Modelling excitable cells using cycle-linear
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Abstract: Cycle-linear hybrid automata (CLHAs), a new model of excitable cells that efficiently
and accurately captures action-potential morphology and other typical excitable-cell characteristics
such as refractoriness and restitution, is introduced. Hybrid automata combine discrete transition
graphs with continuous dynamics and emerge in a natural way during the (piecewise) approxi-
mation process of any nonlinear system. CLHAs are a new form of hybrid automata that exhibit
linear behaviour on a per-cycle basis but whose overall behaviour is appropriately nonlinear. To
motivate the need for this modelling formalism, first it is shown how to recast two recently
proposed models of excitable cells as hybrid automata: the piecewise-linear model of Biktashev
and the nonlinear model of Fenton—Karma. Both of these models were designed to efficiently
approximate excitable-cell behaviour. We then show that the CLHA closely mimics the behaviour
of several classical highly nonlinear models of excitable cells, thereby retaining the simplicity of
Biktashev’s model without sacrificing the expressiveness of Fenton—Karma. CLHAs are not
restricted to excitable cells; they can be used to capture the behaviour of a wide class of

dynamic systems that exhibit some level of periodicity plus adaptation.

1 Introduction

Hybrid automata [1] are an increasingly popular modelling
formalism for systems that exhibit both continuous and dis-
crete behaviour. Intuitively, a hybrid automaton is an
extended finite-state automaton, the states of which
encode the various phases of continuous dynamics a
system may undergo and the transitions of which are used
to express the switching logic between these dynamics.
Hybrid automata are well suited as a computational model
for continuous—discrete systems as they (i) possess an intui-
tive graphical representation, (ii) can be used in a natural
way to achieve a piecewise, possibly linear, approximation
of any nonlinear system and (iii) facilitate formal analysis
due to their automata-theoretic nature.

Traditionally, hybrid automata have been used to model
embedded systems, including automated highway systems
[2, 3], air traffic management [4, 5], embedded automotive
controllers [6], robotics [7] and real-time circuits [8]. More
recently, they are being applied to formally model molecu-
lar, intra-cellular and inter-cellular biological processes [9].
Many biological systems are ‘hybrid’ in nature: biochemi-
cal concentrations may vary continuously, yet discrete tran-
sitions between distinct states are also possible.

Excitable cells are a good example of hybrid biosystems:
transmembrane ion fluxes and voltages may vary continu-
ously but the transition from the resting state to the
excited state is generally considered an all-or-nothing dis-
crete response. Furthermore, networks of genes, molecules
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and cells tend to exhibit properties such as concurrency
and communication, for which automata-based formalisms
are well developed [10].

Currently, the preferred modelling approach for biologi-
cal systems uses large sets of coupled nonlinear differential
equations, and analysis is reduced to simulation via numeri-
cal techniques. In contrast, models based on hybrid auto-
mata provide piecewise, typically linear approximations,
which lead to conceptually simpler models and the possi-
bility for large-scale simulation and formal analysis.

In this paper, we introduce cycle-linear hybrid automata
(CLHAs), a novel model for excitable cells that efficiently
and accurately captures both action-potential (AP) mor-
phology and typical excitable-cell characteristics such as
refractoriness and restitution. The CLHA formalism is
motivated by the distinct modes observed during an AP —
resting, stimulated, early repolarisation and final repolarisa-
tion. During each one of them, the dynamics of the system is
essentially linear and time-invariant (LTI). To capture
frequency-dependent properties such as restitution, the
CLHA model can be equipped with memory of the cell’s
voltage, and the per-mode parameters of the current
cycle’s LTI system of differential equations are updated
according to this voltage. Consequently, the model’s beha-
viour is linear in any one cycle but appropriately nonlinear
overall.

To motivate the need for CLHA, we first show how to
recast two recently proposed models of excitable cells as
hybrid automata: the piecewise-linear model of Biktashev
[11] and the nonlinear model of Fenton—Karma [12].
Both of these models were designed to efficiently approxi-
mate excitable-cell behaviour. We then show that our
CLHA model closely mimics the behaviour, in terms of
AP morphology and frequency-dependent restitution, of
several classical highly nonlinear models of excitable
cells: the Hodgkin—Huxley model of an axon [13], and
two models of cardiac myocytes — the dynamic Luo—
Rudy model [14] and a neonatal rat model, which we
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shall henceforth refer to as HH, LRd and NNR, respectively.
One may thus conclude that CLHA, as a formal model of
excitable cells, retains the simplicity of Biktashev’s model
without sacrificing the expressiveness of Fenton—Karma.

CLHAs are not restricted to excitable cells; they can be
advantageously used to model any dynamical system that
exhibits some level of periodicity plus adaptation. A
preliminary version of this paper appeared in [15]; see
also [16, 17].

