
Formal Analysis of the Kaminsky DNS
Cache-Poisoning Attack Using
Probabilistic Model Checking

Nikolaos Alexiou, Stylianos Basagiannis
Panagiotis Katsaros

Department of Informatics
Aristotle University of Thessaloniki

Thessaloniki, 54124, Greece
Email: {nalexiou,basags,katsaros}@csd.auth.gr

Tushar Deshpande
Scott A. Smolka

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400, USA
Email: {tushard,sas}@cs.stonybrook.edu

Abstract—We use the probabilistic model checker PRISM to
formally model and analyze the highly publicized Kaminsky
DNS cache-poisoning attack. DNS (Domain Name System) is
an internet-wide, hierarchical naming system used to translate
domain names such as google.com into physical IP addresses
such as 208.77.188.166. The Kaminsky DNS attack is a recently
discovered vulnerability in DNS that allows an intruder to hijack
a domain; i.e. corrupt a DNS server so that it replies with the IP
address of a malicious web server when asked to resolve URLs
within a non-malicious domain such as google.com. A proposed
fix for the attack is based on the idea of randomizing the source
port a DNS server uses when issuing a query to another server
in the DNS hierarchy.

We use PRISM to introduce a Continuous Time Markov
Chain representation of the Kaminsky attack and the proposed
fix, and to perform the required probabilistic model checking.
Our results, gleaned from more than 240 PRISM runs, formally
validate the existence of the Kaminsky cache-poisoning attack
even in the presence of an intruder with virtually no knowledge
of the victim DNS server’s actions. They also serve to quantify
the effectiveness of the proposed fix: using nonlinear least-squares
curve fitting, we show that the probability of a successful attack
obeys a 1/N distribution, where N is the upper limit on the range
of source-port ids. We also demonstrate an increasing attack
probability with an increasing number of attempted attacks or
increasing rate at which the intruder guesses the source-port id.

Keywords-DNS, Cache Poisoning, Probabilistic Model Check-
ing

I. INTRODUCTION

DNS (Domain Name System) is a hierarchical naming
system used to identify network hosts. DNS makes it possible
to use a url (Uniform Resource Locator) to address a machine
in the internet. It is implemented using DNS name servers,
which convert urls into numeric IP addresses. DNS forms the
logical backbone of the world wide web, and the service it
provides is used on the order of a trillion times a day [4].
Any attack targeting DNS would thus seriously impact the the
web’s basic operational status, reliability, and security.

In February 2008, security researcher Dan Kaminsky dis-
covered a DNS vulnerability that could be exploited to corrupt

normal DNS operation. The attack targets DNS’s url-resolution
mechanism so that an infected DNS server gives an incorrect
IP address for a url. An intruder can exploit this mechanism
to hijack an internet domain. Specifically, a corrupted DNS
server will reply with the IP address of a malicious web
server when asked to resolve urls within a non-malicious
domain such as google.com. This would direct a large number
of unsuspecting clients (ordinary desktop machines) to the
malicious web site when they actually wanted to visit a web
site within the domain google.com.

In March 2008, some of the world’s top DNS experts
agreed upon a temporary fix against the attack: randomizing
the source port, the UDP port a client uses to issue a DNS
query. Port randomization [10] means that the intruder must
now correctly guess the 16-bit source-port id in addition to
the unique 16-bit query id assigned to each DNS query. The
effective transaction strength thus becomes 216 · 216 = 232, as
the intruder has to guess a 32-bit number [4].1

On August 6, 2008, 30 days after the release of the patch,
Kaminsky revealed the nature of vulnerability and how it
could be exploited. Thereafter, Kaminsky’s attack has received
widespread publicity [12], [13]. Note that Kaminsky did not
really discover a new attack. Instead, he made clever use
of cache poisoning, a technique that causes a victimized
DNS server to store false information about the IP address
associated with a url.

In this paper, we use the probabilistic model checker
PRISM [11] to formally analyze the Kaminsky DNS cache-
poisoning attack and the effectiveness of the proposed fix.
Our approach is to create a Continuous-Time Markov Chain
(CTMC) model of the basic DNS url-resolution protocol, the
Kaminsky attack, and the proposed fix. A CTMC is a stochas-
tic process that satisfies the Markov property: the conditional
probability distribution of future states of the process depend
only upon the present state. In a CTMC, the waiting time of

1Actually, some of the 216 UDP ports are fixed for certain applications and
cannot be used for other purposes [20].

2010 High Assurance Systems Engineering Symposium

1530-2059/10 $26.00 © 2010 IEEE

DOI 10.1109/HASE.2010.25

94

2010 High Assurance Systems Engineering Symposium

1530-2059/10 $26.00 © 2010 IEEE

DOI 10.1109/HASE.2010.25

94

2010 IEEE 12th International Symposium on High Assurance Systems Engineering

1530-2059/10 $26.00 © 2010 IEEE

DOI 10.1109/HASE.2010.25

94

Question Section
mail.google.com

Answer Section
209.85.132.83

Authority Section (optional)

Additional Section (optional)

Fig. 1. Authoritative Answer (AA) for a DNS query.

