

(6) Online query cost. Even if the evaluation standard is given, we still need to find the
corresponding related data in the whole dataset to measure the feedback of the query.
Online computing millions of high-dimensional floating-point vectors means a huge
resource consumption. Besides, the assessment task will receive frequent query requests
for different requirements. Thus, the assessment work is supposed to be built on more
efficient distance measurement for practical feasibility.

Figure 1 Satisfying result can be achieved on the dog dataset if the task is to search images of dog head.
However, we got an awful feedback with only one expected image from the dark dataset for the same task and
consumed all the mining resource. This illustrates that directly investing the mining resource on a dark dataset
without judgment or assessment whether the dataset are worth mining may cause disappointed result and waste
resource
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In this paper, we propose an assessment framework for image dark data assessment by combining
deep learning, hash technique and graph-based computing. Note that there lacks assessment work
for dark data, and our designed framework is the first attempt to assess the value of image dark data
as well as quantify the assessment process for the given requirement of the user. The framework
consists of four parts. First, we use deep self-taught hashing (DSTH) algorithm to transform
unlabeled images into deep semantic hash codes. Note that in the model generating stage of DSTH,
we combine the clustering method which has the ability to perceive features. This makes those
images which look more similar own closer hash codes and thus our model has stronger general-
ization ability. Second, we built the semantic undirected graph using restricted Hamming distance.
Note that Hamming distance can not only speed up the construction of graph but also simplify the
measured distance on edge owing to the easy but fast “XOR” operation. Besides, according to what
DCH [3] describes, we cut off those unreasonable connections and improve the efficiency of
construction and subsequent calculation on graph. Third, on the built graph, we design semantic
hash ranking (SHR) algorithm to calculate the importance score for each node by randomwalk and
obtain the rank for each image. It is worth mentioning that we improve the PageRank algorithm and
extend it to undirected weighted graph, which takes both the number of connected links and the
weight on edges into consideration. For a given query, conventional methods may return all those
images within a certain range, while we give an intuitive score (rank) assessment feedback. At last,
according to the user’s input, we match the corresponding data contained in the dataset which are
restrictedwithin a givenHamming distance range, calculate theweighted semantic importance score
of these data, and return the rank of this input. The user can decide whether conducting data mining
on this dark dataset based on the returned rank of the input. Themajor contributions of this paper are
summarized as follows:

– We design a deep self-taught hashing (DSTH) algorithm, which can extract semantic
features without labels and solve the out-of-sample problem.

– Based on the built semantic graph, we propose a semantic hash ranking (SHR) algorithm
to calculate the overall importance score for each node (image) according to random walk,
which takes both the number of connected links and the weight on edges into
consideration.

– We propose a calculation-query-assessment framework consisting of offline calculation
and online assessment, which applies to assessing large-scale datasets.

– Our framework can help users to detect the potential value of the dark data and avoid
unnecessary mining cost and contributes to data application. To the best of our knowledge,
this is the first attempt that assesses image dark data.

2 Design overview

This section first formulates the problem and then presents our framework to address this
problem.

2.1 Problem formulation

Given an image dark dataset with a set of images, and a query image (or a query with multiple
images), we want to (1) find the matched images corresponding to the query; and (2) return a
ranking score which reflects the relevance of the query to the dataset.
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For case (1), we need to define whether two images are matched. To this end, we compute a
hash code for each data image, and two images are matched (or similar) if their Hamming
distance is not larger than a given threshold. Formally, assuming that hi and hj respectively
represent the hash codes of two images, we use HD(hi, hj) to denote the Hamming distance
between hi and hj, and hd to denote a given matching threshold. If HD(hi, hj) ≤ hd, the two
images are matched.

For case (2), we evaluate whether there are enough matched images to the query. To this
end, we rank the images based on their semantics, and denote the ranked scores as {S1, S2,…,
Sn}(∀k, Sk − 1 ≥ Sk). Then given a query image, we find all the matched images and calculate the
average weighted score of all these matched images, and denote this score as S(q). If Sk − 1 >
S(q) ≥ Sk, we then return the ratio T qð Þ ¼ 1− k

N as the score, which shows how much this query

is related to the dataset. Obviously, the larger the score is, the higher relevance of the query to
the dataset.

2.2 Framework overview

For a large-scale image dark dataset, in order to make our assessment framework effective for
real-time analysis, we need to perform offline analysis on the dataset to get the score list (rank
of each image). Then given an online application query, we evaluate whether the dataset can be
used for the query on-the-fly. As shown in Figure 2, the framework consists of four steps. The
first three steps give an offline evaluation on the dark dataset, which calculates the importance
scorefor each image. The last step provides a suggestion according to an online matching and
weighted computing which returns the sequence number based on the score list with computed
score of query.

Offline evaluation We design three steps to effectively calculate the semantic importance
score and provide each image with a rank. Formally, we first train a Deep Self-taught Hashing
(DSTH) model and transform all dark data into hash codes, then build a semantic undirected
graph with restricted Hamming distance, and finally calculate the overall importance score
(rank) for each image by our designed Semantic Hash Ranking (SHR) algorithm.

(1) Step 1: hash function learning and dark data mapping. As shown in the first frame of
Figure 3, we adopt the DSTH algorithm to encode each image of the dark dataset. The
DSTH algorithm contains two stages: hash label generating stage and hash function
training stage. First, it is important to acquire hash labels, because the premise of feature
extraction using deep learning is based on semantic labels. Owing that the entity classes
of the dark dataset are not clear, it is better to select the training dataset with as many
classes as possible and then transform original classification labels into hash labels. On
the one hand, we choose ImageNet and the same amount of sampled image dark data as
the training data. On the other hand, we choose GoogLeNet trained on ImageNet to

Figure 2 The framework for image dark data assessment
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extract semantic features of these data. Next, we use the features to construct a graph via
K-NN (K = 12), then map data to predefined l-dimensional space by means of Laplacian
eigenvalue decomposition, and finally binarize all data to generate hash label. We
conduct clustering on extracted semantic features, which not only preserves original
semantic classification information but also makes these semantics automatically closer
or estranged according the similarity between themselves. Those labels have the seman-
tics with generalization ability, which directly affects the next hash function learning.
Note that the hash function is specially trained on above sampled dark data. Our
generalized feature extraction method (DSTH) converts high-dimensional dark data into
low-dimensional hash vectors that can be easily but fast measured. The mathematical
expression of DSTH and the advantages are described in Section 3. At last, as shown in
the last frame of Figure 3, according to the obtained deep hash functions, we map each
image of the dark dataset into a hash code which represents the semantic feature of the
data.