The rest of the paper is organised as follows. Section 2
discusses the related work. Section 3 defines hybrid auto-
mata. Section 4 provides the requisite biological back-
ground for excitable cells. Section 5 shows how to recast
the existing computational models of excitable cells as
HA wusing the Heaviside function for discrete control.
Section 6 presents our CLHA model, and Section 7 shows
how it can be used to efficiently model the AP and associ-
ated frequency-dependent properties of different excitable
cells. Section 8 summarises this work and discusses the
future research.

2 Related work

As discussed in the previous section, HA are finding more
and more use as a modelling formalism for molecular, intra-
cellular and inter-cellular biological processes. In [9], an
HA model of a protein-regulatory network is derived by
identifying the major modes of operation and the manner
in which the network switches between modes. Each of
two interacting proteins is associated with two modes:
active and non-active. In each mode, a linear dynamic func-
tion is used to describe the concentration change of that
protein. HA models constructed in this fashion tend to be
of low complexity as well as low precision, but may facili-
tate large-scale simulation and analysis.

Alternatively, a system of coupled nonlinear ordinary
differential equations (ODEs) describing processes with dis-
parate time scales can be simplified and transformed into an
HA model. This is the approach considred by Biktashev
[11], where a Heaviside function is substituted for a
fast-transitioning continuous function, along with certain
assumptions about variables remaining constant within a
mode [11].

Antoniotti ef al. [18] advocate an empirical approach to
derive HA models of biochemical systems from experimen-
tal data. In their approach, each time step is associated with
amode. If the data set is large, so is the resulting automaton.
Simplification techniques based on ‘state collapsing’ can be
used to reduce the number of states, making this method
feasible for real applications.

Once an HA model has been developed for a biological
system, it can be used to explore the system’s parameter
space. Moreover, because of their abstract nature (relative
to nonlinear systems), HA admit the possibility of formal
systems analysis. Of particular interest for dynamical
systems are reachability and stability analysis. The former
allows one to check whether the transient behaviour of an
HA contains undesired modes of operation [19, 20]. The
latter allows one to check whether the HA, in steady state,
exhibits unstable (or chaotic) behaviour [21, 22]. The infor-
mation gleaned from these forms of analysis can be
exploited to control the system in question such that it
stays within desired limits.

3 Hybrid automata

Intuitively, an HA is an extended finite-state automaton,
where each state is endowed with a continuous dynamics
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[1]. Formally, an HA A= (X, G, init, inv, flow,
jump, event) over finite set Y of events is a 7-tuple,
whose components are as follows:

e A finite set X of real-valued variables xi,..., x,; their
dotted form x; € X represents the first derivatives and
their primed form x; € X' represents the values at the con-
clusion of discrete steps (jumps); » is called the dimension
of A.

e A finite control graph G = (V, E), where vertices in V'
are called modes and edges in E are called switches.

e For each mode v € V, vertex-labelling functions init, inv
and flow with domain /" and range P, where P is the set of
all logical predicates. Initial condition init(v) and invariant
inv(v) are predicates with free variables from X. Flow
flow(v) is a predicate with free variables from X U X repre-
senting a set of ordinary (partial) differential (in)equalities.
o A finite set Y of events which are essentially binary vari-
ables controlled from outside the system, and an edge-
labelling function event: E — ) that assigns to each
switch an event.

e Edge-labelling functions jump: E — (Guard, Action),
where Guard is the set of predicate with free variables
from X U >  and Action is the set of assignments that
update the variables in X,

Intuitively, A spends time in its modes v € V, where it
updates its variables according to the flow predicate
flow(v). Jumps jump(e) on switches e = (v, w) are in con-
trast instantaneous, where v is the beginning mode and w
is the end mode of the switch. A jump on e is taken when-
ever the jump’s guard jump(e).guard is enabled for the
current values of variables X, or the invariant of the
current mode inv(v) is unsatisfied.

We shall subsequently restrict our attention to HAs for
which flows are defined by differential equalities (rather
than inequalities) and for which jumps are deterministic.
Determinism in the definition of the jumps here means
that if a mode is a source of multiple jumps, always at
most one of the guards of these jumps evaluates to ‘true’.

An HA has a natural graphical representation as a state-
transition diagram, with control modes as the states and
control switches as the transitions. Flows and invariants
(predicates within curly braces) appear within control
modes, while jump conditions (in square brackets) and
actions appear near the control switches. We shall use
lower-case alphabets, such as x, y, v, and possibly vy, v,
and so on, to denote continuous variables.