Question Section
mail.google.com

Answer Section (empty)

Authority Section
ns1.google.com

Additional Section
216.239.32.10

Fig. 2. Referral Response (RR) for a DNS query.

a transition from state i to state j is governed by a negative
exponential distribution, the parameter of which is transition
rate qij . CTMCs are widely used in systems analysis due
to their strength in representing dynamic behavior, physical
processes, and queueing systems with Poisson arrival rates.
They are also amenable to analytical and numerical analysis.

We comprehensively explore our model’s multi-dimensional
parameter space by systematically varying a number of key
parameters, including: the maximum port id, which defines
the range of source-port ids, and thus the strength of the
proposed fix; the rate at which the intruder launches an attack
by sending a corrupted response to the victim DNS server; and
the popularity of the target url, which determines how likely
it is for the victim DNS server to have a live cache entry for
the target url.

Collectively, our results, gleaned from more than 240 runs
of the PRISM model checker, formally validate the existence
of the Kaminsky DNS cache-poisoning attack even in the
presence of an intruder with virtually no knowledge of the
victim DNS server’s actions. They also serve to quantify
the effectiveness of the proposed fix: using nonlinear least-
squares curve fitting, we show that the probability of a
successful attack obeys a 1/N distribution, where N is the
maximum source-port id. Additionally, our results demonstrate
an increasing attack probability with an increasing number
of attempted attacks or increasing rate at which the intruder
guesses the source-port id. To the best of our knowledge, we
are the first to formally model and analyze the Kaminsky DNS
attack and the proposed fix.

The rest of the paper is structured as follows. Section II
provides a brief overview of DNS, while Section III describes
Kaminsky’s attack. Section IV highlights those features of
PRISM essential to our analysis. Section V introduces the
PRISM model, and Section VI presents our model-checking
and curve-fitting results. Section VII considers related work,
while Section VIII offers our concluding remarks and direc-
tions for future work.

II. DNS

DNS (Domain Name System) is a hierarchical naming
system for the internet based on an underlying client-server
architecture, which is also hierarchical in nature. The primary
function of a DNS server is to perform url-resolution: the
process of translating a url or domain name, such as mail.
google.com, into a physical IP address, such as 209.85.132.83.

Domain names and DNS servers are organized hierarchically
in terms of top-level domains and subordinate, lower-level
domains, respectively com, google and mail in our example.

When a DNS server receives a url-resolution query from a
client, typically an ordinary desktop machine, it first checks
to see if it can answer the query authoritatively based on
a locally maintained database of resource records mapping
domain names to IP addresses. If the queried name matches
a corresponding resource record in its local database, the
server gives an authoritative answer (AA), using the local
resource record to resolve the queried name. The structure of
an authoritative answer for a DNS query is shown in Fig. 1.
The Question Section contains the url to be resolved. The
Answer Section contains the IP address for the url in the
Question Section [4]. If no local information exists for the
queried name, the server then checks to see if it can resolve the
name using information cached locally from previous queries.
If a match is found, the server answers with the appropriate
cache entry and the query is completed [18].

If the queried name does not find a matched answer at its
preferred server—either from its cache or local database—the
query process can continue, using recursion to fully resolve
the name. Such recursive queries involve assistance from other
DNS servers to help resolve them. The response to the last
recursive query is the AA response (if the url is valid). Most
DNS servers are configured to support recursive queries, as
this is a server’s default configuration. An exception to this
rule are the so-called root DNS servers for top-level domains,
which are configured to be non-recursive. Such a server will
instead provide a referral response (RR) to a DNS query:
a pointer (referral) to another DNS server that presumably
has authority for a lower portion of the DNS namespace and
can assist in resolving the query. The structure of a referral
response for a DNS query is shown in Fig. 2. The Question
Section contains the url to be resolved. The Answer Section
is empty. The Authority Section and the Additional Section
respectively contain the name and IP address for the DNS
server to which the referral response points [4].

Caching reduces traffic between DNS servers and therefore
improves DNS performance. For an AA response, the contents
of Answer Section are cached whereas for an RR response,
the contents of the Additional Section are cached [4]. To keep
cached information from becoming stale and to lessen the
demand on authoritative name servers, a server stores DNS
query results in its cache for a specific period of time known as

959595

Time To Live (TTL). When a caching (recursive) name server
queries an authoritative name server for a resource record, it
will cache that record for the time (in seconds) specified by the
TTL. If a client queries the caching name server for the same
record before the TTL has expired, the caching server will
simply reply with the already cached resource record rather
than re-retrieve it from the authoritative name server.

III. THE KAMINSKY DNS CACHE-POISONING ATTACK

To understand how Kaminsky’s DNS attack works, consider
the following scenario. A client machine of the authoritative
DNS server for the domain cs.sunysb.edu asks this server to
resolve a url within the domain google.com. Meanwhile, an
intruder, who is in control of the domain badguy.com, seeks to
poison the cache of this DNS server in such a way that the IP
address of badguy.com is substituted for the IP address of DNS
server for google.com, the target domain of the attack. For
reasons that should now be obvious, we refer to this server as
the victim of the attack and assume it is recursive and therefore
caching. In the event of a successful attack, the victim will
reply to the client’s url-resolution request for a url within the
target domain google.com with the IP address of the malicious
domain. Here are the exact steps involved in the attack.

