
1

Improving Storage Systems Using Machine Learning

IBRAHIM UMIT AKGUN, Stony Brook University

ALI SELMAN AYDIN, Stony Brook University

ANDREW BURFORD, Stony Brook University

MICHAEL MCNEILL, Stony Brook University

MICHAEL ARKHANGELSKIY, Stony Brook University

EREZ ZADOK, Stony Brook University

Operating systems include many heuristic algorithms designed to improve overall storage performance and

throughput. Because such heuristics cannot work well for all conditions and workloads, system designers

resorted to exposing numerous tunable parameters to users—thus burdening users with continually optimizing

their own storage systems and applications. Storage systems are usually responsible for most latency in

I/O-heavy applications, so even a small latency improvement can be significant. Machine learning (ML)

techniques promise to learn patterns, generalize from them, and enable optimal solutions that adapt to

changing workloads. We propose that ML solutions become a first-class component in OSs and replace manual

heuristics to optimize storage systems dynamically. In this article, we describe our proposed ML architecture,

called KML. We developed a prototype KML architecture and applied it to two case studies: optimizing

readahead and NFS read-size values. Our experiments show that KML consumes less than 4KB of dynamic

kernel memory, has a CPU overhead smaller than 0.2%, and yet can learn patterns and improve I/O throughput

by as much as 2.3× and 15× for two case studies—even for complex, never-seen-before, concurrently running

mixed workloads on different storage devices.

CCS Concepts: • Software and its engineering → File systems management; • Computing method-
ologies → Machine learning.

Additional Key Words and Phrases: Operating Systems, Storage Systems, Machine Learning, Storage Perfor-

mance Optimization

ACM Reference Format:
Ibrahim Umit Akgun, Ali Selman Aydin, Andrew Burford, Michael McNeill, Michael Arkhangelskiy, and Erez

Zadok. 2022. Improving Storage Systems Using Machine Learning . ACM Trans. Storage 1, 1, Article 1 (Janu-
ary 2022), 30 pages. https://doi.org/10.1145/3568429

1 INTRODUCTION
Computer hardware, software, storage, and workloads are constantly changing. Storage perfor-

mance heavily depends on workloads and the precise system configuration [13, 82]. Storage systems

and OSs include many parameters that can affect overall performance [12, 14, 104]. Yet, users often

do not have the time or expertise to tune these parameters. Worse, the storage and OS communities

are fairly conservative and resist making significant changes to systems to prevent instability or data

Authors’ addresses: Ibrahim Umit Akgun, Stony Brook University; Ali Selman Aydin, Stony Brook University; Andrew

Burford, Stony Brook University; Michael McNeill, Stony Brook University; Michael Arkhangelskiy, Stony Brook University;

Erez Zadok, Stony Brook University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1553-3077/2022/1-ART1 $15.00

https://doi.org/10.1145/3568429

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3568429
https://doi.org/10.1145/3568429

1:2 I. Akgun et al.

loss. Thus, many techniques currently used were historically developed with human intuition after

studying a few workloads; but such techniques cannot easily adapt to ever-changing workloads

and system diversities.

For example, readahead values, while tunable, are often fixed and left at their defaults. Correctly

setting them is important and difficult when workloads change: too little readahead wastes potential

throughput and too much pollutes caches—both hurting performance. Some OSs let users pass

hints (e.g., fadvise, madvise) to help recognize files that will be used sequentially or randomly, but

these often fail to find optimal values for complex, mixed, or changing workloads. We experimented

with a variety of modern workloads and many different values of readahead: in our prior work,

we confirmed that no single readahead value is optimal for all workloads [4]. Another example of

tunable parameters in the network storage settings is the default read-size (rsize) parameter in

NFS: if set too small or large, performance suffers.

Machine Learning (ML) techniques can address this complex relationship between workloads

and tunable parameters by observing actual behavior and adapting on-the-fly, and hence may be

more promising than fixed heuristics. ML techniques were recently used to predict index structures

in KV stores [24, 50], for database query optimization [49], improved caching [90], cache eviction

policies [97], I/O scheduling [40], and more.

In this article, we describe our ML approach to improve storage performance by dynamically

adapting to changing I/O workloads. We designed and developed a versatile, low-overhead, light-

weight system called KML, for conducting ML training and prediction for storage systems. KML

defines generic ML APIs that can be used for a variety of subsystems; we currently support several

deep neural networks and decision tree models. We designed KML to be embeddable inside an OS

or the critical path of the storage system: KML imposes low CPU and memory overheads. KML can

run synchronously or asynchronously, giving users the ability to trade-off prediction accuracy vs.

overhead.

Developing and tuning ML-based applications can be its own challenge. Therefore, we designed

KML to run identically in user- or kernel-level. Users can develop and debug ML solutions easily in

the user level, then upload the same model to run identically in the kernel.

We demonstrate KML’s usefulness with two case studies: (i) adapting readahead values dynami-

cally and (ii) setting NFS rsize values automatically. In both cases, we aim to adapt these values

within one second under changing and even mixed workloads. Overall, our approach to storage

systems optimization using ML is a continuous observe-and-tune paradigm.

This article makes five contributions:

(1) We show that lightweight ML can indeed become a first-class citizen inside storage systems

and OSs;

(2) We offer flexibility through synchronous or asynchronous training and the ability to offload

training to the user-level;

(3) We introduce the idea of generic ML APIs that can be expanded to support additional and

future ML techniques;

(4) We apply KML to two important optimization problems (readahead and NFS rsize values);

and

(5) We evaluate our solutions using multiple, complex, and even mixed workloads, as well as two

different storage devices. We demonstrate throughput improvements up to 2.3× for readhead

and up to 15× for rsize. We show that ML models trained on a few workloads can generalize

and optimize throughput for never-before-seen workloads or devices. And finally, we show

that KML has small CPU overheads (< 0.2%) and dynamic memory footprint (4KB), well

worth the overall I/O improvements.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:3

Next, Section 2 describes KML’s design. Section 3 describes our two use cases (readahead and

NFS rsize). Detailed evaluation of KML and two use cases are in Section 4. We survey related work

in Section 5 and conclude in Section 6.

2 KML’S ARCHITECTURE
Modern ML libraries are often general-purpose, rely on many large third-party libraries (e.g., in
C++ or Python), and designed to process lots of data using massive processing power (e.g., GPU
clusters). Porting such ML systems to an OS kernel would be impractical, because an OS is a highly

constrained and unforgiving environment. Thus, we chose to develop an ML framework from

scratch—designed for low-overhead, light-weight, and highly tailored to OSs and storage systems

and OS developers.

User
Kernel

ML enhanced
OS/Storage
component

App.ko
k-MLib.ko

Data collection
/ training

inference/
predictions

User

Kernel

ML enhanced
OS/Storage
component

App
u-MLib.a

Data collection

inference/
predictions

Trace

k-MLib.ko
App.ko

training

[]w []w
[]w

(a) (b)

Fig. 1. Two different operational modes that we built to achieve a high efficiency ML framework for tuning
OS-level storage systems: (a) kernel space training and inference and (b) offline user space training and kernel
space inference.

KML high-level design choices. Figure 1 demonstrates two different operating modes that we built.

KML supports (a) in-kernel training and inference and (b) user space offline training and in-kernel

inference. Once a model is built in user space, it can be loaded into the kernel as is. KML has a highly

modular design: the core ML code base is shared by both user and kernel space. Operation mode

(a) is designed for performance and accuracy, especially under high-I/O rates, because collecting

and copying lots of I/O event data out of the kernel imposes high overheads. Operation mode (b) is

designed to simplify ML model development for OS/storage developers. Users can develop and test

an ML model design more easily in user space, testing different features, ML architectures, and

hyper-parameters to reach a stable and accurate model.

2.1 Design Overview
Easy to develop and extend. In Figure 1(b), KML is compiled and linked with an application for

both kernel and user space. u-MLib.a and k-MLib.ko are built using the same KML source code.

We developed a wrapper layer for the KML development API: KML’s core code is uniform across

both user and kernel APIs. This identical abstraction speeds up development, eases debugging, and

facilitates extensibility (see Section 2.3). Nevertheless, we recognize that while we aim to make

ML-based solutions easier to use, developers still require a good understanding of OS and storage

system internals.

Low overhead. To make ML approaches practical for storage systems, they must have low compu-

tational and memory overheads. ML solutions have three phases that consume much memory/CPU

resources: (i) inference (i.e., prediction), (ii) training, and (iii) data processing & normalization.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 I. Akgun et al.

We support asynchronous training and inference capabilities to reduce interference on the data

path; KML also uses efficient communications between the data collection and model training &

inference components, to help scalability and stability of ML-based designs. To reduce the data

collection overheads, developers can facilitate subsampling techniques that are provided in KML.

We detail our design choices to reduce these overheads in Section 2.4.

2.2 Fundamentals of Core ML library
KML provides primitives for building and extending ML models. This involves building algorithms

for training ML models (e.g., back-propagation, decision-tree induction) and building the mathe-

matical functions needed to implement them. The library design allows for seamless extensibility

of library functionality. Additionally, our ML functionality is easily debugged in user space as it

uses identical code and APIs in kernel space.

Mathematical and matrix operations. Most ML algorithms rely heavily on basic mathematical

functions and matrix algebra. For example, a neural network classifier uses functions such as matrix

multiplication/addition, softmax, and exponentiation. Hence, we implemented kernel versions of

such common ML functions using well known approximation algorithms.

Layer and loss-function implementations. One can think of a neural network as a composition

of layers and one or more loss functions. Many of these building blocks are used across many

different neural network architectures. Layers like a fully connected layer, ReLU [66], or sigmoid

are essential building blocks of many neural networks; loss functions are also fairly common

across many applications. Both layers and loss functions implement two main functionalities, one

during the inference (forward) phase and another during the back-propagation (training) phase.

We implemented these common components and their forward and back-propagation functionality

from scratch in KML: layer/loss functions, data structures related to the layer/loss, etc.

Inference and training. When stacked together, the elements of a conventional neural network can

form a DAG. Thus, a neural network inference means traversing the DAG starting from the initial

node(s) (where the inputs are provided), toward the resulting nodes (where the neural network

output is produced). KML implements a standard training method used in neural networks—back-

propagation [78]. KML also includes Stochastic Gradient Descent (SGD) which uses the gradients

computed using back-propagation to optimize the neural network weights.

2.3 KML’s Modular Design
We now elaborate on KML’s operation modes: (i) in-kernel training and inference (see Figure 1(a)),

and (ii) user space training and in-kernel inference (see Figure 1(b)).

Training in kernel space. We use the readahead use case to describe how KML works in kernel

training and inference mode. Figure 2 shows KML’s framework (k-MLib.ko), a KML application

(readahead.ko), and target storage components (Block device and Memory Management subsys-

tems). The yellow background denotes KML related components. The blue background depicts the

target storage components, which are specific to the readahead case. The green line represents

execution and data flow. Numbered boxes refer to transitions happening between the components.

As we mentioned in Section 1, we designed our use cases based on a continuous observe-and-tune
principle. In its first stage, the readahead module observes and collects data. Since our target

component is the memory management (e.g., page cache) system, the readahead module starts

collecting data from this component (Figure 2 ①). The readahead module then extracts features

and transfers them to the KML framework to be normalized (Figure 2 ②). After the data processing

and normalization stage is done, if the readahead module is operating in training mode, it trains

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:5

User
Kernel

Memory Management
(filemap, page-writeback)

data collection

readahead.ko

k-MLib.ko

Data
normalization

KML interface

Block device

Applications

system calls /
memory mapped I/O

feature data
processing

train /
inference

struct page *,
struct inode *

#pages
#sectors

Model
data

1

2

3

5
4

Fig. 2. KML kernel space training and inferencing architecture.

on the normalized data, and the execution flow ends here. However, if the readahead module is

operating in inference mode, it feeds the normalized data to the readahead neural network model

and tunes the target components based on the model’s prediction (Figure 2 ③).