As an example, consider HA A in Fig. 1, which models a
simple thermostat system. .A is a 1-dimensional system with
X = {x}, where x represents the current temperature. Also,
G = ({ON, OFF}, {(ON, OFF), (OFF, ON)}), inv(OFF) =
{x > 18}, inv(ON) = {x < 22}, flow(OFF) = {x = —0.1x},
flow(ON) = {x¥ = 5-0.1x}, jump((OFF, ON)).Guard =
{x > 21}, jump((ON, OFF)).Guard = {TurnOn Vv x < 19},
> = {TurnOn}, event((OFF, ON)) = TurnOn. Initially, .4
is in mode OFF with x initialised to 20°C. While in this
mode, the heater is off and the temperature drops. Then
the system has two possibilities after the temperature
reaches 19°C. It can either switch to mode ON or stay in

[z>21] | oNn
(TurnO r=5—0.1z
urntun
z <22
vV < 19 {e=22}

Fig. 1 Thermostat system modelled as an HA
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mode OFF until the temperature falls below 18°C when the
system is forced to leave mode OFF. This is where non-
determinism can be modelled in HA. Another cause for
the system switching from OFF to ON is when the event
TurnOn happens. The occurrence of this event means that
the heater has been manually turned on, causing A to
jump to mode ON. In mode ON, the heater is on and the
temperature rises until it is above 22°C. Or it can jump to
mode OFF when the temperature is above 21°C, in a
similar manner as we discussed above.

4 Excitable cells

Excitable cells include neurons, cardiac cells, skeletal cells
and smooth muscle cells. For cardiac cells, on each heart
beat, an electrical control signal is generated by the sinoa-
trial node, the heart’s internal pacemaking region.
Electrical waves then travel along a prescribed path, excit-
ing cells in the main chambers of the heart (atria and ventri-
cles) and assuring synchronous contractions. At the cellular
level, the electrical signal is a change in the potential across
the cell membrane which is caused by different ion currents
flowing through the cell membrane. This electrical signal
for each excitation event is known as an AP. Fig. 2 shows
the AP waveform for a guinea-pig ventricular cell.

For non-pacemaking excitable cells, APs are externally
triggered events: a cell fires an AP as an all-or-nothing
response to a supra-threshold stimulus, and each AP
follows the same sequence of phases and maintains approxi-
mately the same magnitude regardless of the applied stimu-
lus. After an initial step-like increase in the membrane
potential, an AP lasts for a couple of milliseconds to
hundreds of milliseconds in most mammals. During an
AP, generally no re-excitation can occur. The early
portion of an AP is known as the ‘absolute refractory
period’ due to its non-responsiveness to further stimulation.
The later portion is known as the ‘relative refractory
period’, during which an altered secondary excitation
event is possible if the stimulation strength or duration is
raised.

When an excitable cell is subjected to repeated stimuli,
two important time periods can be identified: the AP
(APD), the time the cell is in an excited state, and the
diastolic interval (DI), the time between the end of the AP
and the next stimulus. Fig. 2 illustrates the two intervals.
The function relating APD to DI with change in stimulation
frequency is called the APD restitution function. As shown
in Fig. 3, the relationship is nonlinear and captures the
phenomenon that a longer recovery time is followed by a
longer APD. A physiological explanation of a cell’s
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Fig. 3 APD dependence on DI in the LRd model

restitution is rooted in the ion-channel kinetics as a limiting
factor in the cell’s frequency response.

5 Models of excitable cells as HAs

During the early stages of the quest for models of excitable
cells amenable to analytical investigation, FitzHugh and
Nagumo proposed an approximate model of excitable
cells [23-24], referred to here as the FHN model. With
their model, they showed that a modified version of the
Van der Pol oscillator with two state variables can mimic
the essential features of the HH dynamics.

Subsequently, a piecewise-linear version of the FHN
model was proposed by McKean [25] which used a
Heaviside function to represent switches between linear
regimes or modes. Since then, the Heaviside function has
been used in different simplified renditions of excitable-cell
models to achieve piecewise control.

5.1 From Heaviside Control to HAs

Discrete transitions in system behaviour, such as those cap-
tured by Heaviside functions, are an integral part of the HA
formalism. Let S be a dynamic system defined using the
Heaviside function. We present a systematic way to trans-
form § into an equivalent HA. The Heaviside function
H(x) is a discontinuous function defined as follows

0, x<O0

H(x)={1’ o (1)

Assuming that the state equation of S has the structure of
(2), where v is a vector of state variables x, it is straightfor-
ward to show that S is equivalent to the HA shown in Fig. 4.

v=f(HX),y), v=(x)) 2

One can generalise the above translation to any dynamic
system whose state equations are defined using Heaviside
functions. In the following, we apply this translation
to two recently proposed approximate models for

Mode 0 [ > 0] Mode 1
v = f(0,y) v=f(1,y)
{x = O} [z <0 {$ = 0}

Fig. 4 Heaviside function recast as an HA
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cardiac-tissue excitability: the piecewise-linear model of
Biktashev [11] and the nonlinear model of Fenton and
Karma [12].

5.2 Biktashev’s model

The increasing complexity of excitable-cell models describ-
ing AP morphology with large sets of state variables and
nonlinear differential equations triggered continuous
efforts to obtain simplified descriptions that preserve
important properties.