1) The intruder configures its own DNS server to be
authoritative for the target domain google.com. It then
lures a client in the victim’s domain to generate DNS
lookup queries to resolve a url in the domain controlled
by the intruder (badguy.com). The intruder can do this,
for example, by claiming to have forgotten a password,
prompting the victim to respond by e-mail [13].

2) The victim performs a DNS lookup in order to find out
where to send the e-mail.

3) Upon receiving the victim’s query, the intruder’s name
server extracts and saves the port id at which the victim
DNS server expects to receive the response (the victim’s
source port). The intruder’s name server also pretends
that it is not authoritative for domain badguy.com. It
does this by sending the victim an RR response (it
should have sent it an AA response), referring the victim
to a random name within the target domain, such as
1.google.com, 2.google.com, and 3.google.com. Such a
url is unlikely to be in the cache even if other lookups
for this domain have been recently performed. Since the
intruder now knows that the victim will likely start a
DNS lookup for the chosen url, it has an opportunity to
attempt to poison the victim’s cache [21].

4) On receiving the intruder’s response, the victim gener-
ates a query to resolve one of the random names within
the target domain. The victim assigns a new query id to
this request.

5) While the victim is waiting for a legitimate AA response
to its query, the intruder tries to provide the victim
with a fake RR response. The additional section of
a fake RR response contains the IP address of the
intruder’s DNS server. If the intruder guesses the correct
query id, the victim accepts and subsequently caches the

fake RR response, thereby corrupting its cache [4]. The
intruder can send such messages to the victim since it
is configured to be authoritative for the target domain
google.com.

6) To increase the likelihood of a successful attack, the
intruder floods the victim with many forged packets
having different query ids. The intruder needs to do this
because the victim assigns a unique query id to each
DNS query and only a response packet with a matching
query id will be accepted. These forged packets say that
the intruder is authoritative for the target domain. As
such, upon a successful attack, the intruder will own the
entire zone of the target domain [13].

The proposed fix for this attack is to randomize the source
port [10]. Rather than use just a single UDP port, which can be
easily discovered by the intruder as described above, a much
larger range of ports is allocated by a name server and then
used randomly when making out-bound queries [4], [17], [8].

IV. PROBABILISTIC MODEL CHECKING AND PRISM

Probabilistic model checking is the problem of determining
the probability by which a probabilistic model M satisfies a
probabilistic temporal logic formula ϕ, where M represent a
system model and ϕ represents a system property. The prob-
abilistic model checker PRISM [6], [11] supports three types
of probabilistic models: Markov decision processes (MDPs),
discrete-time Markov chains (DTMCs), and continuous-time
Markov chains (CTMCs). For the reasons discussed in Sec-
tion I, we use CTMCs. Properties are specified in PRISM
using Probabilistic Computation Tree Logic (PCTL) and, for
CTMCs, in an extended version called Continuous Stochastic
Logic (CSL). We define properties of the form F prop, where
F is the “eventually” linear temporal operator (sometimes
called “Future”) and prop is a state assertion that evaluates
to true or false for a single model state.

A model in PRISM is constructed as the parallel com-
position of its modules. The behavior of each module is
described by a collection of guarded commands, each of which
comprises a guard and one or more update actions:

[] g ⇒ λ1 : u1 + ... + λn : un ;

The guard g is a predicate over model variables. Each update
action ui describes a transition the module can make by giving
the variables new values; in the case of CTMCs, λi is the
transition’s associated rate. If the guard is true, the updates
are executed according to their rates.

Commands can be labeled and this provides a mechanism
for modules to interact with each other by synchronizing on
identically labeled commands. The rate of the resulting tran-
sition is the product of the rates of the individual transitions.

V. PRISM MODEL OF THE KAMINSKY ATTACK

Based on the 6-step attack scenario described in Section III,
we model Kaminsky’s DNS attack as a CTMC. Our model
is minimal in the sense that it contains just enough details

969696

(modules and actions) to reveal the basic vulnerability in DNS
that makes Kaminsky’s cache-poisoning attack possible.

In modeling the attack, we assume that the intruder has
already lured a client of the victim DNS server into generating
a query to resolve a url within the domain badguy.com, and
that the intruder’s DNS server has received the victim’s query
and now knows the victim’s source-port id. These assumptions
are valid in the sense that the steps embodied in them are
part of the mechanics of launching the attack, and not part
of the actual vulnerability that makes the attack possible
in the first place. They also serve to simplify our model:
model execution can now begin with the intruder launching
an attack by having its DNS server send the victim one or
more bogus responses, referring it to a number of random urls
such as 1.google.com, 2.google.com, and 3.google.com within
the target domain.2 Moreover, these assumptions obviate the
need to directly model a client of the victim DNS server.

The architecture of our PRISM CTMC model of the Kamin-
sky DNS attack, and the actions of the principals involved in
the attack, are illustrated in Fig. 3. Our model defines the
following four modules, each of which is a DNS server.

• Client Server (CS): CS is the victim of the attack. It is
recursive, maintains a cache, and is authoritative for the
domain cs.sunysb.edu. In order to resolve a url outside
of this domain, it contacts the root DNS server; i.e. it
has a resource record containing the IP address of the
root DNS server. Whenever the victim sends a request
to resolve a url, it saves the query id and source-port
id of the request in a wait-for-reply queue. If the url is
resolved successfully, then its IP address is stored in the
url-resolution cache until the TTL expires.