(2) xStep 2: graph building with Hamming distance. As shown in the first frame of Figure 4,
we model the images as a graph G where each node is an image and edges are
relationships between images. In order to speed up the graph construction, we cut off
those edges on which the weight exceeds half of the length of hash code, according to the
conclusion of Long [3]. Let N∗ denote the ∗-th node of G, H(N∗) denote hash code of N∗
and l denote length of hash codes. We define XOR operation as ⊕. Therefore, the
Hamming distance weight on the undirected link between Ni and Nj can be defined as

dij ¼ H Nið Þ⨁H N j
� �

i≠ j;H Nið Þ⨁H N j
� �

≤Ω;
NULL otherwise:

�
ð1Þ

where Ω = ⌈l/s⌉ and s ∈ [1, l]. In practice, the determination of Ω is based on efficiency of
building a graph with tolerable loss. Formally, we define the precision of i-th node as Ci/Li,
where Li represents the number of all nodes connected to i-th node and there exist Ci nodes of
the Li nodes that have the same label as the i-th node. Therefore, the precision of graph P(G|Ω)
is defined as

P GjΩð Þ ¼ 1

N
∑
N

i¼1

Ci

Li
ð2Þ

Figure 3 The process of hash function learning and dark data mapping
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(3) Step 3: Semantic Hash Ranking.As shown in the middle frame of Figure 4, after building
the graph with restricted Hamming distance, we calculate the importance score for each
node by random walk in order to obtain the overall objective evaluation value. We extend
the PageRank algorithm and propose the SHR algorithm which takes both the number of
connected links and the weight on edges into consideration. Note that we specially design
how to reasonably calculate the extent of relevance between nodes, aiming at making full
use of the Hamming distance of similarity hash. On the built semantic graph, we use
SHR to calculate the importance score for each node. At the same time, according to the
physical meaning of Hamming distance, we redesign the iteration matrix elements for
obtaining reasonable importance scores. SHR can make full use of the shortened
Hamming distance between hash codes with generalization ability, which makes the
dominant semantics more prominent, thus reinforcing the user’s cognition of the dark
dataset and acquiring the score list shown in the last frame of Figure 4. We introduce the
detailed calculation process of SHR in Section 4.

Online query assessment As shown in Figure 5, for the image dark data consisting of N
images, the query will be mapped to hash codes by hash function calculated in Section 3 and
associated with images contained in the dark data. The matching range is defined as hd and we
set hd = 1 to conduct matching. Mathematically, we let q denote a query with n images, imgi
denote the i-th image where i ∈ [1, n], mi denote the number of matched images for the i-th
image of the query q. Meanwhile, we let Sj(imgi) denote the score of the j-th image where
j ∈ [1,mi]. Therefore, the score of q is defined as follows:

S qð Þ ¼ ∑
n

i¼1

1

mi
∑
j¼1

mi

βiS j imgið Þ

s:t: ∑
n

i¼1
βi ¼ 1

ð3Þ

where βi ∈ [0, 1] represents the importance weight of the i-th image. Note that the value of βi is
determined by the user. If the user cares more about the i-th image, he can set a relatively larger
βi (as shown in Figure 13).

Figure 4 The process of graph building and semantic hash ranking
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Compared with the ranked scores denoted as {S1, S2,…, SN} of image dark data calculated
by SHR, we can acquire the sequence number of S(q) denoted as k in the score list, where Sk −

1 > S(q) ≥ Sk. Further, T qð Þ ¼ 1− k
N represents importance degree of image dark data for the

query. As results, we will give a suggestion according to T(q) and the user can decide whether
the image dark data are worth mining for the query (application).

3 Deep self-taught hashing (DSTH)

In this section, we detailedly describe DSTH algorithm including how to integrate clustering
information into semantic learning under deep learning framework, how to generate hash label,
and how to conduct the training process. And then, we elaborate on the advantages of DSTH.

3.1 DSTH algorithm

The algorithm mainly contains hash label generating stage and hash function training stage.

(1) Hash label generating stage. The prime task of DSTH is to acquire semantic labels,
because labels determine which semantic informations should be extracted from data and
directly affect the subsequent function learning. Semantic labels acquiring aims at
extracting semantic information and semantic feature with generalization ability
(mentioned in Section 1). Supervised deep learning algorithm is able to better extract
semantic information owing to the accurate hand-crafted labels denoted as red line in
Figure 6. Unsupervised shallow learning algorithm extracts semantics according to the
similarity between data themselves, which applies to those scenes without hand-crafted
labels denoted as blue line in Figure 6. Our method combines these two advantages,
which can not only obtain semantic information without labels but also reach the balance
between human semantic cognition and data semantic cognition, so as to acquire our
expected semantic features (labels).

We apply the deep and shallow mixed learning method, which integrates clustering
information and improves the generalization ability of feature extraction. In the absence of
labels, we use the trained deep model to get features. After that, we use Laplacian Eigenvalue
and binarization to transform the extracted deep features to hash codes which serve as hash
labels for next stage. Mathematically, we use n m-dimensional vectors xif gni¼1∈ℝ

m to denote

the image features and use ED i; jð Þ ¼ xi−x j
�� ��2

2
to denote the Euclidean distance between i-th

and j-th image. For θt (t ∈ [1, n − 1]), we denote {ED(i, θ1), ED(i, θ2),…, ED(i, θn −

Figure 5 The process of assessment
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1)} = {ED(i, 1), ED(i, 2),…, ED(i, i − 1), ED(i, i + 1),…, ED(i, n)}, where ED(i, θt) ≤ ED(i, θt +
1). We define that TKED(i, j) = t, if ED(i, j) = ED(i, θt). Further, we use NK(i, j) to denote
neighbor relationship between i-th and j-th data, which is defined as

NK i; jð Þ ¼ True TKED i; jð Þ≤K;
False TKED i; jð Þ > K:

�
ð4Þ

Next, we use xi and yi to represent the i-th sample and its hash codes where yi ∈ {0, 1}γ and γ
denotes the length of hash codes. We set yρi ∈ 0; 1f g as the ρ-th element of yi. The hash codeset
for n samples can be represented as [y1,…, yn]T. Our n × n local similarity matrix W is

Wij ¼
0 if NK i; jð Þ is False;

xTi x j
∥xi∥ � ∥x j∥ otherwise:

8<: ð5Þ

Furthermore, we use Wij to obtain the diagonal matrix

Dii ¼ ∑
n

j¼1
Wij ð6Þ

Meanwhile, we use the number of different bits for calculating Hamming distance between yi
and yj as

Hij ¼ ∥yi−y j∥
2=4 ð7Þ

We define an object function ζ to minimize the weighted average Hamming distance.

