Softwar e Toolsfor Technology Transfer

Software Monitoring with Controllable Overhead

Xiaowan Huang, Justin Seyster, Sean Callanan, Ketan Dixit, Radu Grosu, Scott A. Smolka, Scott D. Stoller, Erez Zadok

Stony Brook University

Appears in the Proceedings of Software Tools for Technolbgysfer

Abstract. We introduce the technique &oftware Monitor- problems arise only after the software is deployed. Conse-
ing with Controllable OverheadSMCO), which is based on quently, testing and debugging tools, which tend to operate
a novel combination of supervisory control theory of disere strictly within the developer’s environment, are unablelés
event systems and PID-control theory of discrete time systect and diagnose all undesirable behaviors that the system
tems. SMCO controls monitoring overhead by temporarilymay eventually exhibit. Model checkers and other verifica-
disabling monitoring of selected events for as short a time ation tools can test a wider range of behaviors but require dif
possible under the constraint of a user-supplied targeat ove ficult to develop models of execution environments and are
heado;. This strategy is optimal in the sense that it allows limited in the complexity of programs they can check.

SMCO to monitor as many events as possible, withinthe con- This situation has led to research in techniques to moni-
fines ofo;. SMCO is a general monitoring technique that cantor deployed and under-development software systems. Such
be applied to any system interface or API. techniques include the DTrace [6] and DProbes [14] dynamic

We have applied SMCO to a variety of monitoring prob- tracing facilities for Solaris and Linux, respectively. &de
lems, including two highlighted in this papenteger range frameworks allow users to build debugging and profilingsool
analysis which determines upper and lower bounds on in-that inserprobesinto a production system to obtain informa-
teger variable values; adbn-Accessed Period (NAP) detec- tion about the system’s state at certain execution points.
tion, which detects stale or underutilized memory allocations. DTrace-like techniques have two limitations. First, they
We benchmarked SMCO extensively, using both CPU- andarealways on Hence, frequently occurring events can cause
I/O-intensive workloads, which often exhibited highly bty significant monitoring overhead. This raises the fundaalent
behavior. We demonstrate that SMCO successfully controlguestion:Is it possible to control the overhead due to soft-
overhead across a wide range of target-overhead levels; itgare monitoring while achieving high accuracy in the mon-
accuracy monotonically increases with the target overheadtoring results?Second, these tools aoede-orientedthey
and it can be configured to distribute monitoring overheadnterpose on execution of specified instructions in the code
fairly across multiple instrumentation points. events such as accesses to specific memory regions are diffi-

cult to track with these tools, because of their interrugpteh

nature. Tools such as Valgrind allow one to instrument mem-

ory accesses, but benchmarks have shown a 4-fold increase in
Key words: Software instrumentation, supervisory control - ryntimes even without any instrumentation [17]. This raiae
related questions it possible to control the overhead due to
monitoring accesses to specific memory regions?

To answer the first question, we introduce the new tech-
nique of Software Monitoring with Controllable Overhead
Ensuring the correctness and guaranteeing the performan¢&MCO). To answer the second question, we instrument the
of complex software systems, ranging from operating sys-application program, such that SMCO can exploittiraal
tems and Web servers to embedded control software, preseniemory hardwargto selectively monitor memory accesses.
unique problems for developers. Errors occur in rarelyechll As the name suggests, SMCO is formally grounded in
functions and inefficiencies hurt performance over the longcontrol theory, in particular, a novel combination of super
term. Moreover, it is difficult to replicate all of the enviro visory control of discrete event systems [15,1] and propor-
ments in which the software may be executed, so many suctional-integral-derivative (PID) control of discrete &nsys-

1 Introduction

2 Xiaowan Huang et al.: Software Monitoring with Controla®verhead

Plant
target Controller enable/disable | |Monitor < Instrumented observed
overhead o, monitoring = Program overhead o
]

Fig. 1. Structure of a typical SMCO application.

tems [18]. Overhead control is realized by temporarily dis- We use both types of controllers because of the follow-
abling interrupts generated by monitored events, thusdavoi ing trade-offs between them. The global controller feagure
ing the overhead from processing these interrupts. Moreoverelatively simple control logic and hence is very efficidht.
such interrupts are disabled for as short a time as posgible anay, however, undersample infrequent events. The cascade
that the number of events monitored, under the constraint o€ontroller, on the other hand, is designed to provide fainmo
a user-suppliethrget overhead;, is maximized. itoring coverage of all events, regardless of their freqen

Our main motivation for using control theory is to avoid SMCO is a general runtime-monitoring technique that can
anad hocapproach to overhead control, in favor of a much be applied toany system interface or API. To substantiate
more rigorous one based on the extensive available literathis claim, we have applied SMCO to a number of monitor-
ture [9]. We also hope to show that significant benefits can béng problems, including two highlighted in this papeteger
gained by bringing control theory to bear on software system range analysiswhich determines upper and lower bounds
and, in particular, runtime monitoring of software systems on the values of integer variables; aNdn-Accessed Period

The structure of a typical SMCO application is illustrated (NAP) detectionwhich detects stale or underutilized mem-
in Figure 1. The main idea is that given the target overligad ory allocations. Integer range analysis is code-orierttesd,
an SMCO controller periodically sends enable/disable mo-cause it instruments instructions that update integeakées,
nitoring commands to an instrumented program and its asso¥hereas NAP detection is memory-oriented, because itinter
ciated monitor in such a way that the monitoring overheadcepts accesses to specific memory regions.
never exceeds;. Note that the SMCO controller is faed- The source-code instrumentation used in our integer range
back controlleras the current observed overhead level is con-analysis is facilitated by a technique we recently devedope
tinually fed back to it. This allows the controller to carbju calledcompiler-assisted instrumentati¢@Al). CAl is based
monitor the observed overhead and, in turn, disable monion aplug-in architecture for GC@5]. Using CAl, instrumen-
toring when the overhead is closedpand, conversely, en- tation plug-ins can be separately compiled as shared abject
able monitoring when the likelihood of the observed over-which are then dynamically loaded into GCC. Plug-ins have
head exceeding; is small. Also note that the instrumented read/write access to various GCC internals, includingrabst
program sends events of interest to the monitor as they pccusyntax trees (ASTs), control flow graphs (CFGs), and static
e.g., memory accesses and assignments to variables. single-assignment (SSA) representations.

More formally, SMCO can be viewed as the problem of = The instrumentation in our NAP detector makes novel use
designing an optimal controller for a class of nonlinear sys of virtual-memory hardware (MMU) by using ther ot ect
tems that can be modeled as the parallel composition of a salystem call to guard each memory area suspected of being
of extended timed automata (see Section 2). Furthermore, wenderutilized. When a protected area is accessed, the MMU
are interested in proportional-integral-derivative (Pf@n- generates a segmentation fault, informing the monitorttteat
trollers. We consider two fundamental types of PID control-area is being used. If a protected area remains unaccessed
lers: (1) a single, integral-likglobal controllerfor all mon- for a period of time longer than a user-specified threshold
itored objects in the application software; and (2)ascade (the NAP length), then the area is considered stale. SMCO
controller, consisting of an integral-likprimary controller controls the total overhead of NAP detection by enabling and
which is composed with a number of proportional-lsec- disabling the monitoring of each memory area appropriately
ondary controllers one for each monitored object in the ap- To demonstrate SMCO’s ability to control overhead while
plication. The main function of the primary controller is to retaining accuracy in the monitoring results, we performed
control the set point of the secondary controllers. a variety of benchmarking experiments involving real appli

We use the suffix “-like” because our PID controllers are cations. Our experimental evaluation considers virtually
event driven, as in the setting of discrete-event supenyiso aspects of SMCO'’s design space: cascade vs. global con-
control, and not time-driven, as in the traditional PID con- troller, code-oriented vs. memory-oriented instrumeatat
trol of continuous or discrete time systems. The primary-con CPU-intensive vs. I/O-intensive workloads (some of which
troller and the global controller are integral-like beaatise ~ were highly bursty). Our results demonstrate that SMCO suc-
control action is based on the sum of recent errors (i.e., dif cessfully controls overhead across a wide range of target-
ferences between target and observed values). The segondaverhead levels; its accuracy monotonically increasel wit
controllers are proportional-like because the contrisllent- the target overhead; and it can be configured, using the cas-
put is directly proportional to the error signal. cade controller, to fairly distribute monitoring overheamloss

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 3

applicable, and various linearization and adaptationrieghes
reference | Controller control Plant plant must be applied as pre- and post-processing, respectively.
input x Q input v :I outputy The problem we are considering is nonlinear, because of
4 the enabling and disabling of interrupts. Intuitively, theer-
rupt signal is multiplied by a control signal which is 1 when
Fig. 2. Plant (P) and Controller (Q) architecture. interrupts are enabled and 0 otherwise. Although lineariza

tion is one possible approach for this kind of nonlinear sys-

multiple instrumentation points. Additionally, SMCCase h ¢ bett h "
overheadgthe overhead observedat= 0, is a mere 1-4%. tem, automata t eory Suggests a betler approach, recasting
the controller design (synthesis) problem as oneuggervi-