How a KML application optimizes a target component depends on the problem and its solution.

Here, the readahead module updates readahead sizes on a per-file basis (Figure 2 ④) or a per-device

basis (Figure 2 ⑤). When the readahead module is inferencing, execution flow forms a closed-circuit.
After the readahead module changes readahead sizes, OS memory state changes; thereafter, new

inputs go to the readahead neural network model, leading to updated predictions. Therefore, ML is

particularly suitable to solve problems that require an ongoing cycle of observing and tuning.

In the ML ecosystem, data collection is a crucial part. One reason we offer kernel training is

to train on data collected with a high sampling rate. Tracing OSs and storage systems with high

accuracy and sampling rates is challenging [5]. Nevertheless, tracing tools like LTTng [63] can

bring overhead down to as little as 5%. Additionally, traces may still be inaccurate due to data loss.

LTTng collects trace data in shared user/kernel lockless circular buffers; under heavy sampling

loads, some trace events can be dropped if LTTng’s user-level processing threads do not consume

the samples fast enough. However, operating in kernel space gives KML more control over thread

scheduling to reduce loss of sampled events. Since our use cases may require high sampling rates for

I/O events, placing data processing and normalization in user space would lose too much valuable

data than in the kernel. Still, we believe a user-kernel co-operated design may be beneficial in some

cases (part of our future work).

Training in user space. Building ML solutions is an iterative process. To find the essential features

and build accurate models, we need to run multiple data analyses, train, then test an ML model

with different architectures and hyper-parameters. To speed up model development and debugging,

KML offers offline user-space training and kernel inferencing mode (see Figure 1(b)). As KML’s

user- and kernel-space libraries use the same APIs and code base, models trained in user space can

be loaded into the kernel as is.

Figure 3 shows how the readahead model works in operation mode. Components highlighted in

yellow represent KML-specific implementations. The red arrows denote the offline data collection

and training paths.

We started by collecting training data using in-kernel tracing of the target storage components [5].

Next was feature-extraction; this is where user-space training was useful, because we could run

various analyses, test different features, and implement many data-normalization techniques

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 I. Akgun et al.

User
Kernel

I/O Workloads

readahead.ko

training
data collection

 Train data

KML interface

train

Data processing and
normalization kml.a

save model
[]w []w
[]w

data
processing

 Trace data
Memory Management

(filemap, page-writeback)

readahead

instance

Fig. 3. KML user-space training & kernel-space inference architecture.

without re-running I/O experiments. After we finalized the feature selection, we trained and tested

the readahead ML model in user space, varying several hyper-parameters; we used Tune [59] to

optimize our hyper-parameters. When the readahead ML model was ready for real-time testing,

the only remaining step was to save the trained model to a KML-specific file and load it into the

readahead kernel module. KML APIs facilitate all the functionality necessary for building, training,

saving, and deploying ML models in-kernel.

To ensure identical kernel and user APIs, we use wrappers to abstract external functionality.

KML’s development API provides 30 functions that fall into five categories: (i) memory management,

(ii) threading, (iii) logging, (iv) atomic operations, and (v) file operations. For example, we have a

simple wrapper called kml_malloc that calls malloc in user-level and kmalloc in kernel space. For

brevity, full API details and prototypes are omitted, but are included as part of our released code

(see Section 2.6); Table 1 presentes a few examples of the KML API.

loss *build_loss(void *internal, loss_type type);
void add_layer(layers *existing_layers, layer *new_layer);
void create_async_thread(model_multithreading *multithreading,

model_data *data, kml_thread_func func, void *param);
sgd_optimizer *build_sgd_optimizer(float learning_rate,

float momentum, layers *layer_list, loss *loss);

Table 1. KML API examples

2.4 Computational & Memory Overheads
OSs and storage systems are susceptible to performance degradation and increased latency if

computational and memory resources are not carefully managed. Therefore, we designed KML

with efficient CPU and memory usage in mind. There is often a positive correlation between the

computational and memory footprint of an ML model and its training and inference accuracy.

Hence, KML is highly configurable, letting users trade-off overheads vs. prediction accuracy to best

suit the problem at hand.

Reducing computational overheads. Matrix manipulation is a computationally intensive ML

building block that relies on floating-point (FP) operations. OSs often disable the floating-point unit

(FPU) in the kernel to reduce context-switching overheads. To address this, we considered three

approaches: (1) quantization, (2) fixed-point representations, and (3) temporarily enabling the FPU

unit in kernel space. Quantization provides compact representation, allows developers to compute

matrix manipulation operations, and does not require an FPU [21, 25, 37, 40, 79]. Quantization

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:7

can help reduce computational and memory overheads, but it reduces accuracy [43]. Fixed-point

representation computes FP operations using integer registers. Since all FP operations are emulated,

integration of fixed-point representation is fairly easy and even faster in certain cases [19, 60].

However, fixed-point representation works within fixed ranges which can result in numerical

instability [53]. Since both accuracy and stability are vital KML design goals, we chose a third

alternative: KML temporarily enables the FPU in the Linux kernel using kernel_fpu_begin and

kernel_fpu_end. To avoid context-switch overheads, we minimize the number of code blocks that

use FPs and keep these blocks small.

Reducing memory overheads. Three factors affect KML’s dynamic memory consumption: (1) ML

model-specific data, (2) KML’s internal memory allocations at training and inference, and (3) data

collection for both training and inference. ML model-specific data and KML’s internal memory

usage depends on the number of layers, layer sizes, and layer types. KML uses dynamic memory

allocation for all internal usage purposes (e.g., layer gradients); this helps reduce interference and
memory pressure. KML gathers input data in a lock-free circular buffer; then, an asynchronous
training thread trains on gathered data. When collecting data with a high sampling rate, the size

of the lock-free circular buffer is important to the ML model’s performance and accuracy. Users

need to configure the size of the circular buffer to account for the data sampling rate such that

the asynchronous training thread can catch up with processing. If the size of the circular buffer

is misconfigured, KML may lose useful training data, which can reduce the resulting ML model’s

accuracy.

Operating under resource-constrained conditions. KML exposes a memory allocation and reserva-
tion API for ML internals. The primary motivation behind KML’s memory reservation capabilities

is to ensure predictable performance and accuracy, even under memory pressure. This allows KML

to operate without worry of memory allocation lagging or failing, which would hurt performance

and accuracy.

Data processing & asynchronous training. To make ML solutions generalizable, data normaliza-

tion is often utilized. KML supports data normalization functionalities such as moving average,

standard deviation, and Z-score calculation. However, data normalization often requires heavy

FP computation. Thus, KML supports offloading training, inference, and data normalization to

a separate asynchronous thread—away from the data path itself. This thread communicates with

other KML components (e.g., data collection) using a lock-free circular buffer. By default, we let

Linux schedule this kthread as needed; KML also supports pinning the kthread to a CPU core, to

ensure it gets higher scheduling priority when high sampling rates are required.

Subsampling is another viable solution to reduce data collection overheads, which KML supports.

However, subsampling can reduce prediction accuracy, so care is needed to select a suitable sampling

rate. In Section 4.3 we evaluate the impact of subsampling windows on overheads, prediction

accuracy, and overall I/O performance.

2.5 Stability & Explainability
Both the training and inference phases for ML solutions can be computationally intensive. Except

for model initialization and saving models to files, KML APIs involve no other I/Os. KML’s impact

on the stability of storage performance is limited to memory-allocation latency and concurrency.

Memory allocations in both user and kernel space can use locking mechanisms, which could incur

unexpected latencies. To minimize these problems, KML allocates memory only in the asynchronous

training thread. KML uses a lock-free circular buffer for data communication and reserves 512 bytes

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 I. Akgun et al.

of additional memory to further ensure stability under memory-pressure conditions. Lastly, we

applied standard k-fold cross validation techniques to ensure the stability of our ML solutions.

ML solutions can suffer from unexpected behavior and are harder to explain. Conversely, tra-

ditional heuristics have well-defined behaviors often expressed as closed-form formulas. An ML

algorithm may behave erratically when used in new, unforeseen settings, which could hurt sys-

tem performance where ML is deployed. This type of issue is difficult to troubleshoot due to the

long-standing explainability problems that affect ML models [3]. KML currently supports two

ML models: neural networks and decision trees. Decision tree predictions are more explainable

because they are represented as a tree of successive if-then statements, bisecting the range of the

features considered. Deep neural networks, however, are more challenging to explain and verify.

Nevertheless, recent work focuses on explainability in ML [3, 44, 74, 80]. While we plan to improve

KML model stability using feedback-based control algorithms in the future, we currently focus on

demonstrating that ML can tune storage system parameters better than existing heuristics.

2.6 Implementation
KML contains 12,213 lines of C/C++ code (LoC). KML’s core ML part has 5,539 LoC, which can

be compiled in both user and kernel space. Our readahead neural network model code is nearly

1K LoC long: 486 LoC for collecting data, initializing the model, creating an inference thread, and

changing block-level and file-level readahead sizes; and another 351 LoC for model definition, data

processing, and normalization. Our NFS neural network model also includes nearly 1K LoC: 435

LoC for data collection, model initialization, and running inference to predict workload type; and

338 LoC for creating the model and manipulating data.

All of our code has been released on GitHub (https://github.com/sbu-fsl/kernel-ml), which includes
examples, sample data, models, and full API documentation (all 30 methods).

3 USE CASES
We now detail our two use cases: (1) readahead neural network and decision tree models and (2)

NFS neural network model. We describe the following for each: (i) problem definition, (ii) data

collection for training, (iii) data preprocessing and feature extraction, and (iv) building the ML

model.

3.1 Use Case: Readahead
Problem definition. Readahead is a technique to prefetch an additional amount of storage data

into the OS caches in anticipation of its use in the near term. Determining how much to read ahead

has always been challenging: too little readahead necessitates more disk reads later and too much

readahead pollutes caches with useless data—both hurt performance. The readahead value is a

typical example of a storage system parameter: while tunable, it is often fixed and left at its default.

Some OSs let users pass hints via fadvise and madvise to help the OS recognize files that will be

used purely sequentially or randomly, but these often fail to find optimal values for varied, mixed,

or changing workloads. Next, we detail our readahead neural network design (following Figure 3).

Our goal is to predict optimal readahead sizes while running under dynamic I/O workloads.

Studying the problem. We experimented with running 4 different RocksDB [34] benchmarks,

each with 20 different readahead sizes (8–1024), and attempted to determine the readahead sizes

that yield the best performance (in ops/sec) for each workload. This became our training data,

which can help predict readahead values for other workloads and environments. This investigation

revealed that each workload has a unique behavior and requires a different readahead size to

reach optimal performance. We further investigated the correlations between file access patterns,

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/sbu-fsl/kernel-ml

Improving Storage Systems Using Machine Learning 1:9

RocksDB workload labels, and performance. This helped us determine the information and features

needed to build a good model, as described below.

Data collection. We used LTTng [63] to collect trace data, which we then used for finding

useful features for the readahead problem. We captured most page cache tracepoints [28] (e.g.,
add_to_page_cache, writeback_dirty_page). We collected and processed over 20GB of traces by

running multiple 10-minute RocksDB benchmarks on an NVMe-SSD device. Ten minutes was

sufficient for RocksDB to reach a steady state. After examining these traces, we selected a set of

candidate features based on our domain expertise. We then picked the features of interest and

decided where to call hook functions which are responsible for gathering necessary information

(e.g., struct page) for inference. Our hook functions provide three important raw values: (1) time

difference from the beginning of execution, (2) inode number, and (3) page offsets of the files that

were accessed in locations where the hooks were called.