ζ ¼ ∑
n

i¼1
∑
n

j¼1
WijHij ð8Þ

To calculate ζ, we transform it to ξ = tr(YTLY)/4, where L =D −W is Laplacian matrix and tr(·)
means trace of matrix. At last, we transform ξ to LapEig problem ψ with slacking constraint
yi ∈ {0, 1}t, and obtain the optimal t-dimensional real-valued vectorey to represent each sample.
ψ is the following:

ψ ¼ arg mineY Tr eYT
LeY� �

s:t:
eYT

DeY ¼ IeYT
D1 ¼ 0

(
ð9Þ

Figure 6 Red line represents the deep semantic classification result based on classification labels, while blue line
represents the semantic result by unsupervised shallow method. The deep method can distinguish different
classes, but fails to capturethe semantics by structure information of pixels and lose generalization ability,
because strictly limited by classification labels. Conversely, the shallow method can just classify images by pixels
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where Tr eYT
LeY� 	

gives the real relaxation of the weighted average Hamming distance

Tr(TTLY). The solution of this optimization problem is given by eY ¼ v1;…; vt½ � whose
columns are the t eigenvectors corresponding to the smallest eigenvalues of following
generalized eigenvalue problem. The solution of ψ can be transformed to

Lv ¼ λDv ð10Þ

where vector v is the t eigenvectors which are corresponding to the t smallest eigenvalues
(nonzero).

Then, we convert the t-dimensional real-valued vectors ey1;…;eyn into binary codes accord-
ing to the threshold. We set δp to present threshold and eypi equivalent to p-th element of eyi. The
hash label as final result value of ypi is

ypi ¼ 1 eypi ≥δp;
0 otherwise:

(
ð11Þ

where

δp ¼ 1

n
∑
n

i¼1
eypi ð12Þ

Note that we refer to STH [40] to calculate δp. If we directly use sign function to generate the
hash value, most images will obtain indistinguishable hash codes with a high possibility.

(2) Hash model training stage. We implement an end-to-end hashing deep learning module.
Firstly, we employ CNNs again to receive fine-grained features. After that, we adopt
encoding module which is Divide and Encode Module [12] associated with activation
function of BatchNorm [9] to approximate hash labels generated in previous stage. The
learning framework is the artificial neural network on the multi-output condition. For-
mally, we set a function f :ℝI→ℝO, where I is the input set, O is the output set and x is
the input vector. The formulation is

f 1ð Þ xð Þ ¼ b 2ð Þ þW 2ð Þh b 1ð Þ þW 1ð Þx
� 	

f 2ð Þ xð Þ ¼ b 4ð Þ þW 4ð Þh b 3ð Þ þW 3ð Þ f 1ð Þ xð Þ
� 	

…
f nð Þ xð Þ ¼ b 2�nð Þ þW 2�nð Þh b 2�n−1ð Þ þW 2�n−1ð Þ f n−1ð Þ xð Þ

� 	 ð13Þ

where b is bias vector, W is weight matrix of convolution and h(∗) is ReLU and BatchNorm
function. When the core of h(x) is BatchNorm, the function is calculated as follows:

ex kð Þ
¼ x kð Þ−E x kð Þ� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var x kð Þð Þ
p ð14Þ
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where

E xð Þ ¼ 1

m
∑
m

i¼1
xi ð15Þ

Var xð Þ ¼ 1

m
∑
m

i¼1
xi−E xð Þð Þ2 ð16Þ

In the last layer of CNN, we split a 1024-dimensional vector into 16 groups, and each group is
mapped to q elements. The output number 16 × q is the hash code length. Denote the output as
one m × dmatrix (m is the number of samples in batch and d is the number of output in last full
connection layer), x is the output vector, y is the corresponding label. We define the loss
function as follows:

F xð Þ ¼ min ∑
m

i¼1
∑
d

j¼1
x jð Þ
i −y jð Þ

i

��� ���2
2

ð17Þ

At last, we define the threshold function as the same as Eqs. (11) and (12). Usually, we apply
the threshold values of each bit calculated in the hash label generating stage.

3.2 Advantages for dark data

The advantages of DSTH for dark data are summarized as follows. (1) Adaptability.
For the image dark dataset without labels, DSTH can complete the feature extraction
of the dataset in deep framework. (2) Features with generalization ability. We add the
clustering process to the label acquisition in deep learning in order that the extracted
features own generalization ability. It must be emphasized that the algorithm does not
directly use the results of feature extraction for hash mapping as labels, because
traditional deep models will average all the classification distances when
implementing classification problems. However, we hope to get semantic results with
generalization ability, which is shown in Figure 7. Therefore, through our means
mentioned above, the changed semantic distance will be reflected in hash label, which
directly affects the next hash function learning and makes the model consider both the
artificial semantic classification and the distances between the data themselves. (3)
Efficiency. DSTH can fast map images into features and hash codes. Using “XOR”
operation to measure Hamming distance between images is easy but fast, which is
suitable for large-scale scenes.

4 Semantic hash ranking (SHR)

In this section, we introduce SHR algorithm in detail, which considers both the
number of connected links and the weight on edges into consideration, reasonably
designs impact factor between different nodes according to similarity hash code, and
calculate the importance score for each node by random walk. We also give a concise
description of its convergence, its dynamic computational way and its advantages.
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4.1 SHR algorithm

Let L∗ denote number of links to N∗. Draw rank factor R(N∗) for N∗ and impact factor I(Nij) for
Nj to Ni, where I(Nij) is defined as

I N ij
� � ¼ l−dij

∑
t∈T j

l−dtj
R N j
� �

∃dij;

0 otherwise:

8><>: ð18Þ

where Tj is the set including orders of all nodes associated with Nj. Specially, we design the
formulation according to two principals. Firstly, the less dij is, the greater influence Nj

contributes to Ni is. Meanwhile, the longer hash code is, the more compact the similarity
presented by dij is. Secondly, PageRank considers the weights on each edge as the same, but
we extend it to be applied to different weights on edges. As a result, when weights on different
edges are the same, Eq. (18) should be the same as the impact factor formulation of PageRank.
Consequently, R(Ni) should be equal to the sum of the impact factors of all nodes linked to Ni

