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ABSTRACT
Despite the ever-changing software and hardware profiles of modern computing systems, many operating systems
(OS) components adhere to designs developed decades ago. Considering the variety of dynamic workloads that
modern operating systems are expected to manage, it is quite beneficial to develop adaptive systems that learn
from data patterns and OS events. However, developing such adaptive systems in kernel space involves the
bottom-up implementation of math and machine learning (ML) primitives that are readily available in user space
via widely-used ML libraries. However, user-level ML engines are often too costly (in terms of CPU and memory
footprint) to be used inside a tightly controlled, resource constrained OS. To this end, we started developing
KMLib, a lightweight yet efficient ML engine targeting kernel space components. We detail our proposed design
in this paper, demonstrated through a first prototype targeting the OS I/O scheduler. Our prototype’s memory
footprint is 804KB for the kernel module and 96KB for the library; experiments show we can reduce I/O latency
by 8% on our benchmark workload and testbed, which is significant for typically slow I/O devices.

1 INTRODUCTION

Rapid changes in hardware that are interacting heavily with
operating systems raise questions about OS design. OS
development is a difficult and tedious task, and it is not able
to keep with these hardware changes or new algorithmic
techniques quickly. In addition, recent years have witnessed
major changes in workloads. Contrary to these changes,
most of the OS components’ designs have changed little
over the years.

One example of the divergence between hardware and soft-
ware can be seen in storage technologies. Storage devices
are getting faster and different every day. Keeping up with
the changes to storage devices require either a complete re-
design of some of the components in the storage stack or tun-
ing parameters and developing more workload-aware data
structures and algorithms. In the past few years, we have wit-
nessed such a paradigm shift in data management systems
and computer architectures. Both OS research and these
fields tackle similar tasks such as caching, indexing, and
scheduling. For example, in the data management system
research, researchers have developed learned structures to
improve performance and adaptability(Kraska et al., 2018).
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This is followed by work on data management systems that
are optimized for workloads and underlying system spec-
ifications (Kraska et al., 2019). In computer architecture
research, researchers realized that predicting memory ac-
cess patterns can be formulated as an ML problem, and
they developed cache-replacement models to improve the
system performance (Hashemi et al., 2018; Shi et al., 2019).
OS page-cache management is a similar problem as cache-
replacement in CPUs. In addition, operating systems use
hash tables in numerous places, which might be enhanced
with learned structures (Kraska et al., 2018).

Although it is possible to utilize well-known ML libraries to
build ML approaches for data management systems, using
ML in operating systems poses unique three challenges. (1)
Developing ML solutions working in kernel space requires
extensive kernel programming skills. (2) Debugging and
fine-tuning ML models, which is an essential component of
most ML development pipelines, could be quite challenging
for ML models working only in kernel space, because the
OS is naturally hard to debug and notoriously sensitive to
bugs and performance overheads. (3) Certain QoS for oper-
ating system requirements could require ML models to be
deployed in kernel space to avoid the extra costs incurred
for user-kernel switches. There are kernel tasks that can
not tolerate the overhead of user-kernel switches. Because
these kernel tasks might be running under hard time lim-
its, and adding extra overhead can cause timeouts. These
challenges motivated us to design and develop an ML li-
brary targeted for adoption within the kernel, called KMLib.
KMLib is an attempt to enable ML applications in a rela-
tively unexplored yet challenging environment of the OS
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kernel. Researchers have proposed interesting ideas related
to ML for task scheduling (Negi & Kumar, 2005; Smith
et al., 1998), I/O scheduling (Hao et al., 2017), and storage
parameter tuning (Cao et al., 2018). However, to the best of
our knowledge, there is no previous work that attempts to
develop an ML ecosystem for operating systems.

KMLib aims to (i) enable easy to develop ML applications
with low computational cost and memory footprint and (ii)
make it easier to debug and fine-tune ML applications by
providing primitives that behave identically in user space
and in kernel space. We believe that a library like KMLib
could enable numerous ML based applications targeting
operating systems and help us to rethink how to design
adaptive and self-configured operating systems.