Data preprocessing & normalization. We summarize the input data at one-second intervals to

ensure we can quickly adapt to changing I/O workloads while ensuring stability under short-term

activity spikes. Based on our domain expertise, and through model experimentation, we selected

the following five features for our model: the number of transactions taking place each second,

the calculated cumulative moving mean and the cumulative moving standard deviation of page

offsets, the mean absolute page offset differences for successive transactions, and the inode number

(to ensure we process only RocksDB file accesses). Before we fed these features to our readahead

neural network, we applied Z-score normalization to each feature.

Building ML solutions for OS problems requires domain expertise on the target OS module. To

this end, we have investigated what features best fit the readahead problem. For example, our own

intuition led us to select features based on how fast I/O requests can be processed and what type of

access patterns emerge. Similar features have been used for workloads characterization or other

purposes before [9, 77, 81, 84]. During the feature-extraction period for the readahead problem, we

tried various features and reduced them using feature importance analysis [71, 72].

SATA-SSD readrandom
SATA-SSD rwrandom
SATA-SSD readseq
SATA-SSD readreverse
NVMe-SSD readrandom
NVMe-SSD rwrandom
NVMe-SSD readseq
NVMe-SSD readreverse

Fig. 4. t-SNE visualization of readahead normalized features that are generated from both NVMe-SSD and
SATA-SSD traces. Axes are intentionally omitted because the dimensions are generated by t-SNE and do not
represent any specific data.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 I. Akgun et al.

Whywe chose machine learning for this use case. After studying the readahead problem, wewanted

to explore whether machine learning would be suitable for solving this problem or whether more

traditional heuristics could still work. Therefore, while extracting features from collected traces,

we visualized the features to investigate what type of patterns and clusters the data has. Figure 4

shows a t-SNE [96] visualization of normalized features that are generated from both NVMe-SSD

and SATA-SSD traces. t-SNE is a visualization technique that applies dimension reduction and is

often used for representing high-dimensional data and cluster identification. We can observe that

sequential and randomworkloads are somewhat separated; alas, data points from the sameworkload

type are distributed over multiple clusters, overlapping clusters of other types. Worse, random

workloads’ clusters overlap with some sequential workloads’ clusters, because RocksDB’s warm-up

phases involve mostly sequential accesses—another source of dynamism. All these findings strongly

suggest that workload classification for the readahead problem would be fairly challenging using

traditional heuristics. Hence, we felt motivated to explore ML solutions to solving the readahead

problem.

Building neural network model. We modeled the readahead problem as a classification problem

and designed a neural network with three linear layers (with hidden layer sizes of 5 and 15), using

sigmoid non-linearities in between layers, and with a cross-entropy loss method as the loss function.

We used an SGD optimizer [47, 76], and set a learning rate of 0.01 and a momentum of 0.99 after

trying different values; all these values are common in the literature [10]. We also used Tune [59]

to optimize the learning rate and momentum. We approached the readahead problem by modeling

it as a regression problem. Due to the large search space for readahead sizes, we could reach a

similar prediction accuracy only with large regression models. Thus, the large regression model

for the readahead problem has higher computational and memory overheads, which conflicted

with our desire and vision of designing efficient machine learning approaches for storage systems.

Our readahead neural network trains on the aforementioned input data and predicts the workload

type. We trained on the following four types of RocksDB workloads on NVMe-SSD because they

provide a diverse combination of random and sequential operations: (i) readrandom, (ii) readseq,

(iii) readrandomwriterandom, and (iv) readreverse. Class frequencies were close, suggesting that

classification accuracy is a good metric to evaluate the performance, with the least frequent class

being 21.4% and most frequent class being 28.8%.

We tested the neural network’s performance with the aforementioned data via k-fold cross

validation with 𝑘 = 10, and found out that it achieved an average accuracy of 95.5%. We also

analyzed the contribution of each feature to the classification performance; we randomized the

order of a feature of interest across samples in the validation dataset, and then calculated the

10-fold validation performance [11]. Using Pearson correlation analysis [71], we found that two

features were highly correlated: the cumulative moving standard deviation and the cumulative

moving mean of page offsets. Including both would have over-emphasized their importance in this

analysis, so we excluded the cumulative standard deviation of page offsets. Cross validation results

were 69.6%, 76.4%, 42.6%, and 89.1% for number of transactions, cumulative moving mean of page

offsets, mean absolute page offset differences, and current readahead value, respectively. This shows

that mean absolute page offset differences is the most important feature, because randomizing its

order reduced the validation results the most (down to 42.6%)—followed by number of transactions,

cumulative moving mean of page offsets, and finally the currently used readahead value.

After obtaining classification predictions, we set the empirically determined optimal readahead

sizes according to the predicted workload type. For example, the optimal readahead value for

readrandom is 16 and for readseq is 640. Experiment details and the optimal readahead values for

all the workloads are included in our code base, released via GitHub. In Section 4.4, we evaluate

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:11

the readahead neural network not only on workloads we trained on but also on workloads that

were not included in the training data and workloads running on different devices (NVMe vs. SATA

SSDs).

Figure 4 shows that the same type of workloads for SATA-SSD vs. NVMe-SSD are not placed in the

same clusters all the time. We use neural network input data that is generated only from an NVMe-

SSD to train the readahead neural network; nevertheless, we still get significant performance

improvement even for SATA-SSDs (see Section 4.4). This indicates that our readahead neural

network is indeed learning higher-level abstractions about the workloads, one that traditional

heuristics would struggle with.

Finally, we also experimented with the readahead neural network using TPC-H [94] queries

running onMySQL [69] to show how our readahead neural network behaves on completely different

types of workloads and applications and how generalizable the models are.

X[3] <= -0.349
gini = 0.749
samples = 422

value = [109, 97, 112, 104]

X[0] <= -0.712
gini = 0.499
samples = 216

value = [0, 0, 112, 104]

True

X[3] <= -0.297
gini = 0.498
samples = 206

value = [109, 97, 0, 0]

False

X[3] <= -0.375
gini = 0.241
samples = 100

value = [0, 0, 14, 86]

X[2] <= 1.381
gini = 0.262
samples = 116

value = [0, 0, 98, 18]

X[4] <= -0.986
gini = 0.044
samples = 88

value = [0, 0, 2, 86]

gini = 0.0
samples = 12

value = [0, 0, 12, 0]

X[3] <= -0.399
gini = 0.18
samples = 20

value = [0, 0, 2, 18]

gini = 0.0
samples = 68

value = [0, 0, 0, 68]

gini = 0.0
samples = 18

value = [0, 0, 0, 18]

gini = 0.0
samples = 2

value = [0, 0, 2, 0]

gini = 0.0
samples = 84

value = [0, 0, 84, 0]

X[0] <= -0.397
gini = 0.492
samples = 32

value = [0, 0, 14, 18]

X[0] <= -0.579
gini = 0.18
samples = 20

value = [0, 0, 2, 18]

gini = 0.0
samples = 12

value = [0, 0, 12, 0]

gini = 0.0
samples = 2

value = [0, 0, 2, 0]

gini = 0.0
samples = 18

value = [0, 0, 0, 18]

X[3] <= -0.299
gini = 0.375
samples = 24

value = [18, 6, 0, 0]

X[0] <= 2.207
gini = 0.5

samples = 182
value = [91, 91, 0, 0]

X[3] <= -0.3
gini = 0.5
samples = 12

value = [6, 6, 0, 0]

gini = 0.0
samples = 12

value = [12, 0, 0, 0]

X[0] <= 0.375
gini = 0.48
samples = 10

value = [6, 4, 0, 0]

gini = 0.0
samples = 2

value = [0, 2, 0, 0]

X[3] <= -0.305
gini = 0.444
samples = 6

value = [2, 4, 0, 0]

gini = 0.0
samples = 4

value = [4, 0, 0, 0]

gini = 0.0
samples = 3

value = [0, 3, 0, 0]

gini = 0.444
samples = 3

value = [2, 1, 0, 0]

X[0] <= 1.926
gini = 0.5

samples = 177
value = [91, 86, 0, 0]

gini = 0.0
samples = 5

value = [0, 5, 0, 0]

X[0] <= 1.422
gini = 0.499
samples = 148

value = [70, 78, 0, 0]

X[4] <= 1.297
gini = 0.4
samples = 29

value = [21, 8, 0, 0]

X[3] <= -0.291
gini = 0.497
samples = 126

value = [68, 58, 0, 0]

X[0] <= 1.706
gini = 0.165
samples = 22

value = [2, 20, 0, 0]

X[1] <= -0.189
gini = 0.18
samples = 10

value = [9, 1, 0, 0]

X[4] <= 1.297
gini = 0.5

samples = 116
value = [59, 57, 0, 0]

gini = 0.0
samples = 1

value = [0, 1, 0, 0]

gini = 0.0
samples = 9

value = [9, 0, 0, 0]

X[0] <= 1.108
gini = 0.499
samples = 110

value = [58, 52, 0, 0]

X[2] <= -0.109
gini = 0.278
samples = 6

value = [1, 5, 0, 0]

X[3] <= -0.287
gini = 0.5

samples = 101
value = [51, 50, 0, 0]

X[4] <= 0.85
gini = 0.346
samples = 9

value = [7, 2, 0, 0]

gini = 0.0
samples = 4

value = [4, 0, 0, 0]

gini = 0.5
samples = 97

value = [47, 50, 0, 0]

gini = 0.0
samples = 7

value = [7, 0, 0, 0]

gini = 0.0
samples = 2

value = [0, 2, 0, 0]

gini = 0.0
samples = 1

value = [1, 0, 0, 0]

gini = 0.0
samples = 5

value = [0, 5, 0, 0]

gini = 0.0
samples = 18

value = [0, 18, 0, 0]

gini = 0.5
samples = 4

value = [2, 2, 0, 0]

X[1] <= -0.097
gini = 0.117
samples = 16

value = [15, 1, 0, 0]

X[1] <= -0.124
gini = 0.497
samples = 13

value = [6, 7, 0, 0]

X[1] <= -0.134
gini = 0.278
samples = 6

value = [5, 1, 0, 0]

gini = 0.0
samples = 10

value = [10, 0, 0, 0]

gini = 0.0
samples = 5

value = [5, 0, 0, 0]

gini = 0.0
samples = 1

value = [0, 1, 0, 0]

gini = 0.0
samples = 5

value = [0, 5, 0, 0]

X[3] <= -0.293
gini = 0.375
samples = 8

value = [6, 2, 0, 0]

gini = 0.0
samples = 4

value = [4, 0, 0, 0]

gini = 0.5
samples = 4

value = [2, 2, 0, 0]

Fig. 5. A readahead decision tree is built to classify RocksDB workloads running on a NVMe-SSD backed
device. Colors denote workload classes: orange for readrandom workload, green for rw-random, blue for
readseq, and purple for readreverse.

Decision-tree models. We also built a decision-tree (DT) model for workload type classification

based on the same features and training data. The readahead DT model contains 59 nodes with a

maximum depth of 9 (see Figure 5). We tested the prediction accuracy of this DT using the same

procedure with the readahead neural network (10-fold cross-validation), and observed that it results

in an average prediction accuracy of only 75.4%. In the readahead decision-tree model, decisions

are made based on features. For example, the decision at the root node is whether the Z-score of

the mean absolute page offset was less than or equal to −0.349 (represented as 𝑋 [3] <= −0.349).
Even though the worst case of classifying a particular readahead workload takes nine if-then

decisions, we can observe that the readahead decision-tree model can separate sequential from

random workloads in only two levels of decision making; however, this speed of recognition comes

at a significant cost of accuracy. As mentioned in Section 2.5, KML supports DTs because DTs trees

are more explainable than neural networks and run considerably faster. Although the decision trees

are more explainable, it is still hard to interpret the readahead decision tree model. The reason is

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 I. Akgun et al.

that the values at each node have been normalized to avoid overfitting and numerical instability,

and such normalization loses the original values. It is possible that given a normalized input data,

we can get the original value and improve the explainability of the decision-tree path. Nevertheless,

even with an improve explainability, the readahead neural network model proved more accurate.