The rest of the paper is organized as follows. Section 2 ex- wroller desiariis. 1
plains SMCO'’s control-theoretic foundations. Section 3 de sor;_/rﬁon ro.er.de3|g|]? 1. . | loi
scribes our architectural framework and the applicatioas w € main idea of supervisory contro we exp 9” tp en-
developed. Section 4 presents our benchmarking resutts. Seable and disable interrupts is the synchronization intténen

tion 5 discusses related work. We conclude in Section 6 anaheparallel compositiorof state machines. In this setting, the
discuss future work plant P is a state machine, the desired outcome (tracking the

reference input) is a languade and the controller design
problem is that of designing a controll€), which is also a
state machine, such that the languéd€|| P) of the compo-
sition of @ andP is included inL. This problem is decidable
for finite state machines [15, 1].
The controller design problenis the problem of devising a Monitoring percentage depends on the timing (frequency)
controller@ that regulates the inputto a process (hence- of events and the monitor’s per-event processing time. The
forth referred to as thelant) in such a way thaf’’s output specification languagé therefore consists dimed words
y adheres to geference input: with good dynamic response aq,t1,...,a;,t; where eacl; is an (access) event that occurs
and small error; see the architecture shown in Figure 2. at timet;. Consequently, the state machines used to model
Runtime monitoring with controllable overhead can ben- P and@ must also include a notion of time. Previous work
eficially be stated as a controller design problem: The conhas shown that supervisory control is decidabldifoed au-
troller is a feedback controller that observes the monitpri tomata[2,19] and fortimed transition modelfL6].
overhead, the plant comprises the runtime monitorand theap Modeling overhead control requires however, the use of
plication software, and the reference inpub the controller ~ more expressive, extended timed automata (see Sectign 2.2)
is given by the user-specifigdrget overhead;. This struc- and for such automata decidability is lost. The lack of decid
ture is depicted in Figure 1. To ensure that the plambis- ability means that a controller cannot be automatically-syn
trollable, one typicallyinstrumentsthe application and the thesized. This however, does not diminish the usefulness of
monitor so that they emigventsof interest to the controller. control theory. On the contrary, this theory becomes arsindi
The controller catches these events, and controls thelpyant pensable guide in the design of a controller that satisfies a s
enablingor disablingmonitoring and event signaling. Hence, of constraints. In particular, we use control theory to diepe
the plant can be regarded adiacrete event process a novel combination of supervisory and PID control. As in
In runtime monitoring, overhead is the measure of howclassical PID control, the error from a given setpoint (avel t
much longer a program takes to execute because of monitomtegral and derivative of the error) is employed to coninel
ing. If an unmodified and unmonitored program executes inplant. In contrast to classical PID control, the computatb
time R and executes in total tim& + M with monitoring, the error and its associated control happens in our frantewor
we say that the monitoring has overhedd/ R. on an event basis, instead of a fixed, time-step basis.
Instead of controlling overhead directly, it is more conve- To develop this approach, we must reconcile the seem-
nient to write the SMCO control laws in termsmionitoring ingly incompatible worlds of event- and time-based systems
percentagethe percentage of execution time spent monitor-In the time-based world of discrete time-invariant systems
ing events, which is equal td//(R + M). Monitoring per- the input and the output signals are assumed to be known and
centagen is related to the traditional definition of overhead available at every multiple of a fixed sampling intervad.
o by the equationn =0/ (1 +0). Theuser-specified target Proportional control (P) continually sets the current coint
monitoring percentagéUTMP) m, is derived fromo, in a inputv(n) as proportional to the current errefn) accord-
similar manner; i.em:=o0; / (14 o). ing to the equation(n) = ke(n), wheren stands fornAt
The classical theory of digital control [9] assumes that theande(n) = y(n)—xz(n) (recall that, =, andy are depicted in
plant and the controller are linear systems. This assumptio Figure 2). Integrative control (I) sums the previous and cur
allows one to semi-automatically design the controllerfpy a rent error and sets the control inputter) =k >, e(n).
plying a rich set of design and optimization techniqueshsuc In contrast, in the event-based world, time information
as the Z-transform, fast Fourier transform, root-locudyana is usually abstracted away, and the relation to the timedbas
sis, frequency response analysis, proportional-intagrate- world, where controller design is typically done, is lostw#
rivative (PID) control, and state-space optimal desigmn. Fo ever, in our setting the automata are timed, that is, they con
nonlinear systems, however, these techniques are notlgirec tain clocks, ticking at a fixed clock intervalt. Thus, events

2 Control-Theoretic Monitoring

can be assumed to occur at multiplesdf, too. Of course,

communication is event based, but all the necessary infor-

mation to compute the proper control valug) is available,
whenever an event is thrown at a given timgy the plant.

We present two controller designs with different trade-
offs and correspondingly different architectures. Qlobal
controlleris a single controller responsible for all objects of
interest in the monitored software; for example, theseatbje

may be functions or memory allocations, depending on the

type of monitoring being performed. The global controller
features relatively simple control logic and hence is vdry e
ficient: its calculations add little to the observed overhea
It does not, however, attempt to be fair in terms of monitor-
ing infrequently occurring events. Ooascade controllerin
contrast, is designed with fairness in mind, as the comipasit
of a primary controllerand a set osecondary controllers
one for each monitored plant.

Both of the controller architectures temporarily disable

interrupts to control overhead. One must therefore conside

the impact of events missed during periods of non-monitprin
on the monitoring results. The two applications of SMCO we
consider are integer range analysis and the detection efrund
utilized memory. For under-utilized memory detection, whe
an event is thrown, we are certain that the corresponding o
jectis not stale. We can therefore ignore interrupts forfa de
nite interval of time, without compromising soundness and a
the same time lowering the monitoring percentage.

Similarly, for integer range analysis, two updates to an

integer variable that are close to each other in time (eog- ¢

secutive increments to a loop variable) are often near eac

other in value as well. Hence, processing the interrupttfer t
first update and ignoring the second, is often sufficient to ac
curately determine the variable’s range, while also longpri

monitoring percentage. For example, in the benchmarking ex

b-

Xiaowan Huang et al.: Software Monitoring with Controla®verhead

v?en/i=1 v?di/i=0

k,=0,i=1 running k, = MT stopped
[k, < MT] [true]
k,2p 1/ylac [i=111ytac, k=0
4

monitor access
[k, <p,]

()

Fig. 3. Automaton for the hardware plaiit of one monitored object.

and disabling interrupts, are allowed. The second comnditio
is a best-effortcondition which guarantees that if the target
monitoring percentage is not reached, this is only becdese t
plant does not throw enough interrupts. As our benchmark-
ing results of Section 4 demonstrate, we designed the SMCO
global and cascade controllers (described in Section 2.3) t
satisfy these conditions.

When considering the target specification languagad
the associated mean monitoring percentagé is important
to distinguish plants in which all interrupts can be disdble
(as in Figure 3) from the other (as in Figure 4). Hardware-
based execution platforms (e.g., CPU and MMU) and vir-
tual machines such as the JVM belong to the former cate-
gory. (The JVM supports disabling of software-based inter-
rupts through just-in-time compilation.)

Software plants written in C, however, typically belong to
the latter category, because code inserted during instrtame
Hon is not removed at run-time. In particular, as discussed
in Section 2.2.2, when function calls are instrumented, the
instrumented program always throws function-call intptsu
as.. Consequently, for such plants, in additiorig there is
also an unavoidablease monitoring percentage, = k py.,
wherek is the number of function calls.

periments described in Section 4, we achieve high accuracy

(typically 90% or better) in our integer range analysis véth
target overhead of just 10%.

2.1 Target Specification

The target specification for a single controlled plant iegiv
as a timed languagg, containing timed words of the form
ai,t1,...,a;,t;, wherea; is an event and; is the time at

2.2 The Plant Models

This section specifies the behavior of the above plant types
in terms ofextended timed automagemtroduced below). For
illustration purpose, eachardware plantis controlled by a
secondary controller, and the unigseftware plantis con-
trolled by the global controller.

which a; has occurred. Each plant has a local target moni-

toring percentagen;;, which is effectively that plant's por-
tion of the UTMPm,. Specifically,. contains timed words
ai,t1,...,at; that satisfy the following conditions:

1. The average monitoring percentage= (I p,) / (t;—t1)
is such thatm <m;, wherep, is the average time taken
by the monitor and controller to process an event.

. If the strict inequalitym < m;; holds, then the monito-

ring-percentage undershoot is due to time intervals with

low activity during which all events are monitored.

The first condition bounds only threean monitoring per-
centagem within a timed wordw € L. Hence, various poli-

2.2.1 The Hardware Plant

Timed automatgTA) [2] are finite-state automata extended
with a set of clocks, whose values are positive reals. Clock
predicates on transitions are used to model timing behavior
while clock predicates appearing within locations (stptes
used to enforce progress properties. Clocks may be reset by
transitions.Extended TAare TA with local variables and a
more expressive clock predicate/assignment language.

The hardware planP is modeled by the extended TA in
Figure 3. Its alphabet consists of input and output evertits. T
clock predicates labeling its locations and transitiores ar

cies for handling monitoring percentage, and thus enablinghe formk ~ ¢, wherek is aclock c is a natural number or

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 5

variable,- and- is one of<, .S, =, >, and>. .FOI‘. example, instrumented program y Ifc, k =0 instrumented program
the predicaté:; < MT labeling P’s staterunningis a clock (top level) R (wait for controller)
constraint, where:; is a clock andMT is the maximum- [true] -— [true]
monitoring-time parameter discussed below.