2 BACKGROUND AND RELATED WORK

While mainstream machine learning libraries like Tensor-
Flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019)
has gained widespread use in research and production, there
have also been several attempts to build machine learning
libraries to address specific needs. Embedded Learning Li-
brary (ELL) (ELL) by Microsoft is one example, targeting
embedded devices. TensorFlow Lite(TensorFlow Lite) by
Google is a library for running machine learning applica-
tions on resource constrained devices. For using ML to
improve operating systems, there has been several propos-
als (Zhang & Huang, 2019).

Researchers have investigated to tune file system param-
eters (Cao et al., 2018). Because this work performs the
optimization in an offline manner, it is not designed to adapt
to workload changes. Another work has attempted to im-
prove I/O schedulers by predicting whether the I/O request
meets the deadline or not (Hao et al., 2017). But, the predic-
tions for I/O request deadlines were based on the result of a
linear regression model that is trained on synthetically gen-
erated data in an offline manner. These examples suggest
that having a machine learning library that works in kernel
can help to build adaptive operating system components.

3 MACHINE LEARNING LIBRARY FOR
OPERATING SYSTEMS

3.1 Machine Learning Library Design

Overview. There are several points and design choices
worth mentioning regarding our machine learning library
that will power ML applications in kernel space. First,
the lack of access to standard math floating-point func-
tions in the kernel means we have to implement nearly all
math functions (including common functions such as pow
and log) ourselves. Second, following the design choice
seen in numerous mainstream deep-learning libraries (Abadi

et al., 2016; Paszke et al., 2019), we decided on a common
tensor-like representation for matrices and model parame-
ters. Functionality for manipulating matrices, such as matrix
addition-multiplication and l2 norm has also been imple-
mented as part of the library. Third, neural networks are rep-
resented as a collection of layers, each of which implement
forward() for forward propagation and backward()
for backward propagation. Whenever a new layer is to be
added to the library, forward() and backward() func-
tions need to be implemented. In addition, our plan is to
use lock-free data structures when implementing the lay-
ers to allow for parallel processing by breaking down the
computation DAG when possible. Finally, neural networks
implemented with this library will use an API similar to
the individual layers, where forward() will facilitate for-
ward propagation of input through the computation DAG,
and backward() will apply backward propagation via
chain-rule, using backward() method in each layer for
computing the derivatives of the corresponding layer. In our
design, the loss functions are treated like the other layers
in terms of implementation. Our library will implement
reverse-mode automatic differentiation to compute the gra-
dients, which are then used to update the model weights
using gradient-based learning algorithms such as gradient
descent.

Our initial goal is to provide users with the implemen-
tations of most widely-used linear layers, such as fully-
connected and convolutional (LeCun et al., 1998) layers,
and widely-used non-linearities such as ReLU (Nair & Hin-
ton, 2010) and Sigmoid, in addition to sequential models
like LSTMs (Hochreiter & Schmidhuber, 1997). We also
provide users with widely used losses such as cross entropy
and mean square error. Users are able to extend the library
with their own layers and loss functions by providing their
own implementations.

Adapting to new workloads. The ever-changing work-
loads of modern computing systems means that machine
learning models developed to exploit patterns in any work-
load must be adaptive. This could be achieved by constantly
training the model, which incurs extra computational costs
and memory footprint. Hence, there is a trade-off between
the power of adaptation and computational efficiency. For
the low-dimensional and less challenging machine learn-
ing problems where convergence could be achieved after
a small number of steps, one could employ a simple feed-
back mechanism to control the training schedule. The goal
of this mechanism is to perform inference only when the
performance is better than random guess by a pre-defined
threshold. More formally, for a classification task we per-
form inference only when the classification accuracy over
the last k batches is at least pmargin higher than the most fre-
quent label in these k batches. k and pmargin are adjustable,
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with implications on memory footprint, computational cost
and higher stability.