While it would be useful to have both high predictive power and explainability, faced with a choice

between the two, we believe that prediction accuracy that leads to improved throughput is more

valuable to end users than explainability. We evaluated the readahead DT using the same procedure

as the neural networks (Section 4.4).

Readahead in per-file basis. So far, we have shown how we approach the readahead problem when

a single I/O workload is accessing one device. Storage system developers recognize the challenge

of handling mixed storage workloads running on the same system—a common occurrence [8]. In

that case, readahead values cannot be set at the device level, as that would be suboptimal in mixed

workloads. Instead, readahead values should be set at a higher abstraction level, on a per-file basis.

To show our neural network’s versatility, we use the same model to tune readahead sizes not only

on a per-disk basis but also on a per-file basis. Whereas before we ran inference every second and

set one readahead value for an entire device, here we ran inference every second on each open file

and set a readahead value directly in Linux’s struct file. We evaluated the per-file basis approach

and found that it could predict and improve I/O throughput for mixed workloads better than both

the vanilla and per-disk basis approaches (see Section 4.4).

3.2 Use Case: NFS rsize
Problem definition. Networked storage systems such as NFS are popular and heavily used. NFS is

used for storing virtual machine disks [65], hosting NoSQL databases [89], and more. A misconfig-

uration of NFS can hurt performance. We experimented with different applications using NFS and

found out that one critical NFS configuration parameter is the rsize—default network read-unit

size. Hence, we focus on predicting an optimal NFS rsize value based on workload characteristics.

Studying the problem. We tested NFS using the same methodology as for readahead. The only

difference here is tuning rsize instead of readahead. We used NFSv4 for all of our tests. The NFSv4

implementation we used supports only seven different rsize values (4K–256K). However, in the NFS

use case, there are additional external factors not present in the readahead problem that can affect

I/O performance (e.g., NFS server configuration, network speed, and number of clients connected

to the same server). We experimented with four different RocksDB benchmarks under different

NFS server configurations and network conditions. We configured our server with two different

NFS mount point options—one backed by NVMe-SSD and one backed by SATA-SSD. We injected

artificial network delays to simulate slower networks. Our experiments revealed that random and

sequential workloads require different rsize values to achieve optimal performance.

Data collection. We enabled NFS and page-cache related kernel tracepoints to collect training

data (e.g., nfs4_read, nfs4_readpage_done, vmscan_lru_shrink_inactive, and add_to_page_cache).

Unlike the readahead neural network model, we collected data from tracepoints not only to model

page cache behavior, but also network conditions. Similarly studying these traces, we chose our

feature set and placed our hook functions. Our feature set includes eight features (described below)

which are calculated using the following five data points: (i) time difference from the beginning

of execution for each tracepoint transaction, (ii) NFS file handles, (iii) file offsets in NFS requests,

(iv) page offsets of the files that were accessed, and (v) number of reclaimed pages during LRU

scans.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:13

Data preprocessing & normalization. We applied the same data preprocessing and normalization

techniques that we used for the readahead neural network. The NFS neural network model consists

of eight featureswhich are computed every second: (1) number of tracepoint transactions, (2) average

time difference between each nfs4_read and nfs_readpage_done matching pair, (3) average time

difference between each consecutive nfs4_read request, (4) average time difference between each

consecutive nfs4_readpage_done request, (5) mean absolute requested offset difference between each

consecutive nfs4_read request, (6) mean absolute page offset difference between each consecutive

add_to_page_cache, (7) average number of reclaimed pages, and (8) current rsize.

Neural network model. We trained and tested our NFS neural network model using the same

methodology as the readahead problem; for brevity, we detail only the differences between the

neural network models. We approached the NFS problem as a workload characterization problem

and constructed our NFS neural network model with four linear layers (with hidden layer sizes

of 25, 10, and 5) with sigmoid activation functions in between. Similar to the readahead neural

network, we used cross entropy as the loss function and SGD as the optimizer. We evaluated the

NFS neural network model and found out that it results in a prediction accuracy of 98.6% (using

10-fold cross-validation).

4 EVALUATION
Our evaluation proceeds as follows: First, we explain our evaluation goals in Section 4.1. We then

describe the testbed design and benchmarks that we used to evaluate the readahead and NFS rsize

neural networks in Section 4.2. In Section 4.3 we provide performance details regarding KML’s

training and inference. Section 4.4 shows how the readahead ML models improve performance.

Finally, in Section 4.5, we present our evaluation of the rsize neural network model for NFS.

4.1 Evaluation Goals
Our primary evaluation goal is to show that using ML techniques inside the OS can be used to to

tune parameters dynamically and improve storage systems’ performance.

We start by showing the practicality of using ML in kernel space. We evaluate KML’s system

overheads in terms of (i) data collection overhead, (ii) training cost, (iii) inference cost, and (iv)

memory usage. Then, we evaluate both readahead and NFS neural network models to show how

they improve the I/O performance and quickly adapt the system in the presence of changing

workloads and conditions. To show that our models can learn abstract workload patterns, we first

present the generalization power of our models by testing it on workloads not included in the

training dataset. Next, we present benchmarks on a device type that was not used in the data

collection phase or training. We also built a decision tree model for the readahead problem to have

comparable results since decision trees are more explainable, still popular, and closer in operation

to traditional heuristics.

Furthermore, we evaluate KML’s versatility by applying the readahead neural network model on

a per-file basis. This demonstrates KML’s ability to optimize individual I/Os in a mixed workload.

Lastly, we evaluate our readahead ML models’ behavior when they mispredict and how quickly

they recover.

4.2 Testbed
We ran the benchmarks on two identical Dell R-710 servers, each with two Intel Xeon quad-core

CPUs (2.4GHz, 8 hyper-threads), 24GB of RAM and an Intel 10GbE NIC. In some experiments, we

intentionally configured the systemwith only 1GB ofmemory to forcemorememory pressure on the

I/O system; but we also show experiments with the full 24GB of system RAM. We used the CentOS

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 I. Akgun et al.

7.6 Linux distribution. We developed KML for Linux kernel version 4.19.51, the long-term support

stable kernel; we added our readahead ML models to this kernel and used it in all experiments.

Because HDDs are becoming less popular in servers, especially when I/O performance is a concern,

we focused all of our experiments on SATA and NVMe SSDs. We used Intel SSDSC2BA200G3 200GB

as our SATA-SSD device and a Samsung MZ1LV960HCJH-000MU 960GB as our NVMe-SSD device,

both formatted with Ext4. These two devices were used exclusively for RocksDB databases. To

avoid interference with the installed CentOS, the two servers have a dedicated Seagate ST9146852SS

148GB SAS boot drive for CentOS, utilities, and RocksDB benchmark software. We used 10GbE

switches to connect the machines (useful for NFS experiments). We observed an average RTT time

of 0.2 milliseconds.

Benchmarks. We chose RocksDB’s db_bench tool to generate diverse workloads for evaluating the

readahead and NFS rsize neural networks. RocksDB [34] is a popular key-value store and covers

an important segment of realistic storage systems; db_bench is a versatile benchmarking tool that

includes a diverse set of realistic workloads. Workloads can be run individually or in series, and the

working set (database) size can be easily configured to generate more I/O pressure on a system. On

the 1GB RAM systems, we configured a RocksDB database of twice the size (2GB). Choosing the

data set size to be twice the size of memory is a well known “rule of thumb” configuration to create

a realistic strorage cache behavoir [91]. The two main reasons why we choose this configuration are

(1) to ensure that benchmarks can generate enough I/O operations that would not be merely cached

in memory and (2) to reduce the time of executing all benchmarks considerably. Nevertheless, one

may consider a system with only 1GB RAM as not a realistic system configuration. Therefore, we

also executed all the benchmarks in this article with a 56GB RocksDB database running on the

same system configured with 24GB RAM. The results are showing similar improvements and there

are no significant performance-trend differences (see Section 4.4). Neverthless, because we ran

experiments with more RAM and for a longer period of time, we noticed some interesting findings

which are explained in Section 4.4.

To demonstrate that our ML models can learn from and optimize for different types of real-world

workloads, we chose the following six popular yet different db_bench workloads: (1) readrandom,

(2) readseq, (3) readrandomwriterandom (alternating random reads and writes), (4) readreverse,

(5) updaterandom (read-modify-write in random offsets), and (6) mixgraph (a complex mix of

sequential and random accesses, based on Facebook’s realistic data that follow certain Pareto and

power-law distributions [16]).

We trained our readahead neural network on traces that contain only four of these workloads:

readrandom, readseq, readreverse, readrandomwriterandom—all running only on the NVMe-SSD.

These four tend to be the simpler workloads, because we wanted to see whether KML can train on

simpler workloads yet accurately predict on more complex workloads not trained on. This also

ensures a balanced representation of randomness and sequentiality in the training dataset.

After the training phase completed, we tested our models on all six workloads as well as different

devices. This was done to show that our models not only perform accurate predictions on the

training set samples, but they also generalize to two new and complex workloads (updaterandom

and mixgraph as well as a different device (SATA-SSD))—which were excluded from the training data.

We evaluated mixed workloads by running two concurrent db_bench instances, each on a separate

RocksDB database and using a different workload profile, both stored on the same device. We kept

the hardware configuration the same as before (1GB RAM) to increase system and page-cache

pressure.

We also experimented with our readahead network model using TPC-H [94] queries running

on MySQL [69], to evaluate how generalizable and effective the readahead neural network is to

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:15

an entirely different workload. In this article, we do not claim that our readahead neural network

model will work universally to optimize readahead values for all possible workloads. Rather, these

use cases are meant to demonstrate the KML framework’s versatility. With more workloads and

datasets, one can build a wide range of ML models to optimize many storage problems.

4.3 KML’s Overheads
An ML model’s overhead depends on its architecture. Generally, deeper or higher-dimensional

neural networks consume more memory and CPU than, say, decision-tree models. It is vital that an

ML component, especially one that may run inside the kernel, consume as little CPU and memory

as possible. Next, we evaluate the readahead neural network overheads.

Normalized to no sampling (X=1)

A

Subsampling window size (log)

B

C

Fig. 6. Performance (A), prediction accuracy (B) and CPU overheads (C) in seven different subsampling
window sizes for the per-disk readahead neural network. Upward green arrows denote that higher is better.

Data gathering overheads. The only inline operations that readahead neural network inserts

directly in the data path are data collection probes. Hence it is vital for these probes to be optimized.

Figure 6(C) shows how the data collection CPU overheads (percentage) change with subsampling

window sizes. When there is no subsampling in the system (𝑋 = 1), the CPU overheads of data

collection probes is as high as 0.18%. Although this is a fairly low overhead considering the

multiplicative I/O benefits we report, this overhead can be reduced further by increasing the

subsampling window. However, increasing the subsampling windows size can hurt prediction

accuracy and performance improvements, as less data is available to make rapid predictions. See

Figure 6(A) and (B). Figure 6(B) shows that workloads with a lot of randomness in them were the

least affected, because randomness is still predicted as random even with fewer samples; yet we

can reduce the already small CPU overheads even more.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 I. Akgun et al.

The figure further shows that only sequential workloads are affected by subsampling window

changes: generally, as the sampling window widens, prediction accuracy and normalized perfor-

mance worsen. However, we noticed an unexpected behavior for the readseq workload. Increasing

the subsampling window size from one to five or ten actually improved both prediction accuracy and
performance; this is because readseq keeps the I/O subsystem busy at near maximum bandwidth,

and increasing subsampling window size reduced short-term noise that resulted in more frequent

mispredictions.

readseq

mixgraph

Fig. 7. Distribution of total data collection overhead (milliseconds) in every second when readseq and
mixgraph workloads are running.