Transition labels are of the forpguar d] | n/ Cnd, where
guar d is a predicate oveP’s variablesj n is a sequence of
input events of the formv?e denoting the receipt of value
(written as a pattern) on channel and Cnd is a sequence
of output and assignment events. An output event is of the
form y!a denoting the sending of valueon channel; an as-
signment event is simply an assignment of a value to a local
variable of the automaton. All fields in a transition labes ar
optional. The use of and! to denote input and output events
is standard, and first appeared in Hoare’s paper on CSP [12

v’m | cm=m, k,=0

_(instrumented program
tk, > pf &cm=di] / y/!fc (choose function body)

‘ [k, < p]

[k, > F]

[k, = pf&cm=ei] / yf!f?

monitored program

, monitored program
(monitor access)

(execute function)

A transition isenabledvhen its guard is true and the spec- tk, <py] tk, <F]
ified input events (if any) have arrived. A transition is not T -
forcedto be taken unless letting time flow would violate the k,2p,]/ ylac

condition (invariant) labeling the current location. Faae-
ple, the transition out of the stateonitor acces#n Figure 3
is enabled as soon &s > p,,, but not forced untik, > p;. response. If the responseois di, indicating that interrupts
The choice is nondeterministic, and allows to succinctly-ca are disabled, then the unmonitored version of the function
ture any transition in the intervap,,,, pys]. This is a classic body is called. This is captured iR by retuming to the top
way of avoiding overspecification. level state at any time in the intervial/¢, p]. This interval
P has an input channel where it may receivenable represents the time required to |mplement the call logic.
anddisablecommands, denoted: anddi, respectively, and If the response ony is ei, indicating that interrupts are
an output channel; where it may send begin and endazf ~ enabled, then the monitored version of the function body is
cessmessages, denoted andac, respectively. Upon receipt called. This is captured if* by transmonlng to the statexe-
of di, interrupt biti is set to 0, which prevents the plant from cute functiorwithin the same intervdp/¢ ,pM]
sending further messages. Upon receiptofi is set to 1, Within the monitored function body, the monitor may send
which allows the plant to send an access messaga ar- Ony;y a begin of access event to the controller, whenever
bitrary moments in time. Once an access message isBent, a variable is accessed, and transition to the statsitor ac-
resets the clock variable, and transitions to a new state. At cess The time spent by monitoring this access is expressed
any time in the intervalp,,,, pas], P can leave this state and With a transition back texecute functiothat happens at any
send an end of access messgg@c to the controller. time in the intervalp,,,, pas]. This transition sends an end of
P terminates when the maximum monitoring tim&’, ~ access message ony; to the controller.
a parameter of the model, is reached, i.e., when clock P terminates processing functighwhen the maximum
reaches valud/T. Initially, i =1 andk; =0 monitoring timeF', a parameter of the model, is reached; that
A running program can have multiple hardware plants,is, when clockk, > F'.
with each plant a source of monitored events. For example,
a program running under our NAP detection tool for finding 2.3 The Controllers
under-utilized memory has one hardware plant for each moni-
tored memory region. The NAP detector’s controller canindi 5 3 1 The Global Controller
vidually enable or disable interrupts for each hardwaretpla

Fig. 4. Automaton for the software plad of all monitored objects.

Integrative control uses previous behavior of the plantio-c
trol feedback. Integrative control has the advantage tlnets
good overall statistical performance for plants with censi
In a software planP, the application program is instrumented tent behavior and is relatively immunehgsteresisin which

2.2.2 The Software Plant

to handle, together with the monitor, the interrupt logiade
ily available to hardware plants (see Figure 4).

periodicity in the output of the plant produces periodict-ou
of-phase responses in the controller. Conversely, pragrait

A software plant represents a single function that can rurcontrol is highly responsive to changes in the plant's behav

with interrupts enabled or disabled. In practice, the fiarct

ior, which makes it appropriate for long-running plantsttha

toggles interrupts by choosing between two copies of the-fun exhibit change in behavior over time.

tion body each time it is called: one copy that is instrumente
to send event interrupts and one that is left unmodified.
Whenever a function call happens at tiop levelstate
of P, the instrumented program resets the clock variable
sends the messageon y; to the controller andvaitsfor its

We have implemented an integral-like global controller
for plants with consistent behavior. Architecturally, tiebal
controller is in a feedback loop with a single plant représen
ing all objects of interest to the runtime monitor. The archi
tecture of the global controller is thus exactly that of Figl,

6 Xiaowan Huang et al.: Software Monitoring with Controla®verhead
x?mt / m=mt, k=0, p=0, T=0

yac [t=t+k, k=0 { . ‘ [p/(t+p)>m,] y?fc [vldi, t=t+k, k=0
- op >

variable
access

o level
yfac | p=p+k, k=0 | [p/(t+p) <m,] yc | vlei, t=t+k, k=0

[true]
m=mt, k=0, p=0, T=0 yfc | p=p+k, k=0

Fig. 5. Automaton for global controller.

[true]

>

which is identical to the classical plant-controller atebture

of Figure 2, except that in Figure 1, the plant is decomposed X5 Vi, y

into the runtime monitor and the software it is monitoring. u, Q] y, | P Lo
In presenting the extended TA for the global controller, X, v,

we assume it is in a feedback loop with a software-oriented X u, - Q| v, | P, Yo,

plant whose behavior is given by the extended TA of Figure 4. - PQ -

This is done without loss of generality, as the global con-

troller's state machine is simpler in the case of a hardware- Xo) Yo o y

oriented plant. The global controller thus assumes thet plan u, [Q] y | P, B

emits events of two typedunction-call eventand access -

eventswhere the former corresponds to the plant having en-

tered a C function, and the latter corresponds to updates to Fig. 6. Overall cascade control architecture.

integer variables, in the case of integer range analysis. itoring time; the transition back to the initial state thukla

The global controller’s automaton is given in Figure 5 this time to the total monitoring timg.
and consists of three locationip leve] the function-call The controller transitions from the top-level to the vak&ab
processing location, and thariable-accesprocessing lo- access processing location whenever a funcfiagends the
cation. Besides the UTMR:;, the automaton for the global controller an access evemt and interrupts are enabled fr
controller makes use of the following variables: clock vari Upon receipt of afc event signaling the completion of event
ablek, a running totat- of the program’s execution time, and processing in the plant, the controller measures the time it
a running totap of the instrumented program’s observed pro- spent in its variable-access location, and adds this gyaati
cessing timey. Variabler keeps the time the controller spent p. To keep track of the plant’s total execution timeeach of
in total (over repeated visits) in its top-level locatioheveas the global controller’s transitions exiting the initialdation
variablep keeps the time the controller spent in total in its updates with the time spent in the top-level location.

function-call and access-event processing locationscelen Note that all of the global controller’s transitions are e
at every moment in time, the observed overheagHsp / 7 triggered, as opposed to time-triggered, as it interagte-as
and the observed monitoring percentageiis-p / (7 + p). chronously with the plant. This aspect of the controller elod

. . reflects the discrete-event-based nature of our PID cdeitsol
In the top-level location, the controller can receive the

UTMP on channek. The controller transitions from the top-
level to the function-call processing location whenevenef

tion-call event occurs. In particular, when functipis called, As per the discussion of monitoring-percentage undershoot

the plant emits arfe signal to the controller alongy (re- in Section 2.1, some plants (functions or objects in a C pro-
gardless of whether access event interrupts are enabled for Lo ; .
f), transitioning the controller to the function-call prese gram) mlghmotgenerate Interrupts ata h|g_h r:_;\te, and there-
ing location along one of two edges. If the observed moni-fore. might not make use of t_he tz_irget_m_onltor!ng percenta_ge
N9 available to them. In such situations it is desirable togedi

2.3.2 The Cascade Controller

the UTMPmy, the edge taken sends ttiesignal along; to
disable monitoring of interrupts for that function call.net-
wise, the edge taken enables these interrupts. Thus, thalglo
controller decides to enable/disable monitoring on a pecfu
tion-call basis. Moreover, since the enable/disable dwatis
depends on the sign of treamulativeerrore = m—m,, the
controller isintegrative

more likely to make use of this monitoring percentage. More-
over, this redistribution of the unused UTMP should be per-
formed fairly, so that less-active plants are not ignored.

This is the rationale for the SMCO cascade controller (see
Figure 6), which consists of a set of secondary controllgts
each of which directly control a single plaRt, and a primary
controllerPQ that controls the reference inputsto the sec-

The time taken in the function-call processing location, ondary controllers. Thus, in the case of cascade controh ea
which the controller determines by reading clock value monitored plant has its own secondary controller that exgabl
upon receipt of aifc signal from the plant, is considered mon- and disables its interrupts. The primary controller adjtisé

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead

xmlt / m,=mlt, k=0

top y2ac / vidi, t=k, k=0
[true] l

4 [k>d]/ vien, k=0

[access) yf?i /p=k,u!k,d=p/m|t-p-r,k=0 _

"1 [truel l

e

wait
[k <d]

Fig. 7. Automaton for secondary controll€).

[] Monitoring
Legend [T Not Monitoring
Start Stop Controller gets —Start —Stop —Controller gets
(Monitoring (Monitoring (q and p, setsd, Monitoring| Monitoring | T,and p, sets d,
T P, d1 T, P, dz
Event - Event
Time

Fig. 8. Timeline for secondary controller.

local target monitoring percentage TMP) m,; for the sec-
ondary controllers.

The secondary controllersEach monitored planf has a
secondary controlleR, the state machine for which is given
in Figure 7. Within each iteration of its main control lo@p,
disables interrupts by sending messagelongwv upon re-
ceiving an access evedmt alongy, and subsequently enables
interrupts by sendingn alongv. Consider thei-th execu-
tion of ’s control loop, and let; be thetime monitoring is
on within this cycle; i.e., the time between eventsn and
y?ac. Letp; be the time required tprocesseventy?ac, and
letd; be thedelay timeuntil monitoring is restarted; i.e., until

eventvlen is sent again. See Figure 8 for a graphical depic-

tion of these intervals. Then the overhead in #th cycle is
0; =p; / (s +d;) and accordingly, thenonitoring percent-
ageof thei-th cycle ism; =p; / (pi + 7 + d;).

To ensure thatn; = m;; whenever the plant is throw-

ing access events at a high rafg computesi; as the least
positive integer greater than or equalpgtg'm;;: — (7; + pi).

The primary controller. Secondary controlle) achieves its
LTMP my; only if plant P throws events at a sufficiently
high rate. Otherwise, its mean monitoring percentagé
less tharmm;;. When monitoring a large number of plars
simultaneously, it is possible to take advantage of thissund
utilization of m;; by increasing the LTMP of those controllers
Q; associated with plants that throw interrupts at a high rate.
In fact, we can adjust they;; of all secondary controllerg;

by the same amount, as the controllgsof plantsP; with
low interrupt rates will not take advantage of this increase
Furthermore, we do this evef§) seconds, a period of time
we call theadjustment intervalThe periodic adjustment of
the LTMP is the task of the primary controll&Q.