• Root Server (RS): RS is the root of the DNS hierarchy.
It possesses a resource record containing the IP address
of the DNS server for google.com.

• Domain Server (DS): DS is the authoritative name server
for the target domain (google.com). It sends an AA
response to all url-resolution requests seeking to resolve
a url within the target domain.

• Intruder Server (IS): IS is the authoritative DNS server
for the intruder’s domain badguy.com.

As discussed in Section III, the proposed fix for the Kamin-
sky attack is to have a name server using a random 16-bit
source port each time it issues a new url-resolution request.
Now, the intruder needs to guess the victim’s port id in addition
to the query id. To model the fix, we introduce the parameter
max_port_id, which defines the range of source-port ids as
1..max_port_id. The intruder must now attempt to guess
the source-port id, in addition to the query id, from this range.
Choosing a value of 1 for max_port_id allows us to run
the CTMC model with source-port randomization turned off,
whereas choosing a value greater than 1 for this parameter
allows us to run the model with source-port randomization

2It makes sense for an intruder to attempt to hijack a high-traffic domain
such as google.com, as this would presumably impact the greatest number of
victim clients.

turned on.
Further details about the max_port_id parameter, along

with a description of other key model parameters, is now
given. In describing these parameters, we use the term fake
RR response for the RR messages the intruder sends to the
CS declaring itself to be authoritative for the target domain
google.com. A correct guess (as opposed to an incorrect guess)
represents a fake RR response that correctly matches CS’s port
id. The acceptance of a correct guess by the CS means that
the cache-poisoning attack has succeeded.

We also use the term live cache entry for a cache entry
having a positive TTL (Time To Live) value (TTL > 0). If the
CS has a live cache entry for the target domain, it can respond
immediately to the intruder’s bogus RR response. If the TTL
is expired (TTL = 0), the CS asks the RS to resolve the target
url. The RS cannot resolve the target url but sends the victim
an RR response, referring it to the DS. This gives intruder an
opportunity to send the victim fake RR responses while the
victim awaits a legitimate authoritative response from the DS.

The model parameters are the following:
• max port id: Defines the range of source port ids as
1..max_port_id for the purpose of implementing
source-port randomization. This is reflected in the model
by the rate at which correct guesses arrive at the CS.
See the description of parameter guess below. As
shown in Section VI-A, the attack probability follows a
1/max_port_id distribution. We vary max_port_id
from 1 to 400, since the probability of a successful
cache-poisoning attack is found to be extremely low for
max_port_id > 400.

• guess: The overall rate at which IS sends fake RR
responses to CS. These responses may be correct or
incorrect guesses, arriving at CS with sub-rates dependent
on guess. We vary guess from 10 to 300 since
the probability of a successful cache-poisoning attack
remains unchanged for guess > 300.

• popularity: The rate at which the TTL associated with
the CS’s cache entry for google.com has a positive value.
The more popular the url, the more likely it is to have
a live cache entry. Popularity is characterized as low,
medium, and high according to its value: a popularity
rate of 1-3 is used for less popular sites, 4-7 for medium-
popularity sites, and 8-9 for very popular sites.

• times to request url: The number of times the IS sends
a bogus RR response to the CS, referring it to a ran-
dom url within the DS and thereby launching a cache-
poisoning attack. We vary times_to_request_url
from 1 to 30.

• other legitimate requests rate: The rate at which re-
quests from DNS servers other than CS arrive at the DS.
Parameter other_legitimate_requests_rate is
therefore used to represent the load on the DS. Higher
loads mean longer delays for the DS in processing
requests and sending back responses. We vary the oth-
er_legitimate_requests_rate from 1 to 300.

Each module defines certain actions, which synchronize

979797

Victim DNS Server

(DNS Server for

cs.sunysb.edu)

Root DNS Server(3) Resolve a

random url within

target domain

(4) Refer to target−

domain DNS server

(RR Response)

(5) Resolve a random url within target−

domain (1.google.com)

(6) Target−url (1.google.com) resolved, IP

address is 209.85.132.83 (AA response).

Target−domain DNS

Server (DNS Server

for google.com)

DNS Server for

Intruder’s Domain

(badguy.com)

(1) Intruder DNS server sends

an incorrect RR response to

victim. It asks victim to resolve

a random url within target−

domain (e.g. 1.google.com)

Note: Also

configured to be

authoritative for

the target

domain

(google.com)

Wait for Reply

Queue

(6’) Intruder sends multiple false RR

responses, each of which contains

intruder’s IP address (309.8.88.88)

in the additional section instead of

IP address of google.com. Query id

and port id are guessed at random

(7) Assuming at least one of the

intruder’s false RR responses has

query id and port id matching query

id and port id saved in the wait−for−

reply queue, there is race between

intruder and target−domain’s DNS

server to resolve victim’s query

(2) Save

query id,

port id

Fig. 3. Architecture of PRISM model of Kaminsky DNS attack.

with appropriate actions from other modules. Since our model
is a CTMC, each action (CTMC transition) has an associated
rate. Actions also have associated preconditions that need to
be satisfied for their execution to take place. We now describe
some of the important actions for each module. Unless stated
otherwise, each action is executed with a constant rate of 1.