We can also observe that the data collection overheads depend on the workload type. For

example, readseq workload’s average data sampling frequency per-second is around 30K but its

data collection overhead is still lower than mixgraphworkload which has 20K average data sampling

frequency per-second. The reason that data collection overheads change based on the workload type,

is due to the sudden I/O bursts resulting in some cache misses. In Figure 7, we show the histograms

of the data collection overheads for the readseq and mixgraph workloads. We can observe that

the mixgraph histogram shows that data collection overheads for all data points are higher than

readseq. In addition, mixgraph’s data collection histogram displays outliers of add_to_page_cache

data collection point: these result due to cache misses caused by sudden I/O bursts.

Inference/training overheads. The readahead neural network performs inference (prediction) and

changes the block-layer readahead value in 21𝜇s on average (std. dev. < 10%). This action executes

in a separate, asynchronous kernel thread, once in every second. Hence, it has negligible impact

on the overall OS performance. When the readahead neural network runs in per-file mode, KML

runs inferences an average 135 times a second (i.e., one per open file): inferencing for all open

files consumes 1.7ms on average. We measured that the readahead decision tree inference takes

only 8𝜇s (using the same feature vector). The readahead neural network and decision tree have the

same data pre-processing and normalization implementation—the only difference between them

is in the inference part. Overall, these overheads are fairly small and acceptable, considering the

multiplicative I/O performance benefits they enable.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:17

As discussed in Section 3.1, our readahead neural network prototype offloads training to the user

level. We measured the time to perform one training iteration in user level at 51𝜇s on average; this

training iteration includes the forward pass, back-propagation, and weight update stages.

Memory overheads. The readahead neural network allocates 3,916 bytes of dynamic memory

during the model’s initialization phase. While inferencing, KML temporarily allocates 676 bytes

before returning the inference results. This overall memory footprint is negligible in today’s multi-

GB systems. The readahead decision tree occupies only 2,432 bytes of dynamic memory during

initialization. The decision tree model does not allocate dynamic memory during inference. Lastly,

the kernel module readhead.ko has a binary memory footprint of 432KB and the kernel module

nfs.ko is 636KB, while the KML framework itself (k-Mlib.ko) has a memory footprint of 5.5MB.

Practicality and scalability. Our vision is KML could enable a future where traditional heuristics

are gradually replaced with ML-based approaches to improve storage and network I/O performance.

In Section 4.4 we demonstrate, for example, that our readahead neural network model improves I/O

performance by as much as 2.3×, but consumes less than 0.2% additional CPU cycles: we believe

this is a fairly acceptable trade-off for most users. Nevertheless, we tested this model with 100

concurrent inferences and found that both overheads and I/O improvements have scaled linearly;

hence KML’s benefits still outweigh its overheads.

4.4 Readahead Evaluation
Readahead background. There are two places in the Linux kernel where readahead is defined:

the block layer and the file system level. When a file is opened, the VFS initializes an open struct

file and copies the readahead value for that file from the corresponding block layer. Upon a page

fault for that file, the page-cache layer uses the value stored in the file to initiate reading-ahead the

desired number of sectors of that file. However, the readahead value in the file structure is initialized

only once when the file is opened. So when KML changes the block layer readahead value, the

Linux kernel does not copy the new value to any file already opened. This means that open files

may continue to use a sub-optimal readahead value, even if better values are available (e.g., due to
workload changes). That is why we implemented a mechanism that changes the readahead size for

open files when KML changes the disk-level readahead value. This propagates newer readahead

values to each open file, improving our adaptability. Conversely, if KML mispredicts the workload

type and changes the readahead size to a sub-optimal value, short-term performance degradation

can happen, which might hurt overall performance.

Back-to-back workloads on NVMe. To show the readahead model’s ability to adapt to changing

workloads, we experimented with running different workloads back to back. We observed how the

readahead model reacted to the workload changes and tuned readahead values. Figure 8 shows four

workloads running back to back with each subfigure comparing a vanilla run (colored orange) to

our KML-enabled readahead run (colored blue). The readahead value was left at the default value

(i.e., 256) at the start of both vanilla and KML-enabled runs, but when the next workload started,

it used the last readahead value from the previous workload’s run (e.g., the readahead value at

the end of the leftmost subfigure is the same at the start of the subfigure immediately to its right).

This experiment evaluates KML’s ability to optimize the readahead values when the I/O workload

may change every few minutes. The X axes indicate the run time in minutes. The Y axes indicate

throughput in thousands of ops/sec (higher is better), and have different scales for each experiment.

The Y2 axes show the readahead values used or predicted by KML over time in terms of number of

sectors (denoted with a green line and using the same scale). Each workload ran 15–50 times in a

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 I. Akgun et al.

Fig. 8. Running four back-to-back RocksDB workloads in order from left to right: readsequential,
readrandom, readreverse, then mixgraph. Here, we started with the default readahead value; thereafter,
the last value set in one workload was the one used in the next run. For each of the four graphs, we show
their Y axes (throughput, different scales). The readahead value is shown as the Y2 axis for the rightmost
graph (d) and is common for all four. Each workload ran 15–50 times in a row, to ensure we ran it long enough
to observe patterns of mis/prediction and reach steady-state. Periodic spikes that we observed in readrandom
and mixgraph denote the experiments’ starting points because of multiple iterations of benchmarks. Again,
we see KML adapting, picking optimal readahead values, occasionally mis-predicting but quickly recovering,
hence overall throughput was better.

row, so it ran long enough to observe mis/predictions patterns. As seen in Figure 8, KML adapts

quickly to changing workloads by tuning the readahead value in about one second.

Althoughwe observe somemis/prediction patterns, seen as sudden spikes, overall throughput still

improved across all four runs, averaging 63.25% improvement: 140% improvement for readrandom,

2% for readsequential, 109% for mixgraph, and 12% for readreverse. We note that even a small

improvement in throughput can yield significant cumulative energy and economic cost savings for

long-running servers [56].

Read-sequential workloads. Out of the six workloads we ran, Figure 9 shows the one where KML

performed the worst: read-sequential. Reading data sequentially directly from the raw SATA-SSD

is nearly 1,000× faster than the mixgraph workload, and nearly 400× faster with the NVMe-SSD.

Here, there is little opportunity for KML to improve throughput for a sequential workload that

reads at speeds near the maximum throughput of the physical device.

Read-reverse workloads. As we can see from the fluctuating green line (readahead values in

Figure 8) KML mispredicts readreverse as readseq and changes the readahead value to something

sub-optimal. These two workloads both access files sequentially—one reading forward and one

backward. Interestingly, readseq and readreverse are quite close from a feature representation

perspective, which explains the mispredictions. But since both of these workloads access files

sequentially, their optimal readahead values are also quite close to each other. Thus, even when KML

mispredicts readreverse as readseq or vice versa, this had a small overall impact on performance.

readseq readrandom readreverse rw-random updaterandom mixgraph0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
X)

1.02

2.3

1.12

2.2 2.22
2.09

0.96

1.65

1.04

1.55 1.53 1.51

SATA-SSD NVMe-SSD

Fig. 9. Readahead neural network performance improvements (×) for RocksDB benchmarks on SATA-SSD
and NVMe-SSD across all six workloads, normalized to vanilla (1.0×).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:19

Summary of readahead neural network results. We summarize all readahead neural network

results in Figure 9. We observe that the average throughput improvement for NVMe-SSD is ranging

from 0% to 65%. We saw greater improvements in the SATA-SSD case, ranging from 2% to 130%

(2.3×). Lastly, we ran the complex mixgraph workload on NVMe-SSD with the system memory set

to the maximum (i.e., 24GB) and the database size set to be relatively large, 65GB (compared to a

2GB baselines database size). This experiment ran for nearly an hour (48.5 minutes) and resulted in

an average throughput improvement of 38%.

�

����

UHDGUHYHUVH�.0/ UHDGUHYHUVH�9DQLOOD

� � � � � ��
���

���

���

PL[JUDSK�.0/ PL[JUDSK�9DQLOOD

7LPH��PLQXWHV�7K
UR
XJ
KS
XW
��
��
��
V�
RS
V�
VH
F�

�

����

UHDGUHYHUVH�.0/ UHDGUHYHUVH�9DQLOOD

� � � � � ��
���

���

���

PL[JUDSK�.0/ PL[JUDSK�9DQLOOD

7LPH��PLQXWHV�7K
UR
XJ
KS
XW
��
��
��
V�
RS
V�
VH
F�

A B

Fig. 10. Mixed workloads results on a timeline, comparing the readahead neural network model running on
per-file basis (’A’, left) vs. per-disk basis (’B’, right).

Mixed workloads. Mixed workloads are considered a challenging optimization problem [8]. In

Figure 10, we present a timeline performance comparison using the readahead neural network

model running on a per-disk vs. per-file basis. The per-file mode performs better overall because

readahead values are set for each open file independently. Conversely, in the per-disk mode, a single

readahead value is set at the disk level and hence uniformly on all open files: a readahead value

good for one workload is likely to be sub-optimal for other open files. One reason why the per-disk

mode cannot predict workload types correctly is that when different workloads are mixed—even

sequential ones or ones with regular patterns—the mix looks more like a purely random workload

at the disk level.

3.3 6.3 5.9 3.4 6.2 5.8 3.3 5.7 5.5 3.5 6.3 5.9 3.6 6.2 5.4 3.5 6.0 5.2

1988.8
669.8

2014.9 1955.1
666.6

2011.8 1846.5
659.9

1999.0
801.3 462.4 935.3 811.6 464.4 922.8 793.8 457.6 920.1

1992.1
676.1

2020.8 1958.5
672.8

2017.6 1849.8
665.6

2004.5
804.8 468.7 941.1 815.3 470.6 928.3 797.3 463.6 925.3

0.1
0.5
5.0
50.0
500.0
5000.0

vanilla kml
disk

kml
file

vanilla kml
disk

kml
file

vanilla kml
disk

kml
file

vanilla kml
disk

kml
file

vanilla kml
disk

kml
file

vanilla kml
disk

kml
file

readrandom rw-random mixgraph readrandom rw-random mixgraph
readseq readreverse

10
00

s o
ps

/s
ec

 (l
og

10
)

+ +

Fig. 11. Mixed workloads results. We ran sequential and random workload combinations on the same NVMe-
SSD device. Each unique combination is tested with the readahead neural network running in per-disk basis
(kml disk) and per-file basis (kml file) and compared against vanilla results. The model running in per-file
basis outperformed both vanilla and per-disk modes.

Figure 11 shows overall mixed workloads performance comparisons. Per-file mode performed

overall better in every combination of mixed workloads. If we compare only the sequential parts of

the mixed workload combination (orange bars in Figure 11), in per-disk mode, we observe significant

performance degradation. However, in per-file mode, we can observe performance improvements for

both the sequential and random (blue bars in Figure 11) parts of the mixed workload combination.

The reason why per-disk mode performs better for the random parts of the mixed workload

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 I. Akgun et al.

combinations is for the same reason: mixing workloads looks more random-like at the disk level.

The per-disk readahead ML model predicts these as readrandom or readrandomwriterandom, which

coincidentally fits this part of the workload, but hurts non-random workloads. However, the per-file

readahead MLmodel improves both the sequential and random part of the mixed workloads. Thanks to
KML’s versatile architecture, we adapted the readahead ML model to two different working modes

and improved page cache performance for mixed workloads; these are considered challenging tests

for storage systems.

readseq readrandom readreverse rw-random updaterandom mixgraph0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
X)

0.27

2.19

0.64

2.1 2.13
1.99

0.6

1.59

0.85

1.55 1.49 1.48

SATA-SSD NVMe-SSD

Fig. 12. Readahead decision tree performance improvements (×) for RocksDB benchmarks on SATA-SSD and
NVMe-SSD devices across all six workloads, normalized to vanilla (1.0×).