R Nið Þ ¼ ∑n
j¼1; j≠iI N ij

� � ð19Þ

Let fij represent the coefficient of R(Nj) in I(Nij). We draw iteration formula as

Rcþ1 N1ð Þ
Rcþ1 N2ð Þ

⋯
Rcþ1 Nnð Þ

2664
3775 ¼

0 f 12 ⋯ f 1n
f 21 0 ⋯ f 2n
⋯ ⋯ ⋯ ⋯
f n1 f n2 ⋯ 0

2664
3775

Rc N1ð Þ
Rc N2ð Þ
⋯

Rc Nnð Þ

2664
3775 ð20Þ

where c is the number of iteration rounds. We define the termination condition as

Rcþ1 Nmð Þ−Rc Nmð Þ≤ε ð21Þ
where m ∈ [1, n] and ∀Nm should satisfy Eq. (21). Meanwhile, ε (1.0E-15, 1.0E-11, 1.0E-7 in
our experiment) is constant. Let SHR(N∗) denote semantic rank of N∗. The last results are

(a) (b)

Figure 7 We respectively use the square, circle, triangle and pentagon to denote dog, cat, alpaca and airplane.
The classification effects using deep learning without and with generalization ability are respectively reflected in
part A and B. The bluedot represents a given center (image) and the shadow part represents the scope associated
with the center. A can better solve the classification problem, while B is able to generalize and expose the
semantic structure of the whole dataset. For those images which look similar even though they belong to different
classes, generalized feature extraction method (DSTH) is able to associate them with each other, but A fails to
accomplish this task. In addition, from an overall perspective, SHR can make full use of this kind of generalized
semantic information and produce expected importance score for each image in the whole dataset
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SHR Nmð Þ ¼ Rη Nmð Þ ð22Þ
where η (65, 141 in our experiment) is the round on termination.

4.2 Convergence of SHR

In order to ensure our algorithm can converge to a stable result, we prove the convergence of
Eq. (20), let An represent iteration coefficient matrix. The An is

An ¼
0 f 12 ⋯ f 1n
f 21 0 ⋯ f 2n
⋯ ⋯ ⋯ ⋯
f n1 f n2 ⋯ 0

2664
3775 ð23Þ

Computing the sum of each column of An according to Eq. (18), we take the jth column as

f 1 j þ f 2 j þ⋯þ f nj

¼ l−d1 j
∑
t∈T j

l−dtj
þ l−d2 j

∑
t∈T j

l−dtj
þ⋯þ l−dnj

∑
t∈T j

l−dtj

¼ ∑
∈T j

l−dtj
∑
t∈T j

l−dtj

¼ 1 ð24Þ

Therefore, Eq. (20) is convergent and satisfies

∑n
m¼1SHR Nmð Þ ¼ ∑n

m¼1R
α Nmð Þ ð25Þ

where α ∈ [0, η].

4.3 Dynamic calculation

To cope with the variability of the dark data set whose images (nodes) may be added or
deleted, we design a dynamic method to fast calculate scores for the changed data set.

Addition. Generally, when a new node is added to graph G, this node will be marked as
Nn + 1 by default if it is connected with one of the n nodes. (As shown in Figure 8a, N∗ is added
to graph Gaddition which contains 4 nodes. We directly mark N∗ as N5 because N∗ is connected
with N1 and N4.) And Tn + 1 denotes the set including orders of all nodes connected with Nn + 1

where Tn + 1 ⊆ [1, n]. Then we analyze how matrix An will change and calculate the scores and
ranks for n + 1 nodes.

(1) For a given new node which is marked as Nn + 1, we traverse all the n nodes and calculate
di(n + 1) according to Eq. (1) for i ∈ [1, n]. Thus, we obtain the set Tn + 1 that contains orders
of all nodes connected with Nn + 1.

(2) If Tn + 1 = ∅, Nn + 1 is a isolated node and we terminate the following process. Otherwise,
we calculate matrix An + 1.

(3) For ∀ i ∈ {1, 2,⋯, n}∩ Tn + 1, we calculate the ith column elements of An + 1. For ∀

j ∈ {1, 2,⋯, n}, the jth element of the ith column of matrix An is f ji ¼
l−dji
∑
t∈Ti

l−djt
∃dji;

0 otherwise:

8><>:
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while the jth element of the ith column of matrix An + 1 should be

l−dji

∑
t∈Ti

l−dti
� �

þ l−d nþ1ð Þi
∃dji;

0 otherwise:

8>><>>: In other words, we get

l−dji

∑
t∈Ti

l−dti
� �

þl−d nþ1ð Þi

l−dji

∑
t∈Ti

l−djt
¼

∑
t∈Ti

l−dti

∑
t∈Ti

l−dti
� �

þl−d nþ1ð Þi

. There-

fore, the jth element of the ith column of An will change into the jth element of the ith

column of An + 1 if multiplied by
∑
t∈Ti

l−dti

∑
t∈Ti

l−dti
� �

þl−d nþ1ð Þi

. Next, the (n + 1)th element of the ith

column is l−d nþ1ð Þi

∑
t∈Ti

l−dti
� �

þl−d nþ1ð Þi

. At last, we update Ti by setting Ti = Ti ∪ {n + 1}. Consequent-

ly, we can directly obtain the ith column elements of An + 1 based on An for i ∈ {1, 2,⋯,
n}∩ Tn + 1.

(4) For ∀ i ∈ {1, 2,⋯, n}\Tn + 1, we calculate the ith column elements of An + 1. Ni has no
connection with Nn + 1, so the jth element of the ith column of An directly becomes the jth
element of the ith column of An + 1 for ∀ j ∈ {1, 2,⋯, n}. And the (n + 1)th element of
An + 1 is 0. Consequently, we can directly obtain the ith column elements of An + 1 based on
An for i ∈ {1, 2,⋯, n}\Tn + 1.

(5) We calculate the (n + 1)th column elements of An + 1. For ∀ j ∈ {1, 2,⋯, n + 1}, the jth
element of the (n + 1)th column of An + 1 is

l−d j nþ1ð Þ
∑

t∈Tnþ1

l−dt nþ1ð Þ
∃d j nþ1ð Þ;

0 otherwise:

8><>:

(6) For above Dn + 1, we use Eq. (20) to calculate scores for n + 1 nodes.