Its extended TA is given in Figure 9. After first inputting
the UTMPm; on x, PQ computes the initial LTMP to be
m;/n, thereby partitioning the global target monitoring per-
centage evenly among thesecondary controllers. It assigns
this initial LTMP to the local variablen;; and outputs it to
the secondary controllers. It also assigmsto local variable
mge, the global target monitoring percentag&TMP). PQ)

Choosingd; this way lets the controller extend the total time @S0 maintains an array of total processing time, initially

spent in the-th cycle so that itsn; is exactly the target;.

To see how the secondary controller is like a proportionalArray entrypli]

controller, regartp; as a constantp{ does not vary much
in practice), so thap; /m;:—the desired value for the cycle
time—is also a constant. The equation fhrbecomes now

zero, such thap[i] is the processing time used by secondary
controller@; within the last adjustment interval @f seconds.

is updated whenevé); sends the processing
time p; of the most recent event; i.e.,p[i] is the sum of the

p; that@; generates during the current adjustment interval.

the difference between the desired cycle time (which we take \yhen the time bound of seconds is reache®(Q com-

to be the controller’'s reference value) and the actual cycleputes the erroe = mg — 3
- g9

time measured when evenis finished processing. The value
d; is then equal to the proportional error for tih cycle,

making the secondary controller behave like a proportional, jative errore
Cy

controller with proportional constant 1.

»_, pli]/T, as the difference
between the GTMP and the observed monitoring percentage
during the current adjustment intervalQ also updates a cu-
which is initially 0, such that,. =e. + e,
making it the sum of the error over all adjustment intervals.

If plant P throws events at a low rate, then all events To correct for the cumulative erroRQ computes an offset

are monitored and; = 0. When processing afc is finished,
which is assumed to occur within the interva},,, pas], @
sends the processing timeto the primary controller along
channelu.

Kre, that it uses to adjust,;; down to compensate for over-
utilization, and up to compensate for under-utilizatioheT

new LTMP is set ton;, =mgy /n + Kre. and sent to all sec-

ondary controllers, after which arrayand clockk are reset.

8 Xiaowan Huang et al.: Software Monitoring with Controla®verhead

adjust §. | x?m, | mz=m/n, x'm, ...x!m m =m,, e =0, k=0, p=[0,...,0]

I’
u?p, / plil=plil + p,

| |[k=T]/ ec=ec+(mgt—§:p[i]/T), m=m_/n+Ke_, xm,,..., x!m,, k=0, p=[0,...,0]

t?

Fig. 9. Automaton for the primary controller.

» = (LR - > Instrumented ProQ ram if (controller("func")) goto L2; else goto L1;
: | Controller
: [J [J [J [J 7 i
+|activations _events
s f g h i L1: L2:

A I\ J J while (i < len) { while (i < len) {

)] b 1} total += valuesi]; total += values]i];

i++; update_range("func:total", total);
Range Checker } i++;
return total; update_range("func:i", i);
Fig. 10. SMCO architecture for ange- sol ver . Eemm total;

.Becaug,e the adj.UStmeﬁ.Q makes.to the LTMRny, gver Fig. 11.r ange- sol ver adds a distributor with a call to the SMCO con-
agien ad_JUStment interval is a function Of.a Cuml'!lat“/@err trolier. .The distributed passes control to either the aagiuninstrumented
terme., primary controllerPQ behaves as @ntegrative con- function body shown on the left, or the instrumented copyshon the right.
troller. In contrast, each secondary controligralone main-
tain no state beyong; andr;. They are therefore a form of The Range Checker module (shown in Figure 10) consumes
proportional controller which respond directly as the plant these updates and computes ranges for all tracked variables
output changes. The controller parametgrin PQ’s adjust- Range updates are enabled or disabled on a per-function ba-
ment termK e, is known in control theory as thimtegra- sis. In Figure 10, monitoring is enabled for functighandg;
tive gain It is essentially a weight factor that determines to this is reflected by the instrumented versions of their fiomct
what extent the cumulative erref affects the local monitor- bodies, labeled’ andg’, appearing in the foreground.

ing percentagen;;. The larger thek(; value, the larger the To allow efficient enabling and disabling of monitoring,
changes”@ will make tom;, during the current adjustment the plug-in creates a copy of the body of every function to
interval to correct for the observed overhead. be instrumented, and adds instrumentation only to the copy.

Thetarget specification languagep is defined in afash- A distributor block at the beginning of the function callgth
ion similar to the one for the secondary controllers, exceptSMCO controller to determine whether monitoring for the
that the events of the plaftare replaced by the events of the function is currently enabled. If so, the distributor juntps
parallel composition; || P» | .. . || 2, of all plants. the instrumented version of the function body; otherwise;c

trol passes to the original, unmodified version. Figure Tiaxsh
_ _ a function modified by theange- sol ver plug-in to have a
3 Design and Implementation distributor block and a duplicate instrumented functiodyo
Functions without integer updates are not duplicated and al
This section presents two applications that we have impleways run with monitoring off.
mented for SMCO. Section 3.1 describes our integer range- Because monitoring is enabled or disabled at the function
analysis tool. Section 3.2 introduces our novel memory unde |evel, the instrumentation notifies the controller of fliont
utilization monitor. Section 3.3 summarizes the developime call events. As shown in Figure 10, the controller resporyds b

effort for these monitoring tools and their controllers. activating or deactivating monitoring for instrumenteddu
tions. With the global controller, there is a single “on-off
3.1 Integer Range Analysis switch that affects all functions: when monitoring is offgt

uninstrumented versions of all function bodies are exetute
my e cascade controller maintains a secondary controlter fo

Integer range analysis [7] determines the range (minimu , . , e
each instrumented function and can switch monitoring on and

and maximum value) of each integer variable in the moni- A i

tored execution. These ranges are useful for finding prograrfif! for individual functions.

errors. For example, analyzing ranges on array subscrgys m

reveal bounds violations. Timekeeping.As our controller logic relies on measurements
Figure 10 is an overview afange- sol ver, our integer of monitoring time,r ange- sol ver queries the system time

range-analysis took.ange- sol ver usescompiler-assisted whenever it makes a control decision. TRETSC instruc-

instrumentation(CAl), an instrumentation framework based tion is the fastest and most precise timekeeping mechanism

on a plug-in architecture for GCC [5]. Ouange- sol ver on the x86 platform. It returns the CPU’s timestamp counter

plug-in adds range-update operations after assignmegliisto (TSQ, which stores a processor cycle timestamp (with sub-

bal, function-level static, and stack-scoped integeraldeis. nanosecond resolution), without an expensive system call.

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 9

access nap . P ware. Figure 13 shows the architecture of our NAP Detector.
@—® & @ & me To enable monitoring for an allocation, the controller sall
D e — 4 -_—= . .
nap threshold mpr ot ect to turn on read and write protections for the mem-

)) . ory page containing the allocation.
Fig. 12. Accesses to an allocation, and the resulting NAPs. NAPs aan v In Ei 13 . d d:
in length, and multiple NAPs can be reported for the sameailion. n Figure 13, memory regions ando are protected: any

access to them will cause a page fault. The NAP detector in-
tercepts the page fault first to record the access; infoonati
Instrumented Program NAP detector about each allocation is stored in a splay tree. Then, the con
D B D D troller interprets the fault as an event and turns monitprin
off for the faulting allocation by removing its read and \&rit
access protections. Because the NAP detector restores read

T Controlier | and write access after a fault, the faulting instruction e&n

tvations fauts MMU / Allocator - ecute normally once the page fault handler returns. It is not

e T T 1 faults,allocs frees necessary to emulate the effects of a faulting instruction.

——— Within the cascade controller, each allocation has a sec-
Memory Im [ln] lo [lp |

,,, ondary controller that computes a deldyafter which time
Fig. 13. SMCO architecture for NAP detector. monitoring should be re-enabled for the allocation. After-p
cessing an event, the controller checks for allocationsaiea

However, we found that eveRDTSC can be 00 slow for e for re-enabling. If no events occur for a period of time,

our purposes. On our testbed, we measuredRRSC in- 5 packground thread performs this check instead. The back-
struction to take 45 cycles on average, more than twentystimeg oynd thread is also responsible for periodically chegkin
longer than an arithmetic instruction. With time measuretse ¢, memory regions that have been protected for longer than
necessary on every function call for aunge- sol ver, this {he NAP threshold and reporting them as NAPs.

was too expe_ns_ive. Ourfirsagge- sol ver implementat_ion_ We did not integrate the NAP detector with the global

Calle;jRDTSCmIme for every time measurement, resulting in ., q«roljer hecause its means of overhead control does not

a23% overhear(]j er\:_er;]wnh allfmonllt(orlng turned off. ified th allow for this kind of per-allocation control. When a moni-
To reduce the high cost of time ?epmg, we m”od| ied they,red event occurs and the accumulated overhead exceeds

range- sol ver o spawn a separate CI,OCk_ thread” to handle ot, a global controller should establish a periodghbbal

its timekeeping. The_ clock thread perlodlcally CaBTSC 266 overhead by disabling all monitoring. Globally disag!

and stores the resultin amemory location teatge- sol ver 1y qnitoring has the same problem as disabling monitoring at

uses as its clock.ange-sol ver can read this clock with ¢ fnction level: allocations that are unlucky enoughéo b

a S|mplc_e MEMOry access. This is n(_)t_ as precise as CaIIIngccessed only during these zero-overhead periods will-be er
RDTSC directly, but it is much more efficient. roneously classified as NAPs