Decision tree evaluation. In addition to the neural network model, we implemented a decision

tree model for the readahead problem to compare the two ML approaches on the same problem.

We tested the readahead decision tree the same way. Figure 12 shows that there is a performance

improvement for workloads with a random component. For the readahead decision tree, we measure

average throughput improvement for random workloads on NVMe-SSD as ranging from 48% to

59%; and in the SATA-SSD case, ranging from 99% to 119% (2.19×). While good, the neural network

model yielded greater improvements, as discussed above.

0 2 4 6 8 10 12 14
Runtime (minutes)

500

750

1000

1250

1500

1750

2000

2250

Th
ro

ug
hp

ut
 (

10
00

s
op

s/
se

c)

readseq_vanilla readseq_kml readahead

0

200

400

600

800

1000

Re
ad

ah
ea

d
si

ze
 (

se
ct

or
s)

Fig. 13. Performance timeline graph for tuning with KML decision tree while running readseq workload on
NVMe-SSD.

The DT model, however, degraded performance for sequential workloads. it degraded perfor-

mance for sequential workloads on NVMe-SSD by 15–40%; and in the SATA-SSD case, by 36–73%

worse. We investigated this performance degradation. Figure 13 shows the readseq workload run-

ning on a RocksDB instance stored on an NVMe-SSD. Here, the readahead decision tree predicts

the workload correctly in the first three minutes, despite some fluctuations. Afterwards, the de-

cision tree model’s predictions fluctuate wildly, and at around minute 10 it consistently makes

wrong predictions. Overall, this was somewhat expected for our I/O optimization problem: neural

network models, while more complex to train and use, are more adaptable than decision-trees [38].

Specifically, when the DT model mispredicts, and system conditions change (i.e., I/O activity), the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:21

DT model continues to mispredict, and it cannot recover as quickly as the more adaptable neural

network model.

1 6 9 11 13 14 15 22
TPC-H Query Number

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
X)

1.39

1.06 1.03

0.47

1.01 1.06 1.07

1.38

1.08 1.11
1.04

0.64

0.99
1.1

1.18

0.95

SATA-SSD NVMe-SSD

Fig. 14. Readahead neural network performance improvements (×) for TPC-H queries on SATA-SSD and
NVMe-SSD devices, normalized to vanilla (1.0×).

TPC-H benchmarks. As we mentioned in Section 4.2, we evaluated our readahead neural network

model—trained on RocksDB workloads—on TPC-H queries running on MySQL database (both

NVMe-SSD and SATA-SSD cases). This intends to show the model’s accuracy limitations when

presented with vastly different workload and application combinations. Figure 14 shows perfor-

mance improvements as much as 39% for most query types. For query 11, however, the readahead

neural network failed to characterize the workload correctly and resulted in a 53% performance

reduction. Nevertheless, overall TPC-H performance still improved by 6%. We expect that neural

network models trained on more traditional SQL database workloads would likely yield even better

predictions across most similar databases.

A B

Fig. 15. Performance improvement comparisons between LEAP [6] and KML for RocksDB benchmarks on
NVMe-SSD (’A’, left) and SATA-SSD (’B’, right).

Comparison with LEAP. Data prefetching and caching is a well-studied problem with many

heuristics developed to optimize I/O transactions. We compared our readahead neural network

with a recent data-prefetching heuristic, LEAP [6]. We evaluated both LEAP and our readahead

neural-network model with the same setup that we used to evaluate KML with RocksDB workloads

running on NVMe-SSD and SATA-SSD. We have integrated LEAP to work with a local page cache.

LEAP integration took only 243 LoC and was mostly a straightforward data-aggregation code. Our

readahead neural network achieves 16% better average throughput improvements than LEAP, when

workloads are executed on NVMe-SSD. When running workloads on SATA-SSD, the readahead

neural network model’s average performance gain is 22% better than LEAP.

Figure 15 shows these results. We highlight two main takeaways. First, LEAP causes a significant

performance reduction for readseq workloads (-24% for NVMe-SSD and -36% for SATA-SSD).

Conversely, our readahead neural network either improves the I/O performance across all the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 I. Akgun et al.

RocksDBworkloads or keeps the performance close to the same as runningwithout the optimization.

It is important that any optimization technique that helps one workload would not hurt another.

Second, there is only one workload where LEAP’s performance was better than our readahead

neural network’s performance: readreverse. The main reason why LEAP outperformed us in the

readreverse workload is that LEAP is directly in charge of choosing pages that will be stored in

memory. Conversely, our readahead neural network tunes only readahead value in the block layer.

Thus, LEAP can fetch pages in descending order while our readahead neural network relies on the

readahead subsystem—which generally cannot handle reading “ahead” in reverse order.

Largememory experiments. To test our readahead neural networkmodel’s abilities on significantly

different hardware setup, we experimented with a 56GB RocksDB database running on 24GB RAM

configuration. This represents a more realistic storage server scenario. Overall, we observed that

performance improvement trends have not changed. However, the larger memory experiments

took a significantly longer time which exposed numerical instabilities in our normalization phase.

We originally used floats to compute normalization statistics. Over the course of longer-running

experiments, we lost precision in numerical statistics. We fixed this problem simply by switching

to double floats. We measured that switching to doubles did not add any extra computational

overheads thanks to modern CPUs’ advanced floating-point units.

In addition, we also adjusted our weighted-moving average. This adjustment was needed because

the large RAM size affected the number of transactions per second which is one of our key features.

Since this setup used a larger RAM, we can keep fetching and updating KV pairs without writing

them back for a longer period of time in the beginning of benchmarking. As a result, we can perform

more transactions per second. This type of significant changes in hardware or software setup can

affect the features and their extraction process (e.g., moving averages). Such significant changes in

features can cause mispredictions which leads to performance degradation.

We fixed this by adjusting the weighted moving average. We initially considered the runtime

input data to contribute to the moving average equally as training data (e.g., a uniform moving

average). Then, we tuned the moving average weight to 10%, meaning that we only take one-tenth

each new sample into the moving average. This ensures that sudden spikes in activity do not

disturb the moving average too much—keeping its change smoother. We reached this final value

by testing different weights using binary search. In the future, we plan to integrate a feedback

control mechanism to adapt the moving average weight automatically in case of drastic changes

in hardware or software conditions. After the change, we tested the readahead neural network

model with different storage devices, memory sizes, workloads, mixed workloads, applications: it

consistently performed significantly better than baseline and LEAP.

By running experiments with larger memory and database sizes, we also experimented with

how KML behaves over long-term executions. Since these experiments took many hours and even

days, we could evaluate the readahead neural network behavior under different phases of the page

cache. In Figure 16 we show a mixgraph workload running on the large memory and database setup.

We see three phases separated by double vertical dashed lines.

First, the startup phase took around nine minutes to fill up the entire page cache while the

readahead neural network was in inference mode and optimizing the readahead size for the storage

device. We observe that the startup phase for running the mixgraph workload without a readahead

neural network took around one minute due to poor use of the page cache with a sub-optimal

readahead size and resulted in a stable-looking, but sub-optimal throughput.

In the second phase, stabilization starts after filling the entire page cache and beginning to trigger

some page reclamation processes. In this stabilization phase, we observed staircase-like throughput

reductions, which are correlated with spikes in write-back dirty page requests (see in Figure 16).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:23

A

B

C

D

Fig. 16. Throughput analysis for running mixgraph on 24GB memory with a 56GB RocksDB database. In
(A) we show throughput timeline and improvements for mixgraph running with KML. We can see three
phases of mixgraph’s execution, demarcated by double vertical dashed lines: (1) startup, (2) stabilize and
gradually decline, and (3) restabilize. We explain these phases and why throughput changes by showing
page-reclamation numbers (B), triggering writeback operations for dirty pages (C), and the number of page
faults taking place due to file operations from the OS’s perspective. In (D) we show the number of read
operations and their standard deviation operations from RocksDB’s perspective.

Third, a re-stabilization phase starts with sudden spike in the write-back activity of reclaimed

pages. This frees a large number of pages: we can observe a sudden spike in page faults which

are related to mmaped files. This page-fault spike also indicates that a lot of new pages loaded into

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 I. Akgun et al.

memory. Overall, this improves performance with newly loaded data in the page cache being

accessed.

Finally, We can notice that all these phase changes create variation in read latency for the

mixgraph workload (see Figure 16 D). Even though all these variations and sudden spikes occur in

the I/O subsystem, our readahead neural network successfully predicted the workload and tuned

the readahead size.

4.5 NFS Evaluation

readseq readrandom readreverse rw-random mixgraph0

5

10

15

20

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
X)

0.76
2.32

0.21
2.39 1.390.63

15.78

0.49

15.35 15.04
SATA-SSD NVMe-SSD

Fig. 17. Performance improvements (×) for RocksDB benchmarks on SATA-SSD and NVMe-SSD devices
across all six workloads running on NFS, normalized to vanilla (1.0×).

Figure 17 shows the NFS rsize neural network performance improvements using the same

evaluation techniques of readahead. Throughout these experiments, we ran multiple iterations

of the same workloads. Since rsize is a mount point parameter for NFS, our NFS neural network

can tune rsize values only in the beginning of the iteration. (We plan to fix the Linux kernel to

permit rsize to change dynamically.) Hence, in sequential workloads, if the NFS neural network

makes even one misprediction, it will affect the entire iteration, leading to performance degradation.

Nevertheless, in random workload cases, we still measured around 15× performance improvement;

in separate experiments (not shown for brevity), performance improvements for random workloads

reached up to 20×. This demonstrates the significant potential of KML.

5 RELATEDWORK
Machine learning in systems and storage. In follow-up work to Mittos [39], a custom neural

network was built that makes inferences inside the OS’s I/O scheduler queue. The neural network

decides synchronously whether to submit requests to the device using binary classification [40].

There are notable differences between that system and our KML. That system was trained offline

using TensorFlow and exclusively trained in user space. Additionally, each of their two layers were

custom built. Conversely, KML provides a more flexible architecture. KML training, retraining,

normalization, repeated inference—all are possible and accomplished with ease in any combination

of online, offline, synchronous, or asynchronous settings. Lastly, KML easily supports an arbitrary

number of generalizable neural network layers; our experiments demonstrate more expressive

classification abilities on a more diverse set of devices.

Laga et al. [52] improved readahead performance in the Linux Kernel with Markov chain models,

netting a 50% I/O performance improvement in TPC-H [94] queries on SATA-SSDs. In contrast, our

experiments ran on a wider selection of storage media (NVMe-SSD and SATA-SSD) and workloads.

In TPC-H, we show improvements up to 39% despite TPC-H being a completely new workload for

our readahead model. Moreover, our results illustrate that our readahead model can improve I/O

throughput by as much as 2.4×—all while keeping memory consumption under 4KB, in comparison

to Laga et al.’s much larger 94MB Markov chain model.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:25

Parameter tuning for storage and operating systems has been a challenge and researchers

approached this problem using control theory [86] and data distribution analysis for storage clus-

ters [2]. Some research has attempted to apply ML techniques to OS task scheduling [19, 68], with

small reported performance improvements (0.1–6%). Nevertheless, it is becoming increasingly pop-

ular to apply ML techniques to storage and OS problems including: tuning SSD configurations [55],

memory allocation [64], TCP congestion [32], building smart NICs [85], predicting index structures

in key-value stores [24, 50], offline black-box storage parameter optimization [15], reconfigurable

kernel datapaths [73], local and distributed caching [90, 97], database query optimization [49], and

cloud resource management [23, 26, 27, 88].