While the simple mechanism described above could be effec-
tive in a low-dimensional problem where converging to rea-
sonable performance is not likely to take significant amounts
of computational power, high-dimensional and more chal-
lenging machine learning problems in kernel space could
require taking into account other aspects of the problem.
More specifically, learning the ever-changing workloads on
an edge device is a multi-objective problem, where some
of the objectives are more obvious, i.e., computation time,
memory footprint, and energy consumption. However, opti-
mizing for these objectives while there are non-zero com-
putation costs and memory footprints incurred by training
and inference makes it necessary to consider multiple other
factors. Ideally, one would like to deploy a machine learning
system that spends the least amount of time training, using
the smallest number of samples for training. Reducing the
training time and samples could be achieved by borrowing
ideas from few-shot learning (Wang & Yao, 2019) when
applicable. The relatively high cost of training makes it nec-
essary to avoid using samples that are not likely to improve
model performance. This could be approach using ideas
from active learning (Settles, 2009), where the learning is
performed on a promising subset of the labeled data. Ef-
fective utilization of methods for both of these problems
could result in models that spend the least amount of time
in training and used more for inference.

3.2 Operating System Integration

Low-precision training. Computation overhead is one
of our biggest concerns while designing KMLib. There
are operating system tasks that must be completed in sub-
microsecond time and any extra latency for these tasks may
cause timeouts and serious performance degradations. One
of the ways to reduce computation overhead for KMLib
is by using low-precision training techniques (Choi et al.,
2019; De Sa et al., 2018; Gupta et al., 2015; Sa et al., 2017).

KMLib can support different data types for tensor struc-
tures and is also flexible to adapt custom data types. One
of these data types is float. As we mentioned above,
KMLib can work in both user and kernel spaces. But,
there are some challenges in using floating-point oper-
ations in kernel space. It is well-known that floating-
point operations are not allowed in the Linux kernel. One
way to perform floating point operations in the kernel
is to enable the x86 architecture’s floating-point unit by
calling kernel fpu begin. Once floating point op-
erations are finalized, use of floating points can be dis-
abled by calling kernel fpu end. (For KMLib ARM
v8 integration, floating-point enable/disable functions are
kernel neon begin and kernel neon end.) We

tried to minimize the size of the floating-point enabled
code block, because the more time KMLib spends in a
floating-point–enabled regions, the higher the chance of be-
ing context-switched to other tasks. When the floating-point
unit is enabled, the kernel must save floating point registers
on a context switch, and adds additional overheads.

We are working to support 16-bit and 8-bit wide fixed-point
numbers (Wang et al., 2018) with KMLib. Low-precision
training not only helps to reduce computational overhead
but also lowers memory consumption, which is another
critical point when we started designing KMLib. We now
explain more how KMLib handles capping memory and
computation overheads.
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(b) User-Kernel shared library

Figure 1. KMLib architectures: mq-kmlib.ko is a reference ML
implementation for KMLib library and kmlib.ko refers to KMLib
kernel space library.

Computation and memory capping. KMLib is designed
to create as little as possible interference in the running sys-
tem. KMLib is capable of training and inference operations
while the underlying operating system is running. KMLib
offloads the training computation to library threads to re-
duce interference. The only interference that KMLib adds
is to save the input data and the predictions for training.

We used lock-free circular buffers to store training data.
Users can configure the size of the circular buffers. Circular
buffers have two running modes: blocking and dropping.
The blocking mode helps the user to process every single
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input piece data, but if the frequency of computation re-
quests is high, this blocking mode might add extra overhead
by blocking additional inputs from being processed. The
dropping mode overruns unprocessed input data: it does not
add extra overhead, but KMLib then loses data, which may
hurt training quality. Using these features, the user can cap
memory overhead based on their ML application needs.

The computational overhead of training varies based on
the complexity of the learning model. We designed of-
floading training computation to KMLib library threads, but
there are other challenges of partitioning computation DAG.
Even though KMLib uses lock-free data structures to re-
duce multi-threaded communication and synchronization
overhead, there might be dependencies in the computational
DAG, which might cause latencies. That is why we also
allow the user to choose how many threads can be used for
(i) training and (ii) inference. All these features that related
to offloading training/inference computation can be disabled
and can be done in the original thread context as well.