We also implemented a shared library that replaces the

3.2 Memory Under-Utilization standard memory-management functions, includiagl oc

andf r ee, with versions that store information about the cre-
Our memory under-utilization detector is designed to iden-ation and deletion of allocations in splay trees.
tify allocated memory areas (“allocations” for short) tha¢ To control access protections for individual allocations,
not accessed during time periods whose duration equals afach such allocation must reside on a separate hardwarge page
exceeds a user-specified threshold. We refer to such a timgecauserpr ot ect has page-level granularity. To reduce the
period as aNon-Accessed Peripdr NAP, and to the user- memory overhead, the user can set a size cutoff: allocations
specified threshold as th¢AP thresholdFigure 12 depicts smaller than the cutoff pass through to the standard memory
accesses to an allocation and the resulting NAPs. For exallocation functions, and are never monitored (undeizeil
ample, the time from accessto access: exceeds the NAP small allocations are of less interest than under-utillaege
threshold, so it is a NAP. Note that we are not detecting al-allocations anyway). In our experiments, we chose doulgle th
locations that are never touched (i.e., leaks), but rath@r a page size (equal to 8KB on our test machine) as the cutoff,
cations that are not touched for a sufficiently long period oflimiting the maximum memory overhead to 50%. Though
time to raise concerns about memory-usage efficiency. this cutoff would be high for many applications, in our ex-

Sampling by enabling and disabling monitoring at the periments, 75% of all allocations were monitored.

function level would be ineffective for finding NAPs. An al-
located region could appear to be in a NAP if some functions i
that access it are not monitored, resulting in false pastiv 3.3 Implementation Effort
Ideally, we want to enable and disable monitorpey allo-
cation, so we never unintentionally miss accesses to moni-To implement and test theange- sol ver tool described in
tored allocations. To achieve per-allocation control owen- Section 3.1, we developed two libraries, totaling 821 lioks
itoring, we introduce a novel memory-access interpositioncode, that manage the logic for the cascade and global con-
mechanism that takes advantage of memory-protection hardrollers and perform the integer range analysis. We also de-

10 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

veloped a 1,708-line GCC plug-in that transforms functions4.2 Workloads
to report integer updates to our integer range-analysiarijb

The NAP Detector described in Section 3.2 consists of aWe tested our SMCO approach on two applications: the CPU-
2,235-line library that wraps the standard memory-allocat intensivebzi p2 and an 1/O-intensiveyr ep workload. The
functions, implements the cascade controller logic, amulstr bzi p2 benchmark is a data compression workload from the
parently handles page faults in the instrumented program. SPEC CPU2006 benchmark suite, which is designed to max-
imize CPU utilization [11]. This benchmark uses thd p2
utility to compress and then decompress a 53MB file consist-
ing of text, JPEG image data, and random data.

Our r ange- sol ver monitor, described in Section 3.1,
found 80 functions irbzi p2, of which 61 contained integer
)) . . assignments, and 445 integer variables, 242 of which were
This section describes a series of benchmarks that togethes jified during execution. Integer-update events werespre
show that SMCO fulfills its goals: it closely adheres to the very unevenly among these variables. The least-updatéed var
specified target overhead, allowing the user to specify & pregp|es were assigned only one or two times during a run, while
cise trade-off between overhead and monitoring effecéigen ihe most-updated variable was assigned 2.5 billion times.

In addition, our cascade controller apportions the target-o Figure 14 shows the frequency of accesses to two differ-

head to all sources .Of gven_ts, ensuring that each source geé%t variables, the most updated variable andayi® most
its fair share of monitoring time.

o .]] _ . updated variable, over time. The data was obtained by instru
Our results highlight the difficulty inherent in achieving mentingbzi p2 to monitor a single specified variable with
these goals. The test workloads vary in behavior considerynhounded overhead. The monitoring runs for these two vari-
ably over the course of an execution, making it impracticalyp|es took 76.4 seconds and 55.6 seconds, respectively. The
to predict sources of overhead. Even under these conditiong,,, histograms show different extremes: the most updated

SMCQ is able to contr?l obserY(?d overhead f.a'rly well. variable is constantly active, while accesses tooi8 most
To evaluate SMCO's versatility, we tested it on two work- pated variable are concentrated in short periods of tigh a

Ioads_, one CPU-i_ntensive_and one I/_O-intens_ive, and with Outivity. Both variables, however, experience heavy burbtge
two different runtime monitors. Section 4.1 discusses atr e tivity that make it difficult to predict monitoring overhead

perimental testbed. Section 4.2 describes the workloads an ;s I/O-intensive workload uses GN4J ep 2.5, the pop-
profiles them in order to examine the challenges involved in, 53¢ Linux regular expression search utility. In our bench-
controlling monitoring overhead. In Section 4.3, we benCh'marks,gr ep searches the entire GCC 4.5 source tree (about
mark SMCO's ability to control the overhead of our integer 543MB in size) for an uncommon pattern. When we tested
range analysis monitor using both of our control stra_tegiesthe workload with the Unix i ne utility, it reported that these
Section 4.4 benchmarks SMCO overhead control with 0uf s typically used only 10-20% CPU time. Most of each run
NAP detector. Section 4.5 explains how we optimized certain, 55 spent waiting for read requests, making this an 1/03neav
controller parameters. workload. Because thg ep workload repeats the same short
tasks, we found that its variable accesses were distributed
more uniformly thanimbzi p2. Ourr ange- sol ver reported
489 variables, with 128 actually updated in each run, and 149
functions, 87 of which contained integer assignments. The
most updated variable was assigned 370 million times.

4 Evaluation

4.1 Testbed

Since controlling overhead is mostimportant for long-rimgn
server applications, we chose a server-class machine for ou
testbed. Our benchmarks ran on a Dell PowerEdge 1950 with.3 Range Solver
two quad-core 2.5GHz Intel Xeon processors, each with a
12MB L2 cache, and 32GB of memory. It was equipped withwe benchmarked theange- sol ver monitor discussed in
a pair of Seagate Savvio 15K RPM SAS 73GB disks in a mir-Section 3.1 on both workloads using both of the controliers i
rored RAID. We configured the server with 64-bit CentOS Section 2. Sections 4.3.1 and 4.3.2 present our resultador t
Linux 5.3, using a CentOS-patched 2.6.18 Linux kernel. global controller and cascade controller, respectivec-S
For our observed overhead benchmark figures, we avertion 4.3.3 compares the results from the two controllers: Se
aged the results of ten runs and computed 95% confidencgon 4.3.4 discussesange- sol ver 's memory overhead.
intervals using Student&distribution. Error bars represent
the width of a measurement’s confidence interval. 4.3.1 Global Controller
We used the proc/ sys/ vt dr op_caches facility pro-
vided by the Linux kernel to drop page, inode, and dentryFigure 15 shows how the global controller performs on our
caches before each run of our I/O-intensive workload to enworkloads for a range of target overheads (on thaxis),
sure cold caches and to prevent consecutive runs from influwith the observed overhead on th@xis and the total number
encing each other. of events monitored on thg2-axis for each target-overhead

35
30
25
20
15
10

of events (millions)

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead

of events (millions)

O R, N WhMOAO O N
T

10

20 30 40 50 60 70 80 0 10
time (seconds)

(a) Most updated variable

20 30 40
time (seconds)

(b) 99t most updated variable

50

60

11

Fig. 14. Event distribution histogram for the most updated varidh)eandQch most updated variable (b) Ibzi p2. Execution time ¢-axis) is split into 0.4
second buckets. Thgaxis shows the number of events in each time bucket.

Fig. 15. Global controller with range-solveobserved overhead {axis) for a range of target overhead settingsakis) and two workloads.

140 T T T T T T 30
overhead —— i
events ------- .
120 | ideal - - - - 1 25
g 100
9 20 w
g 5
S 80 =
> 15 2
o 9
° 60 IS
o)
bt >
s 10 W
2 40
(@]
20 5
0 £ ! ! ! ! ! ! 0
0 20 40 60 80 100 120 140
Target Overhead (%)
(a) bzip2
14 I I I I I I 14
overhead
events -------
12r ideal - - - - 112
S
o ~—~~
©)]
g 5
2 =
© @
© m
[}
o]
(@]
O | | | | | | 0
0 2 4 6 8 10 12 14
Target Overhead (%)
(b) grep

12 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

140 T T T T T T 25
overhead ——
events -------
120 - o PR
= ideal 1 20
5 100
g [
()
< 80 4 15 ©
o =
= =
o 0
g 60 110 5
bt >
2 a0 -
(e} 4 5
20
0 T]]]]]] 0
0 20 40 60 80 100 120 140
Target Overhead (%)
(a) bzip2
14 | | | | | | 14
overhead
events -------
12r ideal - - - - 112
S
o ~—~
© 2]
g 5
g 3
© @
© w
2]
o)
(e}
O] | | | | | 0
0 2 4 6 8 10 12 14
Target Overhead (%)
(b) grep

Fig. 16. Cascade controller with range-solvebserved overhead{axis) for a range of target overhead settingsakis) and two workloads.

setting. With target overhead set to 0%, both workloads rarincreasing target overheads, but never exceeded 9% observe
with an actual overhead of 4%, which is the controll&&se overhead. In fact, at 9% overheadnge- sol ver is already
overhead The base overhead is due to the controller logicat nearly full coverage, with 99.7% percent of all program
and the added complexity from unused instrumentation. events being monitored. Thg ep workload’s low CPU us-
The dotted line in each plot shows the ideal result: ob-age imposes a hard limit arange- sol ver’s ability to use
served overhead equals target overhead up to an ideal mawverhead. The controller has no way to exceed this limit.
imum. We computed the ideal maximum to be the observedConfidence intervals for thgr ep workload were generally
overhead from monitoring all events in the program with all wider than forbzi p2, because I/O operations are noisier than
control turned off. Any observed overhead above the idealCPU operations, making run times less consistent.
maximum is the result of overhead incurred by the controller
Attarget overheads of 10% and higher, Figure 15(a) shows 3.2 Cascade Controller
that the global controller tracked the specified targetlosad
all the way up to 140% in thezi p2 workload. Thegr ep Figure 16 shows results from experiments that are the same
workload (Figure 15(b)) showed a general upward trend foras those for Figure 15 except using the cascade controller in