Actions Defined for IS

a) Send correct guess to CS: The IS sends
a fake RR response to the CS that correctly
matches the CS’s source-port id, thereby poi-
soning the cache. This action synchronizes with
action <Receive correct guess from IS> of CS,
and has an associated rate given by parameter
guess.

b) Send incorrect guess to CS: The IS sends
a fake RR response to the CS that does not
match the CS’s source-port id. This action is
synchronized with action <Receive incorrect
guess from IS> of CS, and has an associated
rate given by parameter guess.

Actions Defined for CS

a) Send url-resolution request to RS: With rate

1 − popularity/10, the TTL of the target
url’s cache entry is given the value 0. In this
case, the requested url does not exist in the
cache, and a query is sent to the RS. With rate
popularity/10, this TTL gets the value 1.
In this case, the requested url is cached, and
the counter of answered queries is increased
by one. This action is synchronized with action
<Process request sent by CS> of RS.

b) Receive response from DS: The response from
DS is an authoritative response. In this case,
the DS has won the race with the IS and a
cache-poisoning attack has been avoided. This
action is synchronized with action <Process
request sent by CS> of DS and action <Restart
attack> of IS. Its rate is determined by a
number of factors, including the rate at which
the TTL of the target url is given the value 0.

c) Receive correct guess from IS: Let n =
max_query_id · max_port_id, where
max_query_id is the constant 65,536 (216).
This action executes with rate 1/n and syn-
chronizes with action <Send correct guess to
CS> of IS. The combined arrival rate for
correct guesses is obtained by multiplying the

989898

rates of the these two synchronizing actions:
(1/n) · guess.

d) Receive incorrect guess from IS: This action
executes with rate 1 − 1/n and synchronizes
with action <Send incorrect guess to CS>
of IS. The combined arrival rate for incor-
rect guesses is obtained by multiplying the
rates of the these two synchronizing actions:
(1− 1/n) · guess.

Action Defined for RS

a) Process request sent by CS: A url-resolution
request is received from the CS. A referral
response directing CS to DS is sent to CS. This
action is synchronized with the action <Send
url-resolution request to RS> of CS.

Actions Defined for DS

a) Process request sent by CS: A url-resolution
request is received from the CS. An authorita-
tive response is sent to CS.

b) Receive request from other servers: The DS
needs to process requests to resolve target-
domain urls from DNS servers other than the
victim (CS), thereby increasing its workload
and slowing it down. This offers more time
for the IS to carry out an attack. Its rate is
given by (1 − 1/other_legitimate_re-
quests_rate).

CSL Property: We want to determine the attack probability,
i.e. the probability the intruder carries out a successful attack,
which is indicated by the victim having a poisoned url-
resolution cache. Therefore, a successful attack arises when the
entry in the victim’s cache for the target domain (google.com)
contains the IP address of IS, the intruder’s DNS server.
The CSL formula to calculate the attack probability P is
therefore: P=? [F cache_poisoned]. The state asser-
tion cache_poisoned becomes true when the IS correctly
guesses the victim’s source-port id.

VI. MODEL-CHECKING AND CURVE-FITTING RESULTS

In this section, we present six sets of model-checking results
(Figs. 4-9) obtained by running PRISM on our CTMC model
of the Kaminsky DNS attack. Each result set demonstrates
the effect of varying one or more of the five critical model
parameters (see Section V) on the attack probability.

Our results are partitioned into two groups. For result
sets 1-3, max_port_id = 1, meaning that the proposed
fix for the Kaminsky cache-poisoning attack is turned off.
In this setting, we show the effects on the attack probability
of varying parameters times_to_request_url, oth-
er_legitimate_requests_rate, and guess, respec-
tively. For result sets 4-6, the effect of source-port random-
ization on the attack probability is demonstrated by varying
max_port_id from 1 to 400. Within this setting, we also

Fig. 4. Results of varying times_to_request_url with
max_port_id =1.

Fig. 5. Results of varying other_legitimate_requests_rate with
max_port_id =1.

vary times_to_request_url, guess, and popular-
ity, respectively, demonstrating their second-order effects
on the attack probability. For all result sets, the victim’s
max_query_id is given the fixed value of 216 = 65536.

Result Set 1: For three different values of parameter guess
(low=30, medium=60, high=130), we vary times_to_re-
quest_url from 0 to 30; other_legitimate_re-
quests_rate is set to 35 and max_port_id is set to 1.

As Fig. 4 shows, the attack probability increases with
increasing times_to_request_url values. This is as
expected since the more url-resolution requests there are for
the target domain, the more opportunities there are for the
IS to carry out a cache-poisoning attack. As a second-order
effect, we also observe that by increasing the guess rate, the
attack probability is increased: the more opportunities the IS
is given to guess the source-port id, the greater its probability
of doing so.

Result Set 2: For two different values of times_to_re-
quest_url (2 and 6), we vary other_legitimate_re-

999999

Fig. 6. Results of varying guess with max_port_id =1.

Fig. 7. Results for different times_to_request_url values while
varying max_port_id.

quests_rate from 10 to 300; the guess rate is set to 50
and max_port_id is set to 1.