User space vs. kernel space. The first question that
comes to mind is why we started implementing a machine
learning library from scratch for optimizing operating sys-
tem tasks, rather than using a well-known user space library
with data collected from the operating system. It is possible
to collect data from the operating system and feed into user
space ML implementations. But, there are challenges with
that approach. For example, offloading training and infer-
ence should be running sub-microsecond because of the
nature of operating system tasks. KMLib can be deployed
in two different modes: (i) kernel mode (Figure 1(a)) and
(ii) kernel-user memory mapped shared mode (Figure 1(b))
. In kernel mode, both training and inference happens in the
kernel space. In kernel-user memory mapped shared mode,
KMLib collects data from the kernel space and trains using
user-space threads. For the inference, KMLib still runs the
operations in kernel space to reduce the latency. We are
using user-kernel shared lock-free circular buffers (Desnoy-
ers & Dagenais, 2012) for collecting training data. But,
KMLib threads can drain training request only when it gets
scheduled because KMLib threads are working in a polling
manner. We continue improving the user-space approach
because we believe that it improves developer productivity,
and developing, debugging, and testing learning models is
much easier in user space than developing in the kernel.

4 EVALUATION

We developed a sample application of KMLib to fine-tune
mq-deadline I/O scheduler. To predict whether the I/O
request will meet the deadline or not, we train a linear re-
gression model. The regression model predicts issue time
for a given I/O request using normalized block number and

ordinalized operation type as features. The predicted issue
time is then thresholded to predict whether the I/O request
should be early-rejected or not. We hypothesize that this
should reduce the overall latency.

We have conducted the experiments on QEMU with I/O
throttling running on Intel(R) Core(TM) i7-7500U and 8GB
RAM and Intel SSD(256GB). We use our modified version
of Linux Kernel v4.19.51+ for all experiments.

For the workload generation, we ran the FIO (FIO) micro-
benchmark which is configured to perform random read and
write operations with 4 threads on a 1GB dataset. Each
experiment is executed on a fresh QEMU instance. We
cloned the mq-deadline I/O scheduler as mq-kmlib
and integrated it with KMLib. We made three key
changes in the mq-kmlib I/O scheduler compared to
mq-deadline: (i) In the dd init queue function, we
inserted initialization code fragments to set the learning
rate, batch size, momentum, and number of features to
learn. Initial weights are also set randomly here. (ii) In
the dd dispatch request function, we call the func-
tions that collect Xt and Yt and perform the training steps.
(iii) In the dd insert request function, we invoke an
inference function; and based on the prediction we decide
whether to early-reject the I/O request or not.

We observed that the thresholded regression output could
predict with an accuracy of 74.62% whether the I/O requests
miss the deadline or not: this reduced the overall I/O latency
by 8%, a promising result given that I/O is so much slower
than memory or CPU (and hence I/O should be the first to
optimize). Our test involved a single synthetic workload
that does not cover a large number of use cases, and our
performance may not generalize to other workloads. Further,
the emulated environment provided by QEMU may not
represent a realistic use case, due to artificial throttling in
QEMU. This is why our next step would be to investigate
if these results generalize to other workloads under more
realistic conditions (e.g., physical machines). We are also
planning to apply machine learning models to other storage
stack components like the page cache.

We wrote nearly 3,000 lines of C/C++ code (LoC). Because
the current set of machine learning tools we have imple-
mented is small, the memory footprint size of the KMLib
user-space library is just 96KB, and the size of the KMLib
kernel module is only 804KB. However, we expect these
numbers to increase as additional functionality is imple-
mented.

5 CONCLUSION

Adapting operating system components to running work-
loads and hardware has been done by tuning parameters or
changing the critical data structure properties empirically.
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We have proposed that lightweight machine learning ap-
proaches may help to solve these problems. Our preliminary
evaluation show some promising results. Our plan is to
expand on the work, apply it to other OS components, and
evaluate and optimize the ML library for a wide range of
workloads.
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