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 13

stead of the global controller. The results were similartli#n Table 1. r ange- sol ver memory usage, including executable size, vir-
bzi p2 workload, the controller tracked the target overheadtual memory usage (VSZ), and physical memory usage (RSS).

well from 10% to 100%. With targets higher than 100%, the
observed overhead continued to increase, but the comtrolle
was not able to adjust overhead high enough to reach the tar-
get becau;e observed overhead was already so close to the bzip2 (cascade) 262KB 295KB 201KB
120% maximum. On thgrep Workload,_we saw the same grep (unmodified) 89.2KB 61.AMB 1260KB
upward trend and eventual saturation with 9% observed over- grep (global) 314KB 77.1MB 1460KB

head monitoring 99.5% of events. grep (cascade) 314KB 78.2MB 1470KB

ExeSize VSZ RSS
bzip2 (unmodified) 68.6KB 213KB 207KB
bzip2 (global) 262KB 227KB 203KB

4.3.3 Controller Comparison

The global and cascade controllers differ in the distriluti extra events gave the global controller much better coeerag
of overhead across different event sources. To compare therfor frequently updated variables. Specifically, it had &edic-
we developed an accuracy metric for the results of a boundedzuracy for variables with more tham® updates.

overhead range-solver run. We measured the accuracy of a Between these two extremes, i.e., for variables with—
bounded-overhead run of the range-solver against a referen 1,6 ypdates, both approaches had similar accuracy. The cu-
run with full coverage of all variables (allowing unbounded my|ative accuracy in Figure 17(b) shows that overall, abnsi
overhead). The reference run determined the actual ramge f‘éring all variables in the program, the two controllers avhil

every variable. similar accuracy. The difference is primarily in where tice a
In a bounded-overhead run, the accuracy of a range contyracy was distributed.

puted for a single variable is the ratio of the computed range
size to the range’s actual size (which is known from the ref-
erence run). Missed updates in a bounded-overhead run cah3.4 Memory Overhead
causer ange- sol ver to report smaller ranges, so this ratio
is always in the interval0, 1]. For a set of variables, the ac-

curacy is the average accuracy for all variables in the set. thoughr ange-sol ver does not use SMCO to control its

Figure 17 shows a breakdown pange- sol ver’s ac- me”mor)f/ O\t/)eruead,k\lfve dme_?sglre(i n;]emory use of our con-
curacy by how frequently variables are updated. We groupIro ers for both wor 0ads. 1able 1 SNoWS our memory over-
head results. Heréxe Sizés the size of the compiled binary

ed variables into sets with geometrically increasing baund ¢ - oing debugai bol . X q
the first set containing variables with 1-10 updates, the seciter stripping debugging symbols (as is common in produc-

ond group containing variables with 10-100 updates, egg. Fi tion environments). This size includes the cost of the SMCO

ure 17(a) shows the accuracy for each of these sets, and Fi pr('jar)\/};vzhlchhconta:ns the corpplled controller Zr;)d mhonlto
ure 17(b) shows the cumulative accuracy, with each set conc0C€: IS the total amount of memory mapped by the pro-

taining the variables from the previous set cess, andRSS(Resident Set Size) is the total amount of that

We used 10% target overhead for these examples, becauggd RSS f h ing the Ui utilit
we believe that low target overheads represent the most like an or €ach run using the L Utitity.

use cases. However, we found similar results for all othrerta ~ Both binaries increased in size by 3—4 times. Most of this
get overhead values that we tested. increase is the result of function duplication, which atstea

The cascade controller’'s notion of fairness results in bet_doubles the size of each instrumented function. Duplicated
ter coverage, and thus better accuracy, for rarely updated v functions also contain a distributor block and instrumeata
ables. In this example, the cascade controller had betterac code. The 17KB SMCO library adds a negligible amount to
racy than the global controller for variables with fewerrtha the instrumented binary’s size. As few binaries are more tha
100 updates. As the global controller does not seek to fairlyseveral megabytes in size, we believe that even a 4x increase
distribute overhead to these variables, it monitored alemal in executable size is acceptable for most environments; thi
percentage of their updates. Most dramatically, Figure)L7(iS more true these days, with increasing amounts of RAM in
shows that the global controller had 0 accuracy for all vari-Popular 64-bit systems.
ables in the 10-100 updates range, meaning it did not monitor The worst-case increase in virtual memory use was only
more than one event for any variable in that set. The 3 vari27.4%, for thegr ep workload with the cascade controller.
ables in the workload with 10-100 updates were used whiléThe additional virtual memory is allocated statically torst
there was heavy activity, causing their updates to get tost i integer variable ranges and per-function overhead measure
the periods when the global controller had to disable moni-ments (when the cascade controller is used). This extra mem-
toring to reduce overhead. ory scales linearly with the number of integer variables and

However, with the same overhead, the global controllerfunctions in the monitored program, not with runtime mem-
was able to monitor many more events than the cascade colry usage. Thezi p2 workload uses more memory thanep,
troller, because it did not spend time executing the cascadso we measured in this case a much lower 6.6% virtual mem-
controller's more expensive secondary controller loglee3e ory overhead.

14 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

100 JREE (N B B T T T L

g 80t I .
>
Q
o

3 60 4
o
<
g

S 40 1
)
[}
()]
3

¢ 20r 1

Global - 100Hz
Cascaded - K=0.1 -------
0 P RS R RS B | PR I T NS TS RS Rl R S

10 100 1000 100001000001e+06 1e+07 1e+08 1le+09 le+10
of accesses (log)

(a) Non-cumulative

100
>
(&)
a
3 60 |
Q
<
g
S 40 | |
n
(]
(@]
S
@ 20 1
Global - 100Hz
Cascaded - K=0.1 -------
o) Y Y E Y Y B E O N Y R R

10 100 1000 100001000001e+06 1e+07 1e+08 1e+09 le+10
of accesses (log)

(b) Cumulative

Fig. 17. Comparison of range-solver accurafyr both controllers withyzi p2 workload. Variables are grouped by total number of updates.

4.4 NAP Detector Table 2. NAP detector memory usage, including executable sizeyalirt
memory usage (VSZ), and physical memory usage (RSS).
Figure 18 shows the results of our NAP detector, described in ExeSze VSZ RSS
ion 3.2, omzi p2 using th ntroller. The NAP

csigtcetc(ior?s iﬁ;?umZntl;?ior? i;:ufg ?\%ag\?eiﬁegg vShiIe igrgpr bz?pz (unmodified) - 68.6KB - 213KB - 207KB

. bzip2 (cascade) 89.4KB 225KB 209KB
events, so it has a very low base overhead: only 1.1%. The
NAP detector also tracks the user-specified target overhead
well from 10-140%. The results also show that the NAP de-
tector takes advantage of extra overhead that the usersallow Table 2 shows memory overhead for the NAP detector.
it. As target overhead increased, the number of monitoredxe SizeVSZ andRSZare the same as in Section 4.3.4. Al-
events scaled smoothly from only 300,000 to over 4 million. though it is possible for the NAP detector to increase memory

Because the global controller is not designed to use perusage by as much as 50% (see Section 3.2p2hg2 bench-

allocation sampling (as explained in Section 3.2), we usednark experienced only a 5.3% increase in virtual memory
only cascade control for our NAP detector experiments. usage (VSZ). All of the allocations monitored in the bench-

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 15

140 T T T T T T | 3
Observed overhead A
120 L Ideal ------- el
- Access events ------- L 2 25
g\o, /r/
= 100 ,f""/’{ 1, E’
4] el 2
5 sof E
3 ” 115 S
3 00T e g
> > (5]
6 7 ’I’ - l >
) 40 + y "/r’ L
S i
i e 4 05
20 A
ot
O e | | | | | | 0
0 20 40 60 80 100 120 140

Target overhead (%)

Fig. 18. Cascade controller with NAP detectobserved overhead,{axis) and number of monitored memory access eveyitsakis) for a range of target
overhead settingse(axis) running on thé@zi p2 workload.

mark were 10-800 times larger than the page size, so forcing At 100Hz, however, controller performance was good and
these allocations to be in separate pages resulted in Wy li the clock thread’s impact on the system was still negligible
wasted space. The 20.8KB increase in Exe size is from théncurring the 45-cycl®DTSC cost only one hundred times for

statically linked SMCO library. every 2.5 billion processor cycles on our test system. More
frequent updates did not perform any better and wasted re-
4.5 Controller Optimization sources, so we chose 100Hz for our clock update frequency.

In choosing the clock frequency, we wanted to ensure that
This section describes how we chose values for several of ounve also preserved SMCO’s effectiveness. Figure 20 shows
control parameters in order to get the best performance fronthe accuracy of theange- sol ver at 10% target overhead
our controllers. Section 4.5.1 discusses our choice ofkcloc using the four clock frequencies we tested. We used the same
precision for time measurements. Section 4.5.2 explains ho accuracy metric as in Section 4.3.3 and plotted the results
we chose the integrative gain and adjustment interval fer th as in Figure 17. Theange- sol ver accuracy is similar for
primary controller. Section 4.5.3 discusses optimizirggadd- 100Hz, 1000Hz, and 2500Hz clocks. These three values re-

justment interval for an alternate primary controller. sulted in similar observed overheads in Figure 19. It troreef
makes sense that they achieve similar accuracy, since SMCO
4.5.1 Clock Frequency is designed to support trade-offs between effectiveneds an

overhead. The 10Hz run has the best accuracy, but this result

The control logic for our ange- sol ver implementation uses is misleading because it attains that accuracy at the cost of
aclock thread as described in Section 3.1, which trades off higher overhead than the user-requested 10%. Testing these
precision for efficiency. This thread can keep more preciseclock frequencies at higher target overheads showed simila
time by updating its clock more frequently, but more frequen behavior. Note that the 100Hz curves in Figure 20 are the
updates result in higher timekeeping overhead. Recaltleat same as the global controller curves from the controllercom
RDTSCinstruction is relatively expensive, taking 45 cycles on parison in Figure 17.
our testbed.