Deletion. Similarly, if we delete a node from graph G, how can fast adjust the matrix An and
calculate score for each node in the new graph? For example, as shown in Figure 8b, N2 is
deleted from Gdeletion which contains 6 nodes. However, N1 will be removed from Gdeletion

because N1 is only connected with N2. Also, those edges which are connected with N2 will also
disappear. Generally, for i ∈ {1, 2,⋯, n}, once we delete Ni from graph G, those edges
connected with Ni will be removed from G. Of course, if Ni is deleted, those isolated nodes
will be also removed.

We describe the steps that analyze how matrix An will change and calculate scores for the
remaining nodes after deleting Ni.

Figure 8 Addition and deletion on graph
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(1) We count those nodes which are only connected with Ni. For ∀ k ∈ Ti, if fik
equals 1, Nk will be a isolated node if deleting Ni. We mark the order of all
Nk as the set Ii, where Ii ⊆ Ti and ∣Ii∣ denotes the number of elements in Ii.

(2) If (n-∣Ii∣) equals 1, the remaining nodes of graph G will all be isolated nodes after
removing Ni and we terminate the following process. Otherwise, we continue to adjust An

and obtain our expected An−jI ij−1.
(3) For ∀ t ∈ {1, 2,⋯, n}∩ Ti\Ii, we adjust the tth column elements of An. For ∀ j ∈ {1, 2,⋯,

n}, the jth element of the tth column of matrix An is f jt ¼
l−djt
∑
x∈Tt

l−dxt
∃dtj;

0 otherwise:

8><>: However, after

we delete Ni, the jth element of the tth column of matrix An should be

l−djt

∑
x∈Tt

l−dxt
� �

− l−ditð Þ
∃djt;

0 otherwise:

8>><>>: In other words, we get

l−djt

∑
x∈Tt

l−dxt
� �

− l−ditð Þ
l−djt

∑
x∈Tt

l−dxt
¼

∑
x∈Tt

l−dxt

∑
x∈Tt

l−dxt
� �

− l−ditð Þ
. Therefore,

we adjust the jth element of the ith column of An via multiplying it by
∑
x∈Tt

l−dxt

∑
x∈Tt

l−dxt
� �

− l−ditð Þ
. Then

we update Ti by setting Ti = Ti\{i}. Consequently, we directly change the tth column
elements of An for t ∈ {1, 2,⋯, n}∩ Ti\Ii.

(4) For ∀ t ∈ {1, 2,⋯, n}\Ti, we adjust the tth column elements of An. Ni has no connection
with Nt, so we do not change the tth column elements of An. Consequently, we reserve the
tth column elements of An.

(5) Now, we start to calculate the expected An−jI ij−1. We have adjusted the tth column
elements of An for t ∈ 1, 2, ⋯, n∩ Ti\Ii. Besides, we have reserved the tth column
elements for t ∈ {1, 2,⋯, n}\Ti. Now, we directly delete the tth row as well as the tth
column elements of An. After removing above (| Ii| +1) rows and columns, we obtain our
expected An−jI ij−1.

(6) For above An−jI ij−1, we use Eq. (20) to calculate scores for the remaining n − ∣ Ii ∣ − 1
nodes.

In this way, we avoid huge computational overhead by updating only few elements of An

instead of recalculating the whole updated matrix.

4.4 Advantage for assessment

Our SHR is designed with the following advantages. (1) Overall importance. For each
node, SHR takes not only its number of connected links but also the weight on edges
into consideration from an overall perspective. (2) Rationality. After hash codes with
generalization ability are generated by DSTH, SHR specially designs the association
relationship between nodes and exposes how a node is affected by another, which can
effectively make full use of these Hamming distances and reasonably calculate
importance score for each node shown in the shadow part of Figure 7. (3) Conver-
gence. SHR can converge to a stable result owing to our well-designed iteration
matrix, which ensures our algorithm can work effectively. (4) SHR can deal with
dynamic image dataset by reducing huge computational overhead.
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5 Evaluation

In this section, we evaluate our framework and conduct extensive experiments as follows:

(1) Using the feature extraction method with generalization ability, DSTH can solve the out-
of-sample problem (see Section 5.1).

(2) The efficiency of graph building using hash codes generated by DSTH can be greatly
improved with allowed accuracy loss (see Section 5.2).

(3) SHR can calculate the importance score for each node effectively and efficiently on
large-scale datasets (see Section 5.3).

(4) SHR can help highlight and prepose those data whose semantic information account for
higher proportion in original dataset (see Section 5.4).

(5) Our framework can deal with large-scale datasets and return a concise score (assessment
result) based on the user’s query, which assists the user to make a correct decision on
subsequent operations with this dataset (see Section 5.5).

We implement the first four experiments on the public CIFAR-10 dataset, and respectively
adopt self-defined and large-scale Tencent datasets to conduct the last two experiments. Our
evaluation is executed using Python tools including TensorFlow and Scikit-Learn library. Our
experiments are run on two 10-core Intel Xeon E5-2640 machines with 128GB of DDR4
memory. At last, we conduct the experiment on Tencent dataset using 12 machines.

5.1 Generalization ability

In this section, we verify the effectiveness of DSTH mapping hash by executing code length
analysis (CLA) and precision-recall (PR) on CIFAR-10. On the one hand, we compare with the
state-of-the-art methods on original datasets to show the superiority of the algorithm. On the
other hand, compared with those best methods on reorganized CIFAR-10 dataset, our DSTH
also shows a stronger generalization ability, which solves the out-of-sample problem.

In practice, we execute code length analysis (CLA) and precision-recall (PR) on CIFAR-10,
compared with the state-of-the-art of single target unsupervised deep hashing algorithms and
zero-shot hashing algorithms including DeepBit [15], ZSH [35], SADH [28], ARE [8], UDH
[43] and DistillHash [36]. CIFAR-10 is a labeled data set, which consists of 60,000 32×32
color images in 10 classes, with 6000 images per class. There are 5000 training images and
1000 test images in each class. Particularly, we select the average value of the top 15% nodes
in terms of precision in each class as the precision of CLA. In the experiment, we select
GoogLeNet and classification model trained on ImageNet to extract deep features. Meanwhile,
the CNN structure for generating hash model is similar to [18, 44].

Figure 9a shows the mAP@15% [30] CLA with hd ≤ 2 and 48-bit codes PR performance
on CIFAR-10 compared with others. As Figure 9a shows, DSTH yields a prominent domi-
nance and 48-bit codes is the best at precision of 55.04%. The performance is higher than that
of UDH by 1.12%. As Figure 9b shows, DSTH yields a significant dominance in term of
precision with 48-bit codes. The results show our superiority.