Biktashev made the observation that the widely used
FHN model is not sophisticated enough to capture the
propagation failure due to dissipation of the wavefront, a
phenomenon seen in more realistic models [11]. This was
attributed to the more phenomenological nature of the
FHN model, which was not directly derived from the orig-
inal HH model, but rather devised to mimic its properties.
Instead, a formal derivation procedure was proposed
based on singular perturbation theory developed by
Tikhonov [26] and Pontryagin [27]. The procedure
reduces the size of the differential equations by taking
advantage of the fast—slow nature of the system, that is,
by separating the state variables into two groups, fast—
slow, and by linking the two sets of equations via a pertur-
bation parameter. The model thus obtained was able to
overcome the above-mentioned deficiency of the original
FHN model. Furthermore, its simplicity allowed analytical
treatment [11, 28, 29].

Consider Biktashev’s simplified model [11], where H is
the Heaviside function, £ the transmembrane voltage, &
the probability density of a sodium-channel gate being
open, D the (constant) diffusion coefficient and 7 also con-
stant. £ and / are the time derivatives of state variables E
and 2 and V(DVE) is the second-order directional deriva-
tive on the 2D space, representing the diffusion factor
when modelling the spatial propagation of cell excitations.

E = V(DVE) + H(E — 1)h 3)
o]
h=—_(H(=E) —h) C))

From the prespective of one cell, V(DVE) is the (input)
stimulation current /; produced by neighbouring cells.
Hence, (3) can be rewritten as  follows:
E = I+ H(E — 1)h. Applying the transformation process
for systems employing Heaviside control (Section 5.1)
yields the 3-mode HA shown in Fig. 5, with each mode
having flows described by LTI differential equations.

The linearity of the flows is clearly an advantage of this
model, as it supports efficient simulation and detailed analy-
sis. However, the simplicity of Biktashev’s model comes at
a price: the inability to faithfully reproduce AP morphology,
as discussed in [11, 29]. This is probably due to the treat-
ment of 7 as a constant, when in reality it is a voltage-
dependent parameter that can vary over a relatively wide
range. Recently, this piece-wise linear formulation has
been augmented with non-Tikhonov asymptotic reduction
to obtain a more realistic AP morphology. For example,
Biktashev started with the Courtemanche model of the

@ E=ol O E=1 ®
E=1Iy E=lIy E=Iq+h
h H1-h) i (=h) h=1{-h)
{E <0} [E=0]] {0 E=<1} {E =1}

Fig.5 Biktashev’s model in the HA framework
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atrial heart cell [30] and applied asymptotic embedding,
considering fast and slow variables, to obtain a reduced
system [29, 31]. The resultant model captures AP
morphology well, but is nonlinear in each of the modes
separated by a Heaviside function.

5.3 Fenton-Karma model

Fenton and Karma [12] proposed a three-variable ionic
model as a substitute for the full ionic LRd-type models,
by grouping the various ion currents into three generic
ones: fast inward current Iy, slow inward current /i and
slow outward current /. The corresponding three-variable
model given below [(5)—(11)] contains dynamic functions
for the normalised membrane voltage u, inactivation—reac-
tivation gate v for I and gate w for

it =V - (DVu) — Jy(u; v) — Joy(u) — T4z w) — (5)

. Hu,—w(1—v) Hu-—u,)v
[ 7

(6)

Hu, —u)(1 —w) _ H@u —u)w

+
Ty Ty

(7

4ww=—%Hw—%m—mw—%) ®)

Jow) = " H 0 4 TH@—w) )

o

TGz w) = — %(1 + tanh[k(u —u)])  (10)

S1

where Jg(u;v), J4(u;w) and J (u) are the normalised
versions of Ig(u;v), Ig(u;w) and I (u), respectively, u,

and ' the thresholds for activation of I; and [, and
7", 7,7, 7, 7, 7. and 7, the time constants
7, () = H(u —u,)7, +H(u, —uwr, (11)

7, (u) is further defined by the Heaviside function of (11),
where u, is the threshold potential and 7, and 7, the
time constants.

The Fenton—Karma model recast as an HA is shown in
Fig. 6, where the HA was derived by taking into account
the definition of the Heaviside functions.

qu: qs
w=V-(DVu)— Jp— Sy, — J w=V-(DVu) = Jpi = Jo — Ju
= (1—u)/7, lw=w]|e=0-0v)r

w=(l—w)/my w= (1 —w)/r,

Jp=0 J=0

Joo =1 fe=u] | Jso

i = =51+ tanh(k(u — ) T — =g (1= tanh(k(u — 7))
{() <u< uf} {ur <u< u(}

w=) [ =u,]

Q2
=V -(DVu) = Jy—Jw—Jg
o= u/TT

s — /)
w=w/T,
.

Joi = g1+ tanh(k(u — )
{u, < u}

Fig.6 HA for the Fenton—Karma three-variable, three-ion-
current model
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The Fenton—Karma model has the flexibility to match AP
morphology by correct selection of the parameters, possibly
via an optimisation procedure. It also has been shown to
properly model restitution properties of other more
complex models or empirically obtained data. However,
similar to Biktashev’s asymptotically reduced models, the
resultant simplified system is still nonlinear and therefore
not particularly well suited to analytic treatment.