We performed experiments to determine how much preci-) _
sion was necessary to control overhead accurately. Figure 14-2-2 Integrative Gain
shows the ange- sol ver benchmark in Figure 15 repeated
for four different clock frequencies. Thaock frequencys The primary controller component of the cascade controller
how often the clock thread wakes up to read the TSC. discussed in Section 2 has two parameters: the integrative

At only 10Hz, the controller’'s time measurements weregain K; and the adjustment intervdl. The integrative gain
not accurate enough to keep the overhead below the targdas a weight factor that determines how much the cumulative
With infrequent updates, most monitoring operations oelir - errore.. (the deviation of the observed monitoring percentage
without an intervening clock tick and therefore appeared tofrom the target monitoring percentage) changes the local ta
take 0 seconds. The controller ended up with an under-egtimaet monitoring percentage;; (the maximum percent of ex-
of the actual monitoring overhead and thus overshot its.goalecution time that each monitored plant is allowed to use for

16 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

140
120 +
g
5 100
©
2
5 80
>
@)
go! 60
o
2
2 40
@)
20
0 l l l l l l
0 20 40 60 80 100 120 140
Target Overhead (%)
(a) bzip2

Observed Overhead (%)

2 _
0 L - | | | | | |
0 2 4 6 8 10 12 14
Target Overhead (%)
(b) grep

Fig. 19. Observed overhead for global controller clock frequeneiih 4 different clock frequencies and 2 workloads ugirnge- sol ver instrumentation.

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 17

100

0]
o

S

>~

O

©

o 60 /

o \,

< \\ ,’I

§ \\\ I /

Ie) 40 =\ I’ T

2] \ /

[¢b) \\ (I

2 \ /

S R 10Hz _

20)

x - 100Hz -
\ / 1000Hz --------
Y 2500Hz -~

, Y A A A A

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

of accesses (log)
(a) Non-cumulative

100 L L L L L

g 80 | T - ”::/;,
3 '."‘:,;;;};;'—”’
O ------------- ‘;/—/
S I
Q —
< -
g
S 40 |
0
(<))
e
(U _ 10Hz]
D:) 100Hz -------
1000Hz --------
2500Hz e

o J Y Y N
10 100 1000 10000100000 1e+06 1e+07 1e+08 1e+09 1le+10

of accesses (log)
(b) Cumulative

Fig. 20. Accuracy of global controller clock frequenciesth 4 different clock frequencies usifgange- sol ver instrumentation. Variables are grouped

by total number of updates.

monitoring). Whenk; is high, the primary controller makes tolerant enough that good values fi§; and7" can be deter-

larger changes toy;; to correct for observed deviations. mined experimentally.

m ;I'he i?:uitrrentdlnttervz\allvlifhthelp%n\?dl of tlme betr\]’\{fﬁln f”' We tuned the controller by runningange- sol ver on
da} ytco ol ufp a es.tl a lol value, the controller o extendedzi p2 workload with a range of values fdt;
adjustsm,, more frequently. andT and then recording how the primary controller’s out-

There are processes for choosing good control parameput variable;m;;, stabilized over time. Figure 21 shows our
ters for most applications of control theory, but our system results for fourk; values and thre@ values with target over-

18 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

0.1 : . . .
K=0.1
0.09 | K=0.5 |
K|:l.0 ————————
0.08 - K=2.0 ; i
0.07 =
0.06 -
£ 005
0.04
0.03
0.02
0.01

0

0 50 100 150 200 250
time (second)
(8 T=0.4s

0.035 . . . T
0.03
0.025

0.02

My

0.015

0.01

0.005

0 50 100 150 200 250
time (second)
(b) T=2s

0.02 . . . —
0.018 [K=05 -
0.016 | K'=5/ .. [
0.014 | PR
£ o001l L T
0.008 |
0.006 |
0.004 |
0.002 | 7 -

o L2 | | | |
0 50 100 150 200 250

time (second)
(c) T=10s

Fig. 21. Local target monitoring percentagen(;) over timeduringbzi p2 workload forr ange- sol ver with cascade control. Results shown with target
overhead set to 20% for 4 different valuesif and 3 values of".

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 19

140 T T T T T T
K=0.1
K=05 --—----

120 - KI:]_O ,,,,,,,,

100

80

60

40

Observed Overhead (%)

20

0 T I I I I I I
0 20 40 60 80 100 120 140

Target Overhead (%)

Fig. 22. Observed overhead for primary controlléf; valuesusingr ange- sol ver with 7'= 400ms and four differenk’; values.

head set to 20% for all runs. These results revealed trends ilonger with very high overhead because of the larger gap be-

the effects of adjusting the controller parameters. tween target overhead and the initial observed overhead. To
In general, we found that higher valuesigf increased deal with this discrepancy, we actually use tig values,

controller responsiveness, allowing, to more quickly com- K = 0.1 for normal cases, and a special high-overh>

pensate for under-utilization of monitoring time, but abstc ~ for cases with target overhead greater than 70%. We chose

of driving higher-amplitude oscillations im;,. This effectis K7’ = 0.5 using the same experimental procedure we used

most evident withl" = 0.4s (see Figure 21(a)). All the values for K.

we tested fromK; = 0.1 to K; = 2.0 successfully met our

overhead goals, but values greater than 0.1 oscillatedywild 4.5.3 Adjustment Interval

enough that the controller had to sometimes turn monitoring

off completely (by settingn;: to almost 0) to compensate Before settling on the integrative control approach thatise

for previous spikes imy;;. With K7 = 0.1 however,n;; 0s- for our primary controller, we attempted an ad hoc control

cillated stably for the duration of the run after a 50-secondapproach that yielded good results for thenge- sol ver,

warm-up period. but was not stable enough to control the NAP Detector. We
When we changed’ to 2s (see Figure 21(b)), we ob- also found the ad hoc primary controller to be more difficult

served that 0.1 was no longer the optimal valuefgr But to adjust than the integrative controller. Though we no tmg

with K = 0.5, we were able to obtain performance as gooduse the ad hoc approach, the discussion of how we tuned it

as the optimal performance with = 0.4s: the controller met illustrates some of the properties of our system.

its target overhead goal and had the same 50-second warmup Rather than computing error as a difference, the ad hoc

time. We do see the consequences of choosing too small @ontroller computes errar; fractionally as the Global Tar-

K, however: with/K; = 0.1, the controller was not able get Monitoring Percentage (GTMP, as in Section 2.3.2) di-

to finish warming up before the benchmark finished, and thasided by the observed global monitoring percentage for the

system failed to achieve its monitoring goal. entire program run so far. The valueafis greater than one
The same problem occured wHerr 10s (see Figure 21(c)):when the program is under-utilizing its monitoring time and

the controller updated so infrequently that it only comgiet less than one when the program is using too much monitor-

its warm-up for the highedk'; value we tried. Even with the ing time. After computing the fractional error, the conkeol

highestK;, the controller still undershot its monitoring per- computes a new value for;, by multiplying it by e;.

centage goal. The ad hoc primary controller has only one parameter to
Because of its stability, we chod€; = 0.1 (with T = adjust. Like the integrative controller, it has an intertrale

0.4s) for all of our cascade controlleéinge- sol ver ex- T between updates ta;.

periments with low target overhead. Figure 22 shows how Figure 23 shows theange- sol ver benchmark in Fig-

the controller tracked target overhead for all the values ure 16 repeated for four valuesBf For thebzi p2 workload

we tried. AlthoughK; = 0.1 worked well for low over- (Figure 23(a)), the best results were obtained wiifi iater-

heads, we again observed warmup periods that were too longal of 10 seconds. Smallér values led to an unstable pri-

when target overhead was very high. The warmup period tooknary controller: the observed overhead varied from thestarg

20 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

180

|
400 msec

160
140
120
100
80
60

Observed Overhead (%)

40
20

0 a ! ! ! ! ! !
0 20 40 60 80 100 120 140

Target Overhead (%)
(a) bzip2

12

T
400 msec
2sec -------
10 | 10sec --------
20 sec -
ideal -~ - - -

Observed Overhead (%)
(e}

o L al I I I I I I
0 2 4 6 8 10 12 14

Target Overhead (%)
(b) grep

Fig. 23. Observed overhead for an ad hoc cascade control€rslueswith 4 different values of” and 2r ange- sol ver workloads.

and results became more random, as shown by the wider comorrect its early error, never reaching equilibrium durihg

fidence intervals for these measurements. entire run.
This result contradicts the intuition that a smalleshould
stabilize the primary controller by allowing it to react txs Figure 24 shows how the observed monitoring percent-

Infact, the largef” gives the controller more time to correctly age for each adjustmentinterval fluctuates during an exténd
observe the trend in utilization among monitoring sourcesr ange- sol ver run of thebzi p2 workload as a result of the

For example, with a shoff, the first adjustment interval of primary controller'sn;; adjustments. With" = 0.4 seconds,

bzi p2’'s execution used only a small fraction of all the vari- the observed monitoring percentage spikes early on, so ob-
ables in the program. The controller quickly adjusteg served overhead is actually very high at the beginning of the
very high to compensate for the monitoring time that the un-program. Near 140 seconds, the controller overreacts to a
accessed variables were failing to use. In following irdésy change in program activity, causing another sharp spike in
the controller needed to adjusf; down sharply to offsetthe observed monitoring percentage. As execution continbes, t
overhead from many monitoring sources becoming active abbserved monitoring percentage sawtooths violently, ekt
once. The controller spent the rest of its run oscillating toare repeated bursts of time when the observed percentage is

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 21

160 T T T T T T

400 ms
140 R} 10s -------]
120 |r .
100 fr B

Obs. Monitoring % within Intervals (%)

Time (seconds)

Fig. 24. Observed monitoring percentage over bzip@nhge- sol ver executionThe percent of each adjustment interval spent monitorin@ fealues of
T. The target monitoring percentage is shown as a dotteddmiakline.

much higher than the target percentage (meaning observddad with target overheads greater than 10%, SMCOQ's con-
overhead is much higher than the user’s target overhead). troller was able to achieve the maximum possible observed

With T = 10 seconds, the observed monitoring percent-overhead by monitoring nearly all events. We also showed
age still fluctuates, but the extremes do not vary as far fronthat the overhead trade-off is a useful one: higher ovehead
the target. As execution continues, the oscillations dampe allowed for more effective monitoring. These results are fo
and the system reaches stability. challenging workloads with unpredictable bursts in atfivi

In our bzi p2 workload, the first few primary controller Although our results relied on choices for several param-
intervals were the most critical: bad values atthe begimofn eters, we found that it was practical to find good values for
execution were difficult to correct later on. The more reason all of these parameters empirically. As future work, we plan
able 10 second@ made its first adjustment after a larger sam- to explore procedures for automating the selection of agtim
ple of program activity, so it did not overcompensate. Over-controller parameters, which can vary with different typés
all, we expect that a primary controller with a longéis less ~ monitoring.
likely to be misled by short bursts or lulls in activity.