As Fig. 5 shows, the attack probability increases with in-
creasing other_legitimate_requests_rate values.
As other_legitimate_requests_rate increases, so
does the workload on DS, resulting in increasingly longer
delays in responding to CS queries. Moreover, recall that the
IS is in a race with the DS to respond to a CS query, and should
it win the race, cache-poisoning ensues. Therefore, the longer
the DS is delayed processing other url-resolution requests, the
greater the probability of cache poisoning. Also, as explained
above, the attack probability is higher for a higher value of
times_to_request_url.

Result Set 3: For two different values of times_to_re-
quest_url (2 and 6), we vary rate guess from 10 to 300;
other_legitimate_requests_rate is set to 150 and
max_port_id is set to 1.

Fig. 6 demonstrates the impact of increasing the guess
rate on the attack probability. With source-port randomization
turned off (max_port_id =1), to poison the cache, the IS
need only correctly guess the query id and for this correct

Fig. 8. Results for different guess rates while varying max_port_id.

Fig. 9. Results for different popularity values while varying
max_port_id.

guess to reach the CS ahead of the DS’s AA reply. In-
creasing rate guess increases the probability of this happen-
ing. The second-order effects of increasing times_to_re-
quest_url are also demonstrated.

Result Sets 4-6: For each of these result sets, we vary
max_port_id from 1 to 400. For result set 4, we addi-
tionally consider two different values of times_to_re-
quest_url (2 and 6), while setting guess to 200 and
other_legitimate_requests_rate to 150. For result
set 5, we consider four different values of guess (50,100,
150, and 200), while setting times_to_request_url to 6
and other_legitimate_requests_rate to 150. For
result set 6, we consider three different values of popu-
larity (low=2, medium=5, high=9), while setting guess
to 200, times_to_request_url to 8, and other_leg-
itimate_requests_rate to 300. Result sets 4 and 5
were obtained with a popularity value of 2 (low).

As Figs. 7-9 show, the probability of a successful attack de-

100100100

Fig. guess olrr pop. ttru A B

7 200 150 2 2 0.692 0.0002
200 150 2 6 1.934 0.0018

8
50 150 2 6 0.531 0.0002
100 150 2 6 1.033 0.0004
150 150 2 6 1.493 0.0009
250 150 2 6 2.369 0.0002

9 200 300 2 8 4.290 0.0097
200 300 5 8 2.917 0.0046
200 300 9 8 0.652 0.0005

TABLE I
CURVE-FIT ANALYSIS OF FIGS. 7-9.

creases nonlinearly as the value of max_port_id increases,
due to the fact that, with source-port randomization turned
on, the intruder needs to guess the correct source-port id
from a much larger range. We in fact show in Section VI-A
that each of these plots follows the 1/N distribution, where
N = max_port_id.

The results of Figs. 7-9 also serve to demonstrate the
second-order effects of varying parameters times_to_re-
quest_url, guess, and popularity, respectively. The
impact of parameter settings for times_to_request_url
and guess have already been considered above. In the case of
popularity, the lower the value, the greater the probability
the requested url is not cached at the victim CS. Should this be
the case, the CS will initiate a recursive query to resolve the
target url, giving the IS an opportunity to carry out a cache-
poisoning attack. This explains why a a lower popularity
value results in uniformly higher attack probabilities for all
possible max_port_id values.

A. Curve-Fitting Analysis of Model-Checking Results

From Figs. 7-9, we observed that with source-port random-
ization turned on, the probability of a successful attack de-
creases nonlinearly as the value of max_port_id increases.
To determine the precise nature of this effect, we subjected
the results of Figs. 7-9 to nonlinear least-squares curve fitting
using Gnuplot [7]. Gnuplot minimizes the weighted least-
squares (chi-square) merit function. We used a convergence
criterion of 10−5. Fig. 10 shows the results of our curve-
fit analysis for the three datasets plotted in Fig. 9. Table I
summarizes our curve-fitting analysis of the nine total plots
of Figs. 7-9, and indicates the parameter settings used for
each dataset. (In the table, column headings ttru, olrr
and pop are abbreviations for times_to_request_url,
other_legitimate_requests_rate and popular-
ity respectively.) Columns A and B are explained below.

Our curve-fitting results of Fig. 10 and Table I reveal that
the attack probability distribution is of the form A/x + B,
where x = max_port_id, A ranges from 0.531 to 4.290,
with an average value of 1.768, and the values of parameter B
are very small (on the order of 10−3) and thus can be ignored.
We may therefore conclude that the attack probability for our
model is inversely proportional to max_port_id.

B. Validation of Results and Runtime Statistics

We used the PRISM simulator to confirm the existence
of both winning and losing intruder execution sequences. A
winning execution results in the poisoning of the victim’s
cache, while a losing one implies that the target domain
(google.com) is resolved correctly. In doing so, we observed
that there are two kinds of winning execution sequences for
the intruder:

1) Response from intruder arrives at victim before referral
response from RS reaches victim.

2) Response from intruder arrives at victim before author-
itative response from DS reaches victim.

The intruder is therefore in a race with the RS as well as DS,
and the attempted attack is successful if it wins either race.

We also observed that for optimal attack settings
max_query_id = 1 (least), max_port_id = 1 (least),
times_to_request_url = 30 (high), guess = 300
(high), other_legitimate_requests_rate = 300
(high), and popularity = 2 (low), the attack probability
is 0.999, which is almost 1. This result is as expected and
further serves to validate the model.