Furthermore, to validate the advantage in solving the out-of-samples problem mentioned in
Section 6, we adjust the distribution of CIFAR-10 by taking the image of cat or automobile off
from the training set. Besides, we stipulatethat it is correct to classify a cat as a dog and an
automobile as a truck. Figure 9c, d show the mAP@15% CLA and 48-bit codes PR
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performance without training set of cat. Figure 9e, f shows the mAP@15% CLA and 48-bit
codes PR performance without training set of cat and automobile. As shown in Figure 9c, d,
e, f, our results of mAP@15% CLA and PR also yield a significant dominance. As the same as
the code length of previous, 48-bit is best for redefined CIFAR-10 data sets at precision of
31.07% and 26.86% respectively. Specially, as shown in Figure 9c, e, although the gap is
reduced, performances of DSTH with 48-bit codes are higher than that of ZSH and UDH by
0.95% and 0.66% respectively in precision, illustrating the superiority of ours for solving the
problem of out-of-samples.

Figure 9 mAP@15% Code Length Analysis (CLA) and Precision-Recall (PR) curve on CIFAR-10
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5.2 Graph building efficiency

In this section, for verifying that building a graph by Hamming distance is more efficient than
Cosine and Euclidean distance, we exhibit the time of graph building using 3 metrics with 48-
bit vectors (48-bit hash codes and 48 float numbers). In order to ensure the fairness, we setΩ =
48, making all nodes fully connected. As shown in Figure 10a, the horizontal coordinate
represents the number of nodes while the ordinate represents the graph building time. With the
same scale of nodes, the graph building time of Hamming distance is nearly 100 times less
than that of Cosine and Euclidean, which shows that Hamming distance has overwhelming
predominance over other 2 metrics in building a graph. Especially, with the scale of nodes
increasing, the graph building time of Cosine and Euclidean grows exponentially which is
unacceptable, making that Hamming distance becomes the better choice.

In order to compare precision of graph in 3 metrics, we choose more accurate links from top
1% to top 50% according to the weight of edges with 200,000 nodes. For example, we choose
those edges on which the Hamming distance is smaller, while selecting the edges whose
Cosine and Euclidean distance is larger. As shown in Figure 10b, Hamming distance is 0.070
lower than Euclidean at top 1% links in the worst case and 0.009 lower than Cosine at top 30%
links in the best case in term of precision of graph. Averagely, Hamming distance is 0.040
lower than other 2 metrics in 7 cases.

On the whole, there is not a marked difference of precision between 3 metrics, although
hashing will bring certain loss to precision. However, Hamming distance has overwhelming
predominance in building a graph in term of time cost. We use hashing and Hamming distance
in the follow-up work with comprehensive consideration of tradeoff between efficiency and
precision, since an acceptable margin of error is allowed.

5.3 SHR calculation

In this section, we verify that SHR can obtain reasonable importance score for each node on
single and double connected domains respectively. Besides, we present the acceptable actual
calculation cost of SHR under different number of nodes and iterations, indicating that SHR is
able to adapt to large-scale scenes. In practice, we conduct experiments with 48-bit hash codes.

We prove feasibility using graph G1 shown in Figure 11a. The results calculated by SHR
are shown in Table 1 with η = 65, when we set ε= 1.0E-10 and R0(Nm) = 1 where m ∈ [1, 9]. As
shown in Figure 11a, N1 has the most connections, while N3 owns more edges where the
Hamming distance is smaller relatively. Therefore, the results are deemed reasonable.

Figure 10 Graph building time with different scale of nodes and precision of graph with 200,000 nodes using
Hamming, Cosine and Euclidean distance
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We prove reliability using graph G2 shown in Figure 11b. Different from G1, G2 consists of
2 connected domains. The results calculated by SHR are shown in Table 2 with η = 141.
Similarly, we set ε= 1.0E-10and R0(Nm) = 1 where m ∈ [1, 6]. Obviously, N3 and N6 get the
same rank and play the most important role in their own connected domain. Furthermore,
when we add N7 which has the same hash code as N4, theresults will change shown in Table 2.
It is easy to find that the ranks in the left domain do not change but the sum of ranks in the right
domain has added one unit. Consequently, SHR is able to calculate the rank of each node in its
own connected domain, without being influenced by other connected domains. Also, N4 and
N7 own the same score, illustrating that those nodes which own the same hash code will get the
same score.

For illustrating the performance of SHR, the number of nodes, the number of links, the time
cost including calculating A in Eq. (23) and iterating, and the number of iterations are
displayed with ε= 1.0E-15, 1.0E-11, 1.0E-7 and Ω = 24 after graph building. As shown in
Table 3, as the number of nodes increases, the number of iterations is relatively stable, since it
is not determined by the scale of nodes and the main factor that causes the time cost of
computing is the acquisition of A. In addition, the growth of time cost and number of links are
acceptable with scale of nodes increasing. Even though the number of links exceeds 1 billion,
the number of iterations is very close to that of PageRank [23] proposed by Google, which
shows that SHR algorithm is sufficient to deal with large-scale computing.

5.4 Predominant semantics

Based on the validity shown in Section 5.3, we verify SHR can highlight and prepose those
data whose semantic information account for higher proportion in this section, which shows
our algorithm has practical significance for assessment tasks. In the next experiment, if the

Figure 11 Example graphs

Table 1 Score and rank in graph G1

Node Hash code Score Rank

N1 FFFFFFFFFFFF 1.118 1
N2 FFFFFF800000 1.028 5
N3 FFFFFFFE0000 1.069 2
N4 C000007FFFFF 1.051 4
N5 0000001FFFFF 0.879 8
N6 FBFF7F8000E0 0.980 7
N7 FFFFFF7E0080 1.055 3
N8 C0003079FFFF 0.996 6
N9 0300001FFE7F 0.824 9
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ranked results are correct, those images whose semantic distribution account for higher
proportion in original data set will obtain larger scores and higher ranks. Thus, based on
CIFAR-10 test set, under the premise that the amount of images of other classes remains
unchanged, we choose one class as a study object to be added to the sample, making the
amount of this class reach 20%, 30%, 40%, 50%, 60% and 70% respectively on the whole data
set. We collect proportion of this class in the top 5% and top 20% of ranked results in 6 cases
mentioned above. We set ε= 1.0E-7 and choose Ω= 24, 16 and 12 to conduct the experiments.