6 CLHA for excitable cells

In Section 5, we saw that the computational models of excit-
able cells employing the Heaviside function for discrete
control can be recast as an HA. In particular, Biktashev’s
simplified model [11] corresponds to an LTI-HA: an HA
having LTI flows in each mode. An LTI-HA, such as
Biktashev’s, is amenable to efficient numerical (or event-
driven [32]) simulation as well as formal analysis.
Biktashev’s simplified model and the corresponding HA
are, however, unable to faithfully capture AP morphology.

Biktashev’s more sophisticated models and the Fenton—
Karma model correspond to HA having nonlinear flows in
at least one mode and faithfully capture AP morphology
and restitution properties. Because of the nonlinearity
present in these models, however, HA simulation is less effi-
cient, and powerful analysis techniques developed for linear
systems are not directly applicable.

Given this state of affairs, we propose CLHAs as a new
HA-based formalism for modelling excitable cells. The
CLHA formalism was designed to be both (i) abstract
enough to admit formal analysis and efficient simulation
and (ii) expressive enough to capture the AP morphology
and restitution properties exhibited by classical, nonlinear
excitable-cell models (HH, LRd and NNR, in particular).

The basic idea behind the CLHA model is the observation
that, during an AP, an excitable cell cycles through four
basic modes of operation — resting, stimulated, upstroke,
early repolarisation, plateau final repolarisation — and the
dynamics of each mode is essentially LTI. Thus, on a
per-cycle basis, a CLHA can be viewed as an LTI-HA. To
capture possibly nonlinear, frequency-dependent properties
such as restitution, the CLHA model is equipped with a one-
cycle memory of the cell’s voltage — in particular, the value
of the cell’s voltage when it was last subjected to an outside
stimulus — and the per-mode parameters of the current
cycle’s LTI system of differential equations are updated
according to this voltage. Consequently, the model’s
behaviour is linear in any one cycle but appropriately
nonlinear overall.

6.1 CLHA derivation method

The method we used to derive the CLHA model for excit-
able cells focuses on the following three issues.

Topology. The topology of a CLHA refers to the design of
its control graph, that is, the control graph’s modes and
switches.

Flows. Let A be a CLHA defined over a set (vector) of state
variables X. The dynamics of A is determined by the dimen-
sion of X and, for each mode ¢ of A, the form of ¢’s flow
(system of ODEs in X).

Adaptability. This refers to the mechanism built into the
CLHA model that allows it to exhibit stimulation-frequency
adaptability. This feature is essential for the successful
modelling of AP morphology and restitution.

28

The discussion of our derivation method proceeds as
follows. We first consider topology and flows and in the
process derive an LTI-HA model A; that approximates
the AP trajectory of one representative AP cycle of an excit-
able cell. Since for one AP cycle we are able to use LTI
flows in each mode, A; is an LTI-HA. We then turn our
attention to adaptability. In the process, we derive our
final CLHA model A;, which offers an accurate approxi-
mation of the (infinite-trajectory) phase space of the original
nonlinear system by introducing a memory unit into
LTI-HA A,. Finally, we give the formal definition of the
CLHA model.

6.1.1 Topology: The choice of modes for both our
LTI-HA A; and CLHA A, models is inspired by the fact
that although the AP for different cell types (neuron,
cardiac myocyte, etc.) or different species (guinea pig,
NNR, etc.) exhibits different waveforms, when observed
over time, one can universally identify the following
phases within a cycle: resting, upstroke, early repolarisa-
tion, plateau or later repolarisation and final repolarisation.
Fig. 7a shows a typical AP cycle for a guinea pig ventricular
cell. The voltage thresholds Vt, Vo and VR serve to delin-
eate one phase of the AP cycle from another.

For the purpose of mode identification, we are also inter-
ested in the period of time when an excitable cell is stimu-
lated and can be further subjected to external stimulation.
We shall refer to this mode as stimulated and allow the
CLHA model to accept input within this mode. This leads
us to the following choice of four modes for our CLHA
model in order to cover the complete AP cycle: stimulated
(ST), upstroke (UP), early repolarisation and plateau (EP)
and final repolarisation and resting (FR).

As illustrated in Fig. 7b, where flows are momentarily
ignored, the mode transition relation for .A; and A, is gen-
erally cyclic in nature, although we allow the cell to return
to mode FR from mode ST when it is under insufficient
stimulus.

Because of its topology, .4, and A, already possess two
common features of excitable cells: absolute refractoriness
and graded response to sub-threshold stimulation.
Regarding the former, once a cell is excited, for example
with a stimulus current, it enters an absolute refractory
period, where the cell is non responsive to further exci-
tation. This is reflected in our models by modes UP and
EP, during which no further input is accepted and the cell
cannot return to mode UP. Another excitation is possible
only when the cell is in FR and is captured with by a begin-
stimulation event e, that moves the model to mode ST.

