
Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok

KMLib: Towards Machine Learning For Operating Systems
and Storage Components

Department of Computer Science, Stony Brook University

fsl.cs.stonybrook.edu/~umit iakgun@cs.stonybrook.edu

Motivation & Challenges Machine learning library design

1. Support standard math floating-point functions in
the kernel

2. Tensor-like representation for matrices and model
parameters.
▪ Adaptable forward and backprop; lock free d-s;

parallelism
3. Adapt to new Workloads
▪ few-shot learning[1], active learning[2]

Operating System Integration

Kernel Library User-Kernel shared Library

User space vs. kernel space Reducing computation & memory overheads

Evaluation

References
[1] Wang, Y. and Yao, Q. Few-shot learning: A survey. arXiv
preprint arXiv:1904.05046, 2019.
[2] Settles, B. Active learning literature survey. Technical report,
University of Wisconsin-Madison Department of Computer
Sciences, 2009.
[3] Desnoyers, M. and Dagenais, M. R. Lockless multi-core high-
throughput buffering scheme for kernel tracing. Operating
Systems Review, 46(3):65–81, 2012.

1 2

3

4

5

6

▪Motivations
▪Adaptive systems ← data patterns and OS events
▪User-level ML engines are often too costly
▪A lightweight yet efficient ML engine → OS kernel

▪Challenges
▪Extensive kernel programming skills
▪Debugging and fine-tuning ML models
▪Avoiding frequent user-kernel switches.

▪ Offloading training and inference (sub 𝜇𝑠 level)
▪ User-kernel memory mapped shared mode
▪ Collects data from the kernel space
▪ Trains using user-space threads
▪ Inference runs in kernel space ↓ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

▪ User-kernel shared lock-free circular buffers[3]
▪ Easier developing, debugging, testing

Computation and memory capping
▪ Offloads the training to library threads saving the

input data and the predictions for training
▪ Blocking mode process every single input data
▪ Freq. of computation requests is high ↑ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

▪ Dropping mode overruns unprocessed input data
▪ May hurt training quality ↓ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

Low Precision Training

▪ x86 floating-point kernel_fpu_begin.
▪ context-switch ↑ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑▪ Fine-tune mq-deadline I/O scheduler

▪ To predict whether the I/O request will meet deadline
▪ The regression model predicts issue time for a given I/O
▪ Normalized block number & Ordinalized operation

▪ Predict with an accuracy of 74.62%
▪ Reduced the overall I/O latency by 8%.

▪ Tests on QEMU with synthetic workloads
▪ We wrote nearly 3,000 lines of C/C++ code (LoC).
▪ User-space library → 96KB Kernel module → 804KB