Figure 12a, b show the percentage with different Ω in the top 5% and top 20% of ranked
results respectively when choosing cat as the study object. As shown in Figure 12a, b, in all
cases, SHR magnifies original proportion of cat (the part that goes beyond the blue column),
indicating the efficiency of this algorithm. Detailedly, as shown in Table 4, compared with Ω=
16 or 24, setting Ω= 12 yields better performance on the magnification of the dog percentage
in the top 5% of ranked results, where the dog percentage is averagely 2.8% higher than
original proportion in 6 cases. Among them, the best result exceeds the original proportion by
20.6% in the case of 30%. In the top 20% of ranked results, choosing Ω= 12 yields better
performance in most of the cases, where the titdog percentage is averagely 2.6% higher than
original proportion in 6 cases. Among them, the best result exceeds the original proportion by
25.4% in the case of 40%.

Similarly, Figure 12c, d show the results choosing ship as the study object. As is shown in
Figure 12c, d, SHR achieves the same effect. Detailedly, as shown in Table 4, in the top 5% of
ranked results, compared with other setting of Ω, the percentage of ship shows the superiority
in most of the cases while choosing Ω= 12, which is averagely 3.3% higher than original

Table 2 Score and rank in graph G2

Node Hash code N1 ∼N6 N1 ∼N7

Score Rank Score Rank

N1 1FFFFFFFFFFF 0.646 5 0.646 7
N2 FFFFFF800000 0.894 4 0.894 5
N3 FFFFFFFE0000 1.460 1 1.460 1
N4 000000000001 0.908 3 1.009 3
N5 C000007FFFFF 0.632 6 0.649 6
N6 0000001FFFFF 1.460 1 1.333 2
N7 C000007FFFFF – – 1.009 3

Table 3 Statistic of the number of nodes, the number of links, the time cost and the number of iterations with
different ε when SHR is running

Node Link Time cost Number of iterations(ε=)

Ω=24 unit:s 1.0E-15 1.0E-11 1.0E-7

5 K 7.5 M 88±0.2311 57 40 24
10 K 29 M 380±0.9912 57 40 23
20 K 111 M 1430±2.016 58 40 24
25 K 223 M 2991±3.001 58 40 23
50 K 737 M 8189±5.465 55 38 22
100 K 2.87G 29,372±12.188 52 36 21
200 K 15.33G 172,839±42.077 49 33 20
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proportion in 6 cases. Among them, the best result exceeds the original proportion by 27.9% in
the case of 50%. Besides, in the top 20% of ranked results, the percentage of ship also shows
great superiority with Ω= 12, which is averagely 3.2% higher than original proportion in 6
cases. Among them, the best result exceeds the original proportion by 31.1% in the case of
60%.

It should be explained that better precision and shorter time cost can be captured theoret-
ically when Ω<12. However, the reduction of links causes too many isolated nodes all of
whom get the same score, which may bring certain loss to the ranked results. Usually, with a
larger scale of nodes, hash codes are more widely distributed, thus setting a smaller Ω will not

Figure 12 Trend for Percentage of Dog and Ship in ranked result using different Ω with 48-bit codes

Table 4 Detail for Percentage of Dog and Ship in ranked result using different Ω with 48-bit codes

C Top Ω Original proportion

20% 30% 40% 50% 60% 70%

Dog 5% 24 0.217 0.362 0.519 0.662 0.713 0.792
16 0.226 0.438 0.562 0.621 0.699 0.807
12 0.254 0.506 0.592 0.663 0.721 0.843

20% 24 0.230 0.418 0.631 0.704 0.801 0.810
16 0.305 0.513 0.582 0.704 0.802 0.829
12 0.291 0.528 0.654 0.716 0.816 0.878

Ship 5% 24 0.225 0.376 0.503 0.637 0.802 0.873
16 0.211 0.407 0.613 0.723 0.829 0.867
12 0.299 0.444 0.609 0.779 0.854 0.907

20% 24 0.239 0.387 0.562 0.775 0.826 0.914
16 0.270 0.446 0.645 0.789 0.839 0.926
12 0.271 0.481 0.678 0.825 0.911 0.937

The entries in boldface represent the maximum values in ranked results.
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result in too many isolated nodes. In our follow-up research, we intend to study this issue in
depth.

As above experimental results show, both in the top 5% and 20% of ranked results, SHR
effectively highlights and preposes the data whose semantic information account for higher
proportion in original data set after ranking. Thus, our SHR is correct and effective in practical
applications.

5.5 Assessment of query

Finally, based on the validity shown in Section 5.3, we verify that our framework can
efficiently complete online assessment work according to the user’s query task on large-
scale real dark dataset. Also, it can guide and assist the user to conduct subsequent data
mining work in order to show our framework is effective to complete the dark dataset
assessment. We apply our framework to real-world data set of Tencent which is collected
from QQ albums, QQ chat and WeChat in a certain period. The size of data is around 5 TB
consisting of 1,000,000 images. Specially, according to the results shown in Section 5.4 that a
smaller Ω is proved to be feasible at a million scale, we select Ω= 2 to conduct this experiment.

First, we complete offline calculation to get ranks of images with building a graph by
2.91 h, constructing matrix 23 by 9.74 h and iterating by 5 min. We account the top 500
images of rankedresults and find that the images including females account for 77.6%, of
which the individual images and group images account for 44.2% and 33.4% respectively.
Besides, the images including males account for 23.6%, of which the individual images and
group images account for 3.4% and 20.2% respectively. The others consist of some images
including children which account for 37.4%, some images including buildings or landscape
which account for 10.4%, a few images including animals which account for 7.4%, and several
images including commodities, food or screenshots. From the result of proportion, the main
semantic components of this data set are daily life images, most of which are the images of
women and children. Therefore, the data set are apt for those applications that are interested to
mine data about women and children.

Of course, some images containing important semantic information may not be ranked in
top 500 for the data set consisting of 1,000,000 images. Therefore, we carry out assessment for
specific applications according to ranked results. We use the general method mentioned in
Section 2.2 for assessment by analyzing the value of Tencent data set for three tasks which
include human intimacy as task-A, children playing in the outskirts as task-B, and motorcycle
on the bridge as task-C respectively. The agent images are collected from BAIDU search and
their respective weights are given below. Figure 13 displays the assessing process and results
for above tasks. As shown in Figure 13, intimacy images representing the first task are
associated with three images whose ranks are high, so it is worth carrying out data mining
on this data set for the task-A. For task-B which are associated with two images contained in
Tencent data set, the images of children have high scores and images about landscape own
medium ranks. However, the weighted score of this task is relatively high, which shows this
data set can help analyze images about children playing in the outskirts. Although there are
three images that match the task-C, neither motorcycle nor bridge obtain high scores, so this
data set are not suitable for the task-C.