Graded response to sub-threshold stimulation manifests
in mode ST, where a cell accumulates its membrane
voltage by accepting an input current. As soon as its
voltage exceeds threshold Vr, the cell moves to mode UP.
Otherwise, should the end-stimulation event es occur
while v < Vg, the cell returns to mode FR. The cell

Fig. 7 Typical AP cycle and structure of CLHA

a Major AP phases
b Structure of CLHA model
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returning to the resting phase is ultimately a consequence of
the refractory modes: if the stimulus occurs at a sufficiently
high pace, the second stimulation event may be missed.

The physiological separation of modes (or phases) of the
AP has been our guiding principle for mode identification in
our HA models. Recently, however, we have investigated
the automated splitting of modes based on mathematical
properties of AP waveforms other than their physiological
meaning [33]. In the case of mode ST, there are two situ-
ations. In the single-cell case, since the outside stimulus
can be specified before simulation begins, events e; and e
are well defined. In spatial simulations, where a cell may
also accept stimuli from its neighbours, events e, and e rep-
resent, respectively, the abstraction of the process of the cell
sensing its neighbours’ potential and subsequently deciding
to fire. Although the use of these events in the spatial setting
may seem somehow arbitrary, spatial simulations using the
HA models are both efficient and capable of reproducing re-
entry waves in cardiac tissues. HA-based spatial simulation
is discussed in a separate paper [15].

6.1.2 Flows: The basic idea behind the flows of LTI-HA
A\ is to capture the nonlinear dynamics (morphology) of
a single AP in a piecewise-linear fashion. Since the AP
(voltage v) is the only observed variable and we do not
have other constraints on the dynamics of state variables,
the flows in each mode can be described in a purely linear
manner as follows

X = AX (12)

X is the first derivative of X with respect to time and A4 is a
constant diagonal matrix. Thus, the only interdependencies
among the state variables is through the observable v.
Regarding the system’s dimension, the greater the number
of state variables, the greater is its precision, with the com-
plexity of the system description increased as well. We
choose here to use three state variables, vy, v, and v., as a
balance between precision and system complexity, with
the overall membrane voltage v defined as follows

v=vo—v,t, (13)

Let A = diag(ay, ay, o). The flows in modes UP, EP and
FR, where no input is accepted, are given by

:az

v, (14)

As discussed in detail in Section 7, curve-fitting tech-
niques are used on a mode-by-mode basis to determine par-
ameters ay, o, and a; such that 4;s output, that is, the AP v,
reproduces up to a prescribed error margin the AP of the
original nonlinear system.

Considering a linear dependence on the input in mode
ST, we still remain within the LTI-HA framework, but are
now able to capture a (simplified) family of related trajec-
tories

‘.}X = aXvX + BX155
‘>Z = aZvZ + BZ[S

v, =@, + B, (15)

As in the other modes, a;, @, and a; and B,, B, and B,
are the constants to be fitted.

6.1.3 Adaptability: The shape of the AP generated by A,
is fixed by the constant (matrix and scalar) parameters a, 3,
V1, Vo and Vg. Moreover, the APD depends solely on the
stimulation frequency, as the time .4; spends in modes
ST, UP and EP (for fixed amplitude of /) is constant.
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In contrast, the original nonlinear system has a phase
space comprising infinitely many trajectories. To obtain
an accurate approximation of this space, we derive CLHA
A, from A; by generalising .4;s constant parameters «,
B, Vo and V1 to cycle-constant functions «(6), B(6),
Vo(0) and Vr(0), where 6 is a normalised, one-cycle
memory of the voltage. The derivation of A, from A; is
based on the following observations:

e APs in different cycles share a similar morphology. It
should thus be possible to to model them using equations
possessing the same structure.

e According to the restitution property, AP morphology is
principally determined by the length of the previous DI.
This indicates that a control strategy based on a relatively
simple, single-step memory unit will suffice for adaptability
purposes.

CLHA morphology. The DI in one AP-cycle influences the
shape of the AP in the next cycle, in particular, the APD,
stimulation voltage V1 and overshoot voltage V. The
time A, spends in modes ST and UP is relatively small
compared with the APD, therefore allowing the influence
of the DI in these modes to be ignored. The time A,
spends in modes FR and EP, however, can be considerable.

CLHA memory. One can accurately model the DI by intro-
ducing a timer (a variable whose derivative with respect to
time is 1) that is reset when A, enters mode FR and
measured when the stimulation event e; occurs. To avoid
the introduction of a new state variable into the model,
we choose instead to linearly approximate the DI with the
value of A,s voltage v upon the occurrence of es. We
remember this value by introducing a discrete variable v,
that is updated on the transition from FR to ST by the
(assignment) action v, = v. (Note that v, is ‘discrete’ in
the sense that its derivative is zero in all modes. This is in
contrast to the term’s traditional meaning: that of a variable
whose range of possible values is discrete.)