Tables II-IV contain various statistics for our CTMC model
corresponding to the medium-guess-rate curve of Fig. 4.
(In the tables, column heading ttru is an abbreviation
for times_to_request_url.) More specifically, we ex-
ecuted our model with guess = 60, other_legiti-
mate_requests_rate = 35, max_port_id = 1 and
times_to_request_url ranging from 1 to 30. Table II
provides basic statistics for both the CTMC model and the
MTBDD PRISM uses to represent the model’s reachable state
space. For the CTMC, the number of states and number of non-
zero transitions are given; for the MTBDD, the total number
of nodes and the amount of memory needed to store the
MTBDD are given [3]. A good estimate for the size of each
node is 20 bytes. The memory usage is thus given by the
formula Memory(KB) = total number of nodes · 20/1024.
For all executions, the MTBDD had a single initial state and
8 terminal nodes (leaves).

Table III shows the times taken to construct the model, a
two-step process. In the first step, a CTMC (represented as
an MTBDD) is created from the system description. In the
second step, the reachable states are computed using a BDD-

101101101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350 400

P
ro

b
ab

il
it

y

max_port_id

F(x) = A / x + B
Low Popularity

Medium Popularity
High Popularity

Attack-Probability-fit (Low Popularity): A=4.29, B=0.0097
Attack-Probability-fit (Medium Popularity): A= 2.917, B=0.0046

Attack-Probability-fit (High Popularity): A=0.652, B=0.0005

Fig. 10. Attack probability and curve fit for results from Fig. 9

ttru Model MTBDD
States Transitions Nodes Memory

(KB)

1 10 13 352 6.88
5 1232 4272 6963 136.00
10 14992 65682 20127 393.11
15 67777 67777 37990 741.99
20 201087 996727 52314 1021.76
25 471422 2397362 66651 1301.78
30 950282 4917072 80886 1579.80

TABLE II
GENERAL STATISTICS FOR PRISM CTMC MODEL

ttru No.
Iterations

Model
Construction
Time (sec)

1 7 0.004
5 21 0.090
10 36 0.670
15 51 2.360
20 66 5.290
25 81 14.290
30 96 22.930

TABLE III
CONSTRUCTION-TIME STATISTICS FOR PRISM CTMC MODEL

based fixpoint algorithm [3]. The number of fixpoint iterations
and the time required for them is given in Table III.

Table IV gives the times taken to compute the attack prob-
ability using the Jacobi Over-relaxation (JOR) method. JOR
is the standard method used by PRISM’s MTBDD engine [3].
The table gives the number of iterations performed during
model checking, the time taken for model checking, and the
attack probabilities.

All results were obtained on an Intel Core 2 Duo Pro-
cessor with 4 GB RAM and dual 1.66 GHz Intel Centrino
T5500 processors, each with 2 MB L2 cache. The OS was

ttru No. Itera-
tions

Model
Checking
Time (sec)

Attack
Probability

1 6 0.010 0.025
5 30 0.040 0.118
10 60 0.370 0.222
15 90 1.620 0.314
20 120 6.160 0.395
25 150 16.190 0.467
30 180 31.710 0.530

TABLE IV
MODEL CHECKING STATISTICS FOR PRISM CTMC MODEL

Ubuntu 8.04. Tables II-IV exhibit a significant increase in
the size of the model and corresponding model-construction
and model-checking times with an increase in the range of
times_to_request_url.

The size of the state space explored by PRISM while
executing the model depends on the values of the parameters
that are used to define pre-conditions for the various actions.
In our PRISM model of the Kaminsky DNS attack, parameter
times_to_request_url alone appears in pre-conditions.
All other parameters are used to define rates associated with
various actions. Parameter times_to_request_url is
central to the model in that it defines the initial state of the
model’s state space. When model execution begins, the IS
generates a request to resolve the target url. More requests
result in the generation of more url-resolution requests, which
in turn cause exploration of bigger and bigger state spaces. So,
clearly, the size of the model’s state space increases with the
value of times_to_request_url, leading to an increases
in the size of the model and model-execution time.

VII. RELATED WORK

In related work, a number of researchers have deployed
probabilistic model checking to analyze threat levels in com-
puter systems and security protocols [9], [16], [14], [2].

102102102

Probably the most closely related work is that of [2], where
PRISM is used to systematically quantify DoS (Denial of
Service) security threats. In [1], Hidden Markov Models are
used to develop anomaly-based intrusion detection systems. In
[15], generation and analysis of a system’s attack graph is used
to decide which security vulnerabilities would be most cost-
effective to guard against. To the best of our knowledge, we are
the first to formally model and analyze the highly publicized
Kaminsky DNS attack.

VIII. CONCLUSIONS

We have used the PRISM probabilistic model checker to
formally model and analyze the highly publicized Kaminsky
DNS cache-poisoning attack. The nature of the proposed fix—
randomizing a DNS server’s source port—made the Kaminsky
DNS attack an ideal candidate for probabilistic model check-
ing. Moreover, since the Kaminsky attack is aimed at DNS
servers, it was at once both natural and beneficial to model
the attack in PRISM as a CTMC, with corresponding arrival
rates for benign and malicious requests and their responses.