To further verify the correctness of our assessment, we show the efficiency of the mining
algorithm according to our framework. Two sets of results returned by our framework with
diverse hd and the deep model for above tasks are shown in Table 5. The statistical results
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include the number of recommended images that above two methods return, the number of
suitable images that SSD [17] algorithm picks out from the recommended images, the
proportion of suitable images in recommended images, and the time cost that SSD spends
on the recommended images.

It is easy to find that, as hd becomes larger, the number of recommend images increases
while the number of considered valid images is decreasing, because a larger hd will lead to a
greatly ascending number of those weakly correlatedimages. Even so, our framework has an
overwhelming predominance over deep model in terms of precision of the recommendation
(ratio). This is because the semantic information which contains the features with generaliza-
tion ability extracted by DSTH and the association analysis produced by SHR can not directly
captured by deep model.

In addition, we also find that although task-B has a similar rank with task-A, the number of
its recommendation is greatly larger, because it is associated with two different semantics. At
the same time, task-C does not get a large number of recommendation though also associated
with two semantics, because the associated semantics account for a low proportion. Even so,
for dominant data, our algorithm does not give more recommendation data than deep model,
which reduces the analysis time cost for subsequent data mining. Our result benefits from the
combined effects of features with generalization ability extracted by DSTH and association
analysis produced by SHR, which reduces the number of rough recommended images about
single object that deep model tends to return. Finally, according to the ratio, even though

Figure 13 The process of assessment on Tencent data set for three real requirements

Table 5 Effect comparison between our framework and deep model

Task hd Deep model

4 8 12 16 24

Recommendation A 1522 6952 29,368 41,996 16,668 661,254
B 4012 12,353 39,399 70,114 311,648 683,722
C 2512 7076 10,431 21,637 98,795 19,315

SSD adoption A 1391 5332 17,747 28,139 90,121 21,116
B 2119 4406 19,863 33,113 79,334 15,197
C 105 177 218 299 594 222

Ratio A 0.914 0.767 0.604 0.67 0.541 0.032
B 0.528 0.357 0.504 0.472 0.255 0.022
C 0.042 0.025 0.021 0.014 0.006 0.011

Time (s) A 297.13 1458.021 6090.028 8784.37 34,781.16 13,711.032
B 1121.07 2846.15 13,973.51 27,729.33 94,101.416 177,777.59
C 368.03 1137.71 1799.17 3541.32 16,618.12 3280.11
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setting hd≤ 24, the valid recommendation of task-A, task-B and task-C account for more than
50%, 25% and 0.6% respectively. This is completely consistent with our importance rank and
suggestion, indicating that our framework can truly and effectively expose the amount and
entity of relevant data in the dataset. Compared with classification results generated by deep
learning, our results is the straightforward expression for user’s requirements and can provide
value judgment for more extensive applications. Consequently, our algorithm which executes
association analysis by semantic hash is more effective for value assessment.

6 Related works

Dark data Heidorn has demonstrated the value of dark data by the long tail theory in
economics and given the concept of dark data lightening which means constructing relation-
ship according to a new task [6]. Furthermore, he presents the implementation of astronomical
dark data management using unified databases [7]. File WinOver System [29] is proposed to
complete the dark data judgment and risk assessment through fingerprint. Cafarella [1]
mentions that the value of dark data depends on both the requirements of the task and the
ability of value extraction. GeoDeepDive [41] and DeepDive [42] propose a pragmatic scheme
of dark data mining system by correcting annotations and associations of data according to
feedback from users. Unfortunately, his work uses the method of human feedback, which
requires a long period of time and is affected by human factors. It is not suitable for real-time
judgment scenarios. However, the way that relates data inspires and prompts us to further
complete the work of assessment.

Content-based hashing for image Content-based Hashing is a technique that generates
compact hash codes from the original data to represent the main content which preserves the
data semantic relationship [13, 14, 19, 25–28, 34, 45]. It is more efficient to construct
relationship between images in large-scale scene because of fast quantization by XOR
operation. With the success of Convolution Neutral Network (CNN) [11] in feature extraction,
deep hashing becomes the mainstream for image hashing. For unlabeled images, DSTH has
better ability to solve out-of-samples problem, because it is able to regard the instances beyond
scope of cognition as the samples which have been learnt in the model as close as possible.
Therefore, DSTH is a better hashing method to reduce the sensitivity of non-cognitive objects
which are widely distributed in large-scale data set.

Graph-based mining for image Most of unsupervised image mining solutions are based on
image content and the similarity graph connecting images with each other. Commonly, there
are Euclidean distance [4], Cosine [10] and Hamming distance [21] for quantization when
different types of features are connected. Specially, Stefan et al. [21] adopts hash code and
Hamming distance to construct similarity graph with illustration of validation in large-scale
scene, although it brings certain loss to precision. However, it does not consider construction
with restricted Hamming distance to improve efficiency and clustering processing is costly.

Graph-based ranking Calculating the importance score of each node is a special quantization
method without clustering. It is more effective to get evaluation standards by ranking for each
node globally. PageRank [23] considers out-degree of related nodes as impact factor for data
ranking. Fabian et al. [24] applies random walking to ranking community images for
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searching, which has achieved good results. Personalized Rank [37] introduced the concept of
probability to improve the RegEx in PageRank. However, above graph-based ranking algo-
rithms focus on in-degree and out-degree, neglecting the weight on edges, resulting that they
are not competent for quantization with Hamming distance. TextRank [22] and SentenceRank
[5] take the weights on edges into consideration, both of which mentioned applying PageRank
to improve their algorithms, but none of them give proof of convergence.

7 Conclusions

In this paper, we proposed a framework for image dark data assessment. We first transformed
unlabeled images into hash codes by our developed DSTH algorithm, then constructed a
semantic graph using restricted Hamming distance, and finally used our designed SHR
algorithm to calculate the overall importance score for each image. During online assessment,
we first translated the user’s query into hash codes using DSTH model, then matched the
suitable data contained in the dark data, and finally returned theweighted average value of
these matched data to help the user cognize the dark data. Experimental results showed DSTH
can extract semantic features with generalization ability, and SHR can correctly calculate the
importance scores according to the similarity between data, and our framework can apply to
large-scale datasets.
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