Let 6 = v, /Vk and recall that the invariant of mode FR is
v < Vr. We thus have that 0 < v, < Iy, and therefore 6is a
normalised approximation of DI

To see why the normalized v,, is a linear approximation of
the DI, consider the triangles of Fig. 8. According to the
similar triangles property, we have (Vr —v,)/Vr = DI
/Dl,,. As 6 =v,/Vr, we have DI= DI,(1 — 6). Thus
the previous DI is approximated in a linear way by 6

As the AP morphology is controlled by previous DI, we
therefore make the parameter matrix o a function of 6 by
introducing the cycle-constant parameter matrix & such that

ax(o) = ay f;c(o)’ ay(e) =, fv(e)s

To designate the mode in question when referring to a

(16)

voltage

time

I DI, 1

Fig. 8 DI linearisation
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Table 1: Function definitions for CLHA A,

HH LRd NNR
Vi (6) 26 445 39 +9.77426
Vo (6) 106.5 131.1 — 80.1/0 106.4 — 133.57¢?
Vi () 30 30 22 +10.10916
2 (6) 1 1 1+6
2 (0) 1 1 146
£2(0) 1 1 1+6
£2(0) 1 1 1
£2(0) 1 0.29¢528%9 1 0,70 10-99¢ 1+0.57986
2(6) 1 1 1

specific a or f, we shall henceforth denote them with super-
script i, 0 < i < 3, corresponding to modes FR, ST, UP and
EP, respectively. The use of this convention can be seen, for
example, in Table 1, where the definitions of functions f,, f,
and f, for modes FR (i = 0) and EP(i = 3) and different celyl
types (HH, LRd, NNR) are given.

Note how 6 influences the shape of the AP within these
two modes. The larger the value of 6, the steeper and there-
fore the shorter the AP. Moreover, although 6 is a linear
approximation of the DI, the APD depends on 6 (and there-
fore the DI) in a nonlinear way, as 6 appears as an exponent
in one of the terms of the analytic solution.

To model the dependency of the threshold voltage V't and
overshoot voltage Vo on the DI, we replace constants V'
and Vo with cycle-constant functions Vr(6) and Vo(6).
Their definitions are also given in Table 1. Putting it all
together, we obtain the CLHA A; shown in Fig. 9.

6.2 Formal definition of the CLHA model

Given an HA A = (X, G, init, inv, flow, jump, event), we
say that A is cycle-linear if the following conditions hold.

o The set of variables X is partitioned into a vector X of
continuous variables and a vector 6 of discrete variables.

e There exists a simple cycle within the control-flow graph
G = (V, E) that includes all the vertices in V.

e 0 is updated by all jumps to the initial mode.

e For a fixed 6 and for each mode v € V', flow(v) is an LTI
system of the form x = a(6) x + B(6) u, where u is the input.
e For each mode v € V, inv(v) is a (linear) predicate of the
form x#y(6), where #isoneof { <, >, <, >} and y(6)
is a constant vector.

e For each switch e € E, jump(e).guard is a predicate
having the same form as that of an invariant.

P
qo : Resting & FR q1 ¢ Stimulated

i, = o fo(8)v, led] &= alv, + B0y
by = “2-”U<9>7'!/ u=v 0y = ry},l:u + 3,1y
i = alho(f)v: ] b = ale. + Bl
v=0— vy v < Vr@)ne| |v=1—v, 4+
{v <V} ) \{z; < Vi(0)}
< vil| Jlv> o)

q; : Plateau & ER
©, = ad fi(0)v,

q» : Upstroke

: 2
Tp = (50,

o . 2
By = 0,g4(0)vy - |, =)y,

. > W .
i, = a’hy(0)v, [+ 2 Vo(6)] i = atu,
U= — s v=1y — v, + U
v > Vi) ) e < Vo))

Fig. 9 CLHA model of excitable cells
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7 Fitting the CLHA model to excitable-cell
models

In this section, we demonstrate the versatility of the CLHA
model by fitting its parameters to successfully capture the
AP morphology and restitution of three popular mathemat-
ical models of excitable cells: HH [13], dynamic Rd [14]
and NNR.

Fitting the flow parameters of the CLHA excitable-cell
model to a specific mathematical model involves the fol-
lowing two-step procedure: (1) Using a single representa-
tive AP, with 6 set to 0, fit parameters &/, B, 0 <i < 3,
w € {x,y,z}. (2) Apply the well-known S1S2 protocol
under varying frequencies to obtain a sequence of (DI,
APD) pairs, which is then used to fit cycle-constant func-
tions f(6)., 0 <i<3, we& {x,y,z}, Vo(6) and Vp(6).
Prior to executing step (2), we ‘guess’ the form of these
f-related functions; the guiding principle here is to use
elementary functions that take into account any extreme
values these cycle-constant function may assume.