Machine learning libraries for resource-constraint systems. A myriad of ML libraries exist—some

general purpose and others more specialized. Popular general-purpose ML libraries include Tensor-

flow [1], PyTorch [70], and CNTK [22]. Conversely, libraries like ELL [33], Tensorflow Lite [92],

SOD [87], Dlib [30], and Tiny Training Engine [61] specialize to run on resource-constrained or

on-device environments, KML differentiates itself by targeting OS-level applications and designed

for OS and storage systems specifically. Inside the OS, resources are highly constrained, prediction

accuracy is vital, and even small data-path overheads are unacceptable.

Adapting readahead and prefetching. Readahead and prefetching methods are both well-studied

problems [29, 51, 83, 84] and see use in distributed systems [18, 20, 31, 54, 57, 58, 67, 93]. Many

have attempted to build statistical models to optimize and tune systems [35, 83, 84]. However,

the main limitation of statistical models is their inability to adapt to novel new workloads and

devices. We have shown that our model can adapt to never-before-seen workloads and devices.

Another way to improve a readahead system is to predict individual I/O requests and file accesses

by observing workload patterns [7, 29, 42, 51, 95, 98, 101, 103]. Predicting file accesses using hand-

crafted algorithms is a reasonable first approach. However, such manual labor simply cannot keep

up with the diversity and complexity of ever-changing modern workloads. Conversely, as long

as we have training data, ML models can adapt, retrained as needed, and optimize much faster.

Simulations are also viable solutions for readahead and prefetching problems [17, 36, 75, 102, 106].

However, simulations are computationally expensive and are limited to the datasets that the models

are trained and tested with. Additionally, the models produced in simulations are not designed for

resource-constrained environments, making it non-trivial to migrate such models to the kernel. It

is possible to use a user-space library to intercept file accesses [100] or to require application-level

changes [105]. In contrast, KML requires no application changes and is capable of intercepting

mmap-based file accesses.

Finally, while techniques exist to improve NFS performance, we are unaware of automated ones

that use ML [45].

6 CONCLUSION
Operating systems and storage systems have to support many ever-changing workloads and

devices. To provide the best performance, we have to configure storage system knobs based on

workloads’ needs and device characteristics. Unfortunately, current heuristics cannot adapt to

workload changes quickly enough and require constant development efforts to support new devices.

We propose KML to solve these problems—an ML framework inside the OS that adapts quickly to

optimize storage performance. KML enables finer granularity optimizations for individual files in

even mixed workloads—a challenging problem. Our preliminary results show that, for a readahead

problem, we can boost I/O throughput by up to 2.3× without imposing significant CPU/memory

overheads. For the NFS rsize problem, the improvement was up to 15×. These I/O throughput

improvements far outweigh the small memory and CPU consumption of KML.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 I. Akgun et al.

Future work. We plan on using KML to tune knobs for other OS subsystems: e.g., packet and
I/O schedulers, and networking. We are adding ML techniques to KML, such as reinforcement

learning [46], which can be a better fit for solving certain OS problems. To support more advanced

ML approaches (e.g., Recurrent Neural Networks (RNNs) [99]) and Long Short-Term Memory

(LSTM) [41]), we are extending KML to support arbitrary computation DAGs. We also plan to

integrate user-kernel co-operated design into KML. Finally, loading an unverified ML model into a

running kernel opens up new attack surfaces. We are exploring known techniques to digitally sign

and certify loadable models [48, 62].

7 ACKNOWLEDGMENTS
This work was made possible in part thanks to Dell-EMC, NetApp, Facebook, and IBM support;

a SUNY/IBM Alliance award; and NSF awards CNS-1729939, CNS-1900706, CCF-1918225, CNS-

1951880, CNS-2106263, CNS-2106434, and CNS-2214980.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon

Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2016), pages 265–283, Savannah, GA, November 2016.

[2] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James Hendricks, Andrew J.

Klosterman, Michael P. Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,

John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa minor: Versatile cluster-based storage. In

Proceedings of the FAST ’05 Conference on File and Storage Technologies, December 13-16, 2005, San Francisco, California,
USA. USENIX, 2005.

[3] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey E Hinton. Neural additive models:

Interpretable machine learning with neural nets. arXiv preprint arXiv:2004.13912, 2020.
[4] Ibrahim ’Umit’ Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez Zadok. Amachine learning framework

to improve storage system performance. In Proceedings of the 13th ACMWorkshop on Hot Topics in Storage (HotStorage
’21), Virtual, July 2021. ACM.

[5] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. Re-animator: Versatile high-fidelity storage-system tracing

and replaying. In Proceedings of the 13th ACM International Systems and Storage Conference (SYSTOR ’20), Haifa, Israel,
June 2020. ACM.

[6] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching remote memory with leap. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 843–857, 2020.

[7] Ahmed Amer, Darrell DE Long, J-F Pâris, and Randal C Burns. File access prediction with adjustable accuracy. In

Conference Proceedings of the IEEE International Performance, Computing, and Communications Conference (Cat. No.
02CH37326), pages 131–140. IEEE, 2002.

[8] George Amvrosiadis, Ali R. Butt, Vasily Tarasov, Erez Zadok, Ming Zhao, Irfan Ahmad, Remzi H. Arpaci-Dusseau,

Feng Chen, Yiran Chen, Yong Chen, Yue Cheng, Vijay Chidambaram, Dilma Da Silva, Angela Demke-Brown, Peter

Desnoyers, Jason Flinn, Xubin He, Song Jiang, Geoff Kuenning, Min Li, Carlos Maltzahn, Ethan L. Miller, Kathryn

Mohror, Raju Rangaswami, Narasimha Reddy, David Rosenthal, Ali Saman Tosun, Nisha Talagala, Peter Varman,

Sudharshan Vazhkudai, Avani Waldani, Xiaodong Zhang, Yiying Zhang, and Mai Zheng. Data storage research vision

2025: Report on NSF visioning workshop held may 30–june 1, 2018. Technical report, National Science Foundation,

February 2019. https://dl.acm.org/citation.cfm?id=3316807 .
[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload analysis of a large-scale

key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New York, NY, USA, 2012. ACM.

[10] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks:
Tricks of the Trade, pages 437–478. Springer, 2012.

[11] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[12] Zhen Cao, Geoff Kuenning, and Erez Zadok. Carver: Finding important parameters for storage system tuning. In

Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST ’20), Santa Clara, CA, February 2020.

USENIX Association.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://dl.acm.org/citation.cfm?id=3316807

Improving Storage Systems Using Machine Learning 1:27

[13] Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok. On the performance variation in modern

storage stacks. In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST ’17), pages 329–343,
Santa Clara, CA, February-March 2017. USENIX Association.

[14] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards better understanding of black-box auto-tuning: A

comparative analysis for storage systems. In Proceedings of the Annual USENIX Technical Conference, Boston, MA,

July 2018. USENIX Association. Data set at http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-
data.sql.gz.

[15] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards better understanding of black-box auto-tuning: A

comparative analysis for storage systems. In USENIX Annual Technical Conference, (ATC), pages 893–907, Boston,
MA, July 2018.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Characterizing, modeling, and benchmarking RocksDB

key-value workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST), pages 209–223,
2020.

[17] Chandranil Chakraborttii and Heiner Litz. Learning i/o access patterns to improve prefetching in ssds. ICML-PKDD,
2020.

[18] Hui Chen, Enqiang Zhou, Jie Liu, and Zhicheng Zhang. An rnn based mechanism for file prefetching. In 2019 18th
International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES),
pages 13–16. IEEE, 2019.

[19] Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. Machine learning for load balancing

in the linux kernel. In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’20, Tsukuba,
Japan, 2020. Association for Computing Machinery.

[20] Giovanni Cherubini, Yusik Kim, Mark Lantz, and Vinodh Venkatesan. Data prefetching for large tiered storage

systems. In 2017 IEEE International Conference on Data Mining (ICDM), pages 823–828, November 2017.

[21] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash Gopalakrishnan, Zhuo Wang, and Pierce

Chuang. Accurate and efficient 2-bit quantized neural networks. In Proceedings of the 2nd SysML Conference, 2019.
[22] CNTK, September 2020. https://github.com/microsoft/CNTK .

[23] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. Resource

central: Understanding and predicting workloads for improved resource management in large cloud platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles, pages 153–167, Shanghai, China, 2017.
[24] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. From WiscKey to bourbon: A learned index for log-structured merge trees. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). USENIX Association, November 2020.

[25] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R. Aberger, Kunle Olukotun, and

Christopher Ré. High-accuracy low-precision training, 2018. arXiv preprint arXiv:1803.03383.

[26] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous datacenters. ACM
SIGPLAN Notices, 48(4):77–88, 2013.

[27] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware cluster management. ACM
SIGPLAN Notices, 49(4):127–144, 2014.

[28] Mathieu Desnoyers. Using the Linux kernel tracepoints, 2016. https://www.kernel.org/doc/Documentation/
trace/ tracepoints.txt.

[29] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang. DiskSeen: Exploiting disk layout and access

history to enhance I/O prefetch. In USENIX Annual Technical Conference, pages 261–274, 2007.
[30] dlib C++ Library, September 2020. http://dlib.net/ .
[31] Bo Dong, Xiao Zhong, Qinghua Zheng, Lirong Jian, Jian Liu, Jie Qiu, and Ying Li. Correlation based file prefetching

approach for hadoop. In 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pages
41–48. IEEE, 2010.

[32] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. PCC vivace:

Online-learning congestion control. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 343–356, 2018.

[33] Embedded Learning Library (ELL), January 2020. https://microsoft.github.io/ELL/ .
[34] Facebook. RocksDB. https:// rocksdb.org/ , September 2019.

[35] Cory Fox, Dragan Lojpur, and An-I Andy Wang. Quantifying temporal and spatial localities in storage workloads

and transformations by data path components. In 2008 IEEE International Symposium on Modeling, Analysis and
Simulation of Computers and Telecommunication Systems, pages 1–10. IEEE, 2008.

[36] Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan Shih. Deepprefetcher: A deep learning

framework for data prefetching in flash storage devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):3311–3322, 2020.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
https://github.com/microsoft/CNTK
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://dlib.net/
https://microsoft.github.io/ELL/
https://rocksdb.org/

1:28 I. Akgun et al.

[37] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited numerical

precision. In Proceedings of the 32nd International Conference on Machine Learning (ICML), pages 1737–1746, Lille,
France, 2015.

[38] Lawrence O Hall, Xiaomei Liu, Kevin W Bowyer, and Robert Banfield. Why are neural networks sometimes much

more accurate than decision trees: an analysis on a bio-informatics problem. In SMC’03 Conference Proceedings. 2003
IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat.
No. 03CH37483), volume 3, pages 2851–2856. IEEE, 2003.

[39] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo, Andrew A. Chien,

and Haryadi S. Gunawi. MittOS: Supporting millisecond tail tolerance with fast rejecting SLO-aware OS interface. In

Proceedings of the 26th Symposium on Operating Systems Principles, pages 168–183, Shanghai, China, October 2017.
[40] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg, Henry Hoffmann, and Haryadi S. Gunawi. LinnOS: Pre-

dictability on unpredictable flash storage. In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Banff, Alberta, November 2020. USENIX Association.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
[42] Haiyan Hu, Yi Liu, and Depei Qian. I/o feature-based file prefetching for multi-applications. In 2010 Ninth International

Conference on Grid and Cloud Computing, pages 213–217. IEEE, 2010.
[43] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[44] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava. How can i explain this to

you? an empirical study of deep neural network explanation methods. Advances in Neural Information Processing
Systems, 2020.

[45] Chet Juszczak. Improving the write performance of an NFS server. In Proceedings of the USENIX Winter 1994 Technical
Conference, WTEC’94, San Francisco, California, 1994. USENIX Association.

[46] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: a survey. Journal of
Artificial Intelligence Research, pages 237–285, 1996.