The results we obtained from this CTMC model formally
validate the existence of the attack even in the presence of
an intruder with virtually no knowledge of the victim DNS
server’s actions. They also serve to quantify the effectiveness
of source-port randomization as a counter-measure. In partic-
ular, our curve-fitting analysis shows that the attack proba-
bility is inversely proportional to parameter max_port_id,
which determines the range of source-port randomization. Our
results further demonstrate an increasing probability of suc-
cessful attack with an increasing number of attempted attacks
(times_to_request_url), increasing load on the target
domain server (other_legitimate_requests_rate),
and increasing rate of intruder guesses (guess). Furthermore,
assigning a lower popularity value to the target url also resulted
in a higher attack probability.

Port randomization is a short-term fix for the DNS vul-
nerability Kaminsky discovered. A potential long-term fix
is DNSSEC, which tries to prevent cache-poisoning attacks
by allowing Web sites to verify their domain names and
corresponding IP addresses using digital signatures and public-
key encryption [5]. As future work, we plan to extend our
PRISM-based analysis to DNSSEC as well as threats that may
have been overlooked by DNSSEC, including DNS bandwidth
amplification attacks [19]. We believe that probabilistic model
checking and in particular CTMC analysis, can be used
to quantitatively evaluate and compare security threats, and
in the process provide valuable feedback for the design of
appropriate countermeasures.

The source files for our PRISM model of the Kaminsky
DNS attack, along with all result sets and corresponding set-
tings for model parameters and PRISM command-line options,
are available from http://www.cs.sunysb.edu/∼sas/kaminsky/.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments. Research supported in part by NSF Grants

CCF-0926190 and CCF-1018459 and AFOSR Grant FA0550-
09-1-0481. Part of Professor Katsaros’s research was con-
ducted while on Sabbatical leave at Stony Brook University.

REFERENCES

[1] D. Ariu, G. Giacinto, and R. Perdisci. Sensing attacks in computers
networks with Hidden Markov Models. In P. Perner, editor, Proc. 5th
International Conference on Machine Learning and Data Mining in
Pattern Recognition (MLDM ’07), volume 4571 of LNAI, pages 449–
463. Springer, 2007.

[2] S. Basagiannis, P. Katsaros, and A. Pombortsis. Probabilistic model
checking for the quantification of DoS security threats. Computers &
Security, 28(6):450–465, September 2009.

[3] T. Ciardo. Kanban manufacturing system (http://www.
prismmodelchecker.org/casestudies/kanban.php).

[4] S. Friedl. An illustrated guide to the Kaminsky DNS vulnerabil-
ity. Unixwiz.net Tech Tips, August 2008 (http://unixwiz.net/techtips/
iguide-kaminsky-dns-vuln.html).

[5] D. Gordon and I. Haddad. The Basics of DNSSEC. O’Reilly Media,
2004.

[6] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In H. Hermanns and
J. Palsberg, editors, Proc. 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’06),
volume 3920 of LNCS, pages 441–444. Springer, 2006.

[7] P. Janert. Gnuplot In Action. Manning Publications, 2009.
[8] Y. Kadakia. Dan Kaminsky’s DNS cache poisoning vulnerabil-

ity explained. Yash Kadakia’s Blog : One Perspective on In-
dian IT Security, August 2008 (http://www.yashkadakia.com/2008/08/
dam-kaminskys-dns-cache-poisoning.html).

[9] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Automatic analysis
of a non-repudiation protocol. In Proc. 2nd International Workshop on
Quantitative Aspects of Programming Languages (QAPL’04), 2004.

[10] M. Larsen. Port randomization. IETF Internet Draft, July 2009 (http:
//tools.ietf.org/html/draft-ietf-tsvwg-port-randomization-04).

[11] Z. Ma and M. Kwiatkowska. Modelling with PRISM of in-
telligent system. Master’s thesis, Linacre College, University of
Oxford, September 2008 (http://www.prismmodelchecker.org/papers/
zhongdanma-mscthesis.pdf).

[12] J. Markoff. Leaks in patch for web security hole. The New York Times,
August 2008.

[13] E. Naone. The flaw at the heart of the internet. Technology Re-
view, November/December 2008 (https://www.technologyreview.com/
web/21537/).

[14] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing.
Journal of Computer Security, 14(6):561–589, 2006.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proc. 2002 IEEE Symposium
on Security and Privacy, 2002.

[16] V. Shmatikov. Probabilistic model checking of an anonymity system.
Journal of Computer Security, 12:355–377, 2004.

[17] US CERT (United States Computer Emergency Response Team). Vul-
nerability Note VU#800113 : Multiple DNS implementations vulnerable
to cache poisoning. Technical report, US CERT Vulnerability Notes
Database, July 2008 (http://www.kb.cert.org/vuls/id/800113).

[18] Microsoft TechNet. How DNS query works. January 2005 (http:
//technet.microsoft.com/en-us/library/cc775637(WS.10).aspx).

[19] R. Vaughn and G. Evron. DNS amplification attacks. March 2006
(http://www.isotf.org/news/DNS-Amplification-Attacks.pdf).

[20] List of TCP and UDP port numbers (http://en.wikipedia.org/wiki/List
of TCP and UDP port numbers).

[21] C. Wright. Understanding Kaminsky’s DNS bug. Cory
Wright’s blog, July 2008 (http://www.linuxjournal.com/content/
understanding-kaminskys-dns-bug).

103103103