For example, consider V(6) in the LRd model. In this
case, Vo, the overshoot voltage, varies significantly from
AP to AP, attaining a maximum value of 131.1 when
0=0 and a minimum value of 50.1 when 6=1.
Choosing Vo(6) to be the function 131.1-80.1./(6)
ensures that Vo attains its proper maximum and minimum
values over the range of APs used during the fitting process.

Curve fitting was performed using the unconstrained non-
linear optimisation routines included in the MATLAB
Optimisation Toolbox [34]. At each time step, target vol-
tages derived via numerical integration of the HH, LRd
and NNR models are compared with the output from the
CLHA model, also obtained via numerical integration. A
time step of 0.005 ms was chosen to ensure convergence
of the implementation of the Euler method underlying the
numerical-integration method. The goal of the optimisation
routines is to minimise the overall error, which is computed
as the sum of the squares of the difference between the
outputs of the CLHA model and the target voltages.

Although the optimisation routines we used for curve
fitting are completely automatic, the results they produce
depend on the initial values supplied to them. In our case,
we used a trial-and-error procedure to determine the
initial values that resulted in a satisfactory fit. The initial
values we ultimately used are available upon request.

The functions and parameters we obtained using our
fitting procedure are summarised in Tables 1 and 2.

For a single AP, a comparison of our CLHA model with
HH, LRd and NNR is shown in Fig. 10. In the figure, solid
lines represent the values obtained via numerical integration
of the original nonlinear systems, whereas the dashed lines
represent the values obtained via numerical integration of
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Table 2: Parameter values for CLHA A,

HH LRd NNR HH LRd NNR
a2 —-0.1770 —0.0087 —0.0647 a2 2.4323 —0.0069 0.3518
ol -10.7737 —0.1909 -0.0610 o2 3.4556 0.0759 0.0395
a? —2.7502 —0.1904 -0.0118 ol 2.8111 6.8265 0.0395
ay 0.3399 —0.0236 —0.0473 e —1.4569 —0.0332 —0.0087
a1y 4.5373 —0.0455 —0.0216 ai 0.0339 0.0280 0.0236
al 0.0732 —0.0129 —0.0254 ol —0.9904 0.0020 0.0087
Bx —3.6051 0.7772 0.7404 B 4.9217 0.2766 0.0592
By 0.0284 0.0589 0.0869
100 B igEHT\OdEI N T Ramode 100 —NNR model
_ :\\ error w : \\\ T '::';A model R ‘_‘_‘.grhoHrA model
E | E N E
o D o | o
8 ,‘l \\\ g E \ § 50
I T e ERE 4 2 <
(WS = ; \ = =
| «E or! L T, £ 0 s
g o [ b : B
0 5 10 15 20 25 38 6 0 50 100 150 200 250 30% a ] 100 200 300 400 500 600 a
time (ms) time (ms) time (ms)
a b c
Fig. 10 AP comparison of CLHA
a With HH
b With LRd
¢ With NNR
130
5 of system complexity. Additionally, the piecewise linearisa-
125 02 : tion of the system and the simplified description increase
120 " g computational efficiency without abstracting away essential
2T system features. Moreover, a cycle-linear model of a dyna-
w 15} o mical system enjoys both the computational efficiency of a
E 110 o ' linear model and the descriptive power of a nonlinear one,
E o making it more amenable to formal analysis (e.g. stability
<€ 105} 0 ® 1 analysis) than its nonlinear counterpart.
il ‘ | We.lllustrated.the cycle-linear approach by modelhng the
. LRd model behavmur of excitable cells. In QOmg 50, we succeediln cap-
95+ = p———— b turing the AP morphology and its adaptation to pacing fre-
quency. The method is, however, generally applicable to
905 50 ) 150 200 systems where some level of periodicity plus adaptation is

100
DI (ms)
Fig. 11  Restitution comparison with LRd

the corresponding CLHA automaton. Fig. 11 compares the
restitution functions of the CLHA and LRd models, when
pacing the cell with different frequencies. It can be seen
that we obtain a nonlinear dependence consistent with that
observed for the nonlinear models and also with that
observed in live cells.

8 Conclusions

We proposed the use of HA, in general, and CLHAsS, in par-
ticular, as a general framework for contemporary models of
excitable cells. Representing the complex response of these
cells with piecewise-linear HA permits fully analytical sol-
utions in the different phases of the excitation cycle, thus
providing a framework for analytical analysis regardless
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observed. Furthermore, we have shown how to recast two
popular approximation models as HA. The resulting graphi-
cal representations are easier to understand while still
remaining a fully formal model.

Ongoing and future work includes exploring the possi-
bility of associating physiological meaning to the internal
state variables vy, v, and v, of our CLHA model. Another
direction is to apply formal analysis to our CLHA models
of excitable cells in order to study their fundamental prop-
erties, including stability, observability and safety (preven-
tion of arrhythmia). We also plan to improve model’s
computational efficiency using analytical solutions for the
linear differential equations within a CLHA mode, thereby
eliminating slow iterative integration.
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