[47] Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the maximum of a regression function. The Annals of
Mathematical Statistics, 23(3):462–466, 1952.

[48] Doowon Kim, Bum Jun Kwon, Kristián Kozák, Christopher Gates, and Tudor Dumitras. The broken shield: Measuring

revocation effectiveness in the windows code-signing PKI. In 27th USENIX Security Symposium (USENIX Security 18),
pages 851–868, 2018.

[49] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi

Mao, and Vikram Nathan. SageDB: A learned database system. In 9th Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, January 2019.

[50] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index structures. In

Proceedings of the 2018 International Conference on Management of Data, pages 489–504. ACM, 2018.

[51] Thomas M. Kroeger and Darrell D. E. Long. Design and implementation of a predictive file prefetching algorithm. In

USENIX Annual Technical Conference, pages 105–118, Boston, MA, June 2001.

[52] Arezki Laga, Jalil Boukhobza, M. Koskas, and Frank Singhoff. Lynx: A learning Linux prefetching mechanism for SSD

performance model. In 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA), pages 1–6, August
2016.

[53] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural network inference with floating-point

weights and fixed-point activations, 2017. arXiv preprint arXiv:1703.03073.

[54] Sangmin Lee, Soon J Hyun, Hong-Yeon Kim, and Young-Kyun Kim. Aps: adaptable prefetching scheme to different

running environments for concurrent read streams in distributed file systems. The Journal of Supercomputing,
74(6):2870–2902, 2018.

[55] Daixuan Li and Jian Huang. A learning-based approach towards automated tuning of ssd configurations. arXiv
preprint arXiv:2110.08685, 2021.

[56] Z. Li, A. Mukker, and E. Zadok. On the importance of evaluating storage systems’ $costs. In Proceedings of the 6th
USENIX Conference on Hot Topics in Storage and File Systems, HotStorage’14, 2014.

[57] Shuang Liang, Song Jiang, and Xiaodong Zhang. Step: Sequentiality and thrashing detection based prefetching

to improve performance of networked storage servers. In 27th International Conference on Distributed Computing
Systems (ICDCS’07), pages 64–64. IEEE, 2007.

[58] Jianwei Liao, Francois Trahay, Guoqiang Xiao, Li Li, and Yutaka Ishikawa. Performing initiative data prefetching in

distributed file systems for cloud computing. IEEE Transactions on cloud computing, 5(3):550–562, 2015.
[59] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A research

platform for distributed model selection and training. arXiv preprint arXiv:1807.05118, 2018.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Improving Storage Systems Using Machine Learning 1:29

[60] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point quantization of deep convolutional

networks. In International Conference on Machine Learning, pages 2849–2858, June 2016.
[61] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device training under 256kb

memory. arXiv preprint arXiv:2206.15472, 2022.
[62] Linux. Linux kernel module signing facility. https://www.kernel.org/doc/html/v4.19/admin-guide/module-

signing.html?highlight=signing, January 2021.

[63] LTTng. LTTng: an open source tracing framework for Linux. https:// lttng.org, April 2019.
[64] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, and Colin

Raffel. Learning-based memory allocation for C++ server workloads. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 541–556,
Lausanne, Switzerland, March 2020.

[65] Paul Manning. Best practices for running vmware vsphere on network attached storage. https://www.vmware.
com/content/dam/digitalmarketing/vmware/en/pdf/ techpaper/vmware-nfs-bestpractices-white-paper-
en.pdf , 2009.

[66] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 807–814, Haifa, Israel, June 2010.

[67] Anusha Nalajala, T Ragunathan, Sri Harsha Tavidisetty Rajendra, Nagamlla Venkata Sai Nikhith, and Rathnamma

Gopisetty. Improving performance of distributed file system through frequent block access pattern-based prefetching

algorithm. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
pages 1–7. IEEE, 2019.

[68] Atul Negi and P Kishore Kumar. Applying machine learning techniques to improve Linux process scheduling. In

TENCON 2005-2005 IEEE Region 10 Conference, pages 1–6. IEEE, 2005.
[69] Oracle Corporation. MySQL. http://www.mysql.com, May 2020.

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems (NeurIPS 2019), pages 8024–8035, Vancouver, BC, Canada,
December 2019.

[71] Karl Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of
London, 58(347-352):240–242, 1895.

[72] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin
philosophical magazine and journal of science, 2(11):559–572, 1901.

[73] Yiming Qiu, Hongyi Liu, Thomas Anderson, Yingyan Lin, and Ang Chen. Toward reconfigurable kernel datapaths

with learned optimizations. In Proceedings of the Workshop on Hot Topics in Operating Systems, pages 175–182, 2021.
[74] Gabriëlle Ras, Marcel van Gerven, and Pim Haselager. Explanation methods in deep learning: Users, values, concerns

and challenges. In Explainable and interpretable models in computer vision and machine learning, pages 19–36. Springer,
2018.

[75] Natarajan Ravichandran and Jehan-François Pâris. Making early predictions of file accesses. PhD thesis, University of

Houston, 2005.

[76] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages
400–407, 1951.

[77] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Computer, 27(3):17–28, 1994.
[78] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating

errors. Nature, 323(6088):533–536, 1986.
[79] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. Understanding and optimizing asyn-

chronous low-precision stochastic gradient descent. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, (ISCA), pages 561–574, Toronto, ON, Canada, June 2017.

[80] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-Robert Müller. Toward

interpretable machine learning: Transparent deep neural networks and beyond. arXiv e-prints, pages arXiv–2003,
2020.

[81] Jiri Schindler, Sandip Shete, and Keith A Smith. Improving throughput for small disk requests with proximal {I/O}.
In 9th USENIX Conference on File and Storage Technologies (FAST 11), 2011.

[82] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating performance and energy in file system server workloads.

In Proceedings of the USENIX Conference on File and Storage Technologies (FAST ’10), pages 253–266, San Jose, CA,

February 2010. USENIX Association.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.kernel.org/doc/html/v4.19/admin-guide/module-signing.html?highlight=signing
https://www.kernel.org/doc/html/v4.19/admin-guide/module-signing.html?highlight=signing
https://lttng.org
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-nfs-bestpractices-white-paper-en.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-nfs-bestpractices-white-paper-en.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-nfs-bestpractices-white-paper-en.pdf
http://www.mysql.com

1:30 I. Akgun et al.

[83] Elizabeth Shriver, Arif Merchant, and John Wilkes. An analytic behavior model for disk drives with readahead caches

and request reordering. In SIGMETRICS, June 1998.
[84] Elizabeth AM Shriver, Christopher Small, and Keith A Smith. Why does file system prefetching work? In USENIX

Annual Technical Conference, General Track, pages 71–84, 1999.
[85] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Hamed Haddadi, Gianni Antichi, and

Roberto Bifulco. Running neural networks on the nic. arXiv preprint arXiv:2009.02353, 2020.
[86] Filippo Sironi, Davide B Bartolini, Simone Campanoni, Fabio Cancare, Henry Hoffmann, Donatella Sciuto, and

Marco D Santambrogio. Metronome: operating system level performance management via self-adaptive computing.

In Proceedings of the 49th Annual Design Automation Conference, pages 856–865, 2012.
[87] SOD - An Embedded, Modern Computer Vision and Machine Learning Library, September 2020. https:// sod.pixlab.

io/ .
[88] Gagan Somashekar and Anshul Gandhi. Towards optimal configuration of microservices. In Proceedings of the 1st

Workshop on Machine Learning and Systems, pages 7–14, 2021.
[89] Kalyanasundaram Somasundaram. The impact of slow nfs on data systems. https:// engineering.linkedin.com/

blog/2020/ the-impact-of-slow-nfs-on-data-systems, June 2020.
[90] Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth Kolla, and Manish Parashar. Stacker: An

autonomic data movement engine for extreme-scale data staging-based in-situ workflows. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 920–930. IEEE, 2018.

[91] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo Seltzer. Benchmarking file system benchmarking: It *IS*

rocket science. In Proceedings of HotOS XIII:The 13th USENIX Workshop on Hot Topics in Operating Systems, Napa, CA,
May 2011.

[92] TensorFlow lite, January 2020. https://www.tensorflow.org/ lite.
[93] Nancy Tran and Daniel A Reed. Automatic arima time series modeling for adaptive i/o prefetching. IEEE Transactions

on parallel and distributed systems, 15(4):362–377, 2004.
[94] Transaction Processing Performance Council. TPC benchmark H (decision support). www.tpc.org/ tpch, 1999.
[95] Ahsen J Uppal, Ron C Chiang, and H Howie Huang. Flashy prefetching for high-performance flash drives. In 2012

IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–12. IEEE, 2012.
[96] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research,

9(86):2579–2605, 2008.

[97] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and

Giri Narasimhan. Driving cache replacement with ML-based LeCaR. In Proceedings of the 10th USENIX Workshop on
Hot Topics in Storage (HotStorage ’18), Boston, MA, July 2018. USENIX.

[98] Gary AS Whittle, J-F Pâris, Ahmed Amer, Darrell DE Long, and Randal Burns. Using multiple predictors to improve

the accuracy of file access predictions. In 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and
Technologies, 2003.(MSST 2003). Proceedings., pages 230–240. IEEE, 2003.

[99] Wikipedia. Recurrent neural network. https:// en.wikipedia.org/wiki/Recurrent_neural_network.
[100] JiwoongWon, Oseok Kwon, Junhee Ryu, Dongeun Lee, and Kyungtae Kang. ifetcher: User-level prefetching framework

with file-system event monitoring for linux. IEEE Access, 6:46213–46226, 2018.
[101] Fengguang Wu, Hongsheng Xi, and Chenfeng Xu. On the design of a new Linux readahead framework. Operating

Systems Review, 42:75–84, 2008.
[102] Chenfeng Xu, Hongsheng Xi, and Fengguang Wu. Evaluation and optimization of kernel file readaheads based on

markov decision models. The Computer Journal, 54(11):1741–1755, 2011.
[103] Xiaofei Xu, Zhigang Cai, Jianwei Liao, and Yutaka Ishiakwa. Frequent access pattern-based prefetching inside of

solid-state drives. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 720–725. IEEE,
2020.

[104] Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and Bianca Schroeder. Ssd-based workload characteristics and their

performance implications. ACM Transactions on Storage (TOS), 17(1):1–26, 2021.
[105] Chuan-Kai Yang, Tulika Mitra, and Tzi-cker Chiueh. A decoupled architecture for application-specific file prefetching.

In Chris G. Demetriou, editor, Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference, June
10-15, 2002, Monterey, California, USA, pages 157–170. USENIX, 2002.

[106] Shengan Zheng, Hong Mei, Linpeng Huang, Yanyan Shen, and Yanmin Zhu. Adaptive prefetching for accelerating

read and write in nvm-based file systems. In 2017 IEEE International Conference on Computer Design (ICCD), pages
49–56. IEEE, 2017.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://sod.pixlab.io/
https://sod.pixlab.io/
https://engineering.linkedin.com/blog/2020/the-impact-of-slow-nfs-on-data-systems
https://engineering.linkedin.com/blog/2020/the-impact-of-slow-nfs-on-data-systems
https://www.tensorflow.org/lite
www.tpc.org/tpch
https://en.wikipedia.org/wiki/Recurrent_neural_network

	Abstract
	1 Introduction
	2 KML's Architecture
	2.1 Design Overview
	2.2 Fundamentals of Core ML library
	2.3 KML's Modular Design
	2.4 Computational & Memory Overheads
	2.5 Stability & Explainability
	2.6 Implementation

	3 Use Cases
	3.1 Use Case: Readahead
	3.2 Use Case: NFS rsize

	4 Evaluation
	4.1 Evaluation Goals
	4.2 Testbed
	4.3 KML's Overheads
	4.4 Readahead Evaluation
	4.5 NFS Evaluation

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