There is a practical limit to the length @f, however. In
Figure 23(a), a controller witli” = 20 seconds overshot its 5 Raated Work
target overhead. Because the benchmark runs for only about
one minute, the slower primary controller was not able to ad-

justm,; often enough to converge on a stable value before thehilimbi and Hauswirth [10] propose an overhead-control
benchmark ended. mechanism for memory under-utilization detection that ap-

As in Section 4.5.1 we also tested how the choic& af- proximates memory-access sampling by monitoring a pro-
fects ther ange- sol ver 's accuracy, using the same accuracy gram’s basic blocks for memory accesses. Low overhead is
metric as in Section 4.3.3. Figure 25 shows the accuracy foachieved by reducing the sampling rate of blocks that gener-
thebzi p2 workload using four different values f@f witha ate a high rate of memory accesses. The aim of their sampling
10% target overhead. The accuracy results confirm our choicgolicy is, however, to reduce overhead over time; once moni-
of 10 seconds. Only the 20 second valuefoyields better toring is reduced for a particular piece of code, it is newver i
accuracy, but it does so because it consumes more overheggbased again, regardless of that code’s future memomsacc
than the primary controller witfi’ = 10 seconds. Tests with behavior. As a NAP (Non-Accessed Period) is most com-
higher target overheads gave similar results. monly associated with a memory allocation and not a ba-

sic block, there is no clear association between the samplin

Evaluation SummaryOur results show that in all the cases rate for blocks and confidence that some memory region is
we tested, SMCO was able to track the user-specified targatnder-utilized. In contrast, SMCQO’s NAP detector uses vir-
overhead for a wide range of target overhead values. Evetual-memory hardware to directly monitor areas of allodate
when there were too few events during an execution to meetnemory, and overhead control is realized by enabling and
the target overhead goal, as was the case fogtle@ work- disabling the monitoring of memory areas appropriately.

22 Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

100 e I B B L B

Range Solver Accuracy (%)

20 L 400 msec 4
2sec ——-—----
10sec --------
20 sec
0 L M| L M| L M| L M| L M| L

10 100 1000 10000 100000 1le+06 1le+07 1e+08 1e+09

of accesses (log)
(a) Non-cumulative

100 L L L B

Range Solver Accuracy (%)

40 .

20 400 msec 4
2sec ————--
10sec -
20 sec

0 MY TR T EEE Y Y B | -

10 100 1000 100001000001e+06 1e+07 1e+08 1le+09 le+10

of accesses (log)
(b) Cumulative

Fig. 25. Accuracy of cascade controlldf valueswith 4 values ofl” on thebzi p2 workload using ange- sol ver instrumentation. Variables are grouped
by total number of updates.

Artemis [8] reduces CPU overhead due to runtime mon-Artemis and SMCO is in the goals they set for overhead man-
itoring by enabling monitoring for only certain function-ex agement. Artemis uses context awareness to reduce—but not
ecutions. By default, Artemis monitors a function execatio bound—the overhead. The overhead from monitoring a func-
only if the function is called in @ontextthat it has not seen tion in every context varies during program execution and ca
before. In theory, a function’s context consists of the galu be arbitrarily high, especially early in the execution, whe
of all memory locations it accesses. Storing and comparingnost contexts have not yet been seen. The user does not know
such contexts would be too expensive, so Artemis actuallyn advance whether the overhead will be acceptable. In con-
uses weaker definitions of “context” and “context matcHing, trast, SMCO is designed to always keep overhead within a
which may cause it to miss some interesting behaviors [8]user-specified bound. As a result of this different goal, SMC
Artemis’ context-awareness is orthogonal to SMCO's feed-uses very differenttechniques than Artemis. In summaist-ov
back control approach. SMCO could be augmented to prefenead reduction techniques like those in Artemis are useful
new contexts, as Artemis does, in order to monitor more conbut, unlike SMCO, they do not directly address the problem
texts within an overhead bound. The main difference betweewnf unpredictable and unacceptably high overheads.

Xiaowan Huang et al.: Software Monitoring with Controllat®verhead 23

Liblit et al.'s statistical debugging technique [13] seeksin r ange- sol ver . We overcame this problem by introduc-
to reduce per-process monitoring overhead by partitioningng a separate clock thread, as described in Section 3.1.

a monitoring task across many processes running the same QVM and SMCO make sampling decisions at different
program. This approach is attractive when applicable bsit hagranularities, reflecting their orientation towards moriitg
several limitations: it is less effective when an applicatis different kinds of properties. QVM makes monitoring deci-
being tested and debugged by a small number of developersjons at the granularity of objects. In theory, for each obhje
privacy concerns may preclude sharing of monitoring result QVM monitors all relevant operations (method invocations)
from deployed applications; and for some monitoring taigks, or none of them. In practice, this is problematic, because th
may be difficult to partition the task evenly or correlate mon target overhead may be exceeded if QVM decides to track
toring data from different processes. Furthermore, inramtit an object that turns out to have a high event rate. QVM deals
to SMCO, statistical debugging does not provide the abilitywith this by usingemergency shutdowa abort monitoring of

to control overhead based on a user-specified target level. such objects. In contrast, SMCO is designed for monitots tha

We first introduced the concept of a user-specified targetlo not need to observe every operation on an object to pro-
overhead, along with the idea of using feedback control toduce useful results. For example, even if monitoring is tem-
enforce that target, in an NSF-sponsored workshop [4]. Theporarily disabled for a memory allocation, our NAP detector
controller we implemented in that workshop is the basis forcan resume monitoring the allocation and identify subsetjue
our cascade controller. NAPs.

The Quality Virtual Machine (QVM) [3] also supports QVM and SMCO are designed for very different execu-
runtime monitoring with a user-specified target overheggl. | tion environments. QVM operates in a modified Java Vir-
overhead-managementtechnique is similar to our cascade céual Machine (JVM). This makes implementation of efficient
troller in that it splits control into global and local ovexdd ~ monitoring considerably easier, because the JVM sits conve
targets and prioritizes infrequently executed probesdmeimse hiently between the Java program and the hardware. SMCO,
coverage. The QVM overhead manager assigsarapling on the other hand, monitors C programs, for which there is no
frequencyto each overhead source, and it adjusts the sameasy intermediate layer in which to implement interception
pling frequency to control overhead. Unlike SMCO, which and monitoring. Monitoring of C programs is complicated by
uses an integral controller to adjust local target moniigri the fact that C is weakly typed, pointers and data can be ma-
percentages, these adjustments are made addroccon- nipulated interchangeably, and all memory accesses are ef-
troller that lacks theoretical foundations. The sectiorthom fectively global: any piece of code in C can potentially &sce
overhead manager in QVM does not describe (or justify) theany memory address via any pointer. Low-level instrumenta-
computations used to adjust sampling frequency. tion techniques allow SMCO to control overhead in spite of

In its benchmarks, QVM did not track overhead goals asthese complications: function duplication reduces ovedhe
accurately as SMCO. For example, configured for 20% tarfrom instrumentation that is toggled off, and our novel use o
get overhead, two of QVM'’s benchmarks,| i pse andf op, memory management hardware allows efficient tracking of
showed an actual overhead of about 26% [3]. Though we car@ccesses to heap objects.
not test Java programs, obizi p workload is a comparable
CPU-bound benchmark. SMCQ’s worst caselfor p was a)

22.7% overhead with NAP Detector instrumentation, shown® Conclusionsand Future Work

in Figure 18. This suggests that controllers, like SMCOlatt

are based on established control theory principle can geovi We have presented Software Monitoring with Controllable

more accurate control. This is not surprising, since mgetin Overhead (SMCO), an approach to overhead control for the
an overhead goal is inherently a feedback control problem. runtime monitoring of software. SMCO is optimal in the sense

SMCO achieves accurate overhead control even when mdhat it monitors as many events as possible without exceed-
itored events happen very frequently. @ange- sol ver at- ing the target overhead level. This is distinct from other ap
tempts to track every integer assignment in a program, hanproaches to software monitoring that promise low or adaptiv
dling many more events than QVM’s monitors, which track overhead, but where overhead, in fact, varies per appicati
calls to specified methods. We measured the rate of totat®vermnd under changing usage conditions. The key to SMCO'’s
per second in benchmarks from both systems: the rate of inperformance is the use of underlying control strategiesfor
teger assignment events in cari p2 workload and the rate nonlinear control problem represented in terms of the com-
of potentially monitored method calls in the DaCapo bench-position of timed automata.
marks that QVM uses. Thezi p2 event rate was more than Using SMCO as a foundation, we developed two sophisti-
fifty times the DaCapo rate. Our technique of toggling moni- cated monitoring tools: an integer range analyzer, whigs us
toring at the function level, using function duplicatiorakes code-oriented instrumentation, and a NAP detector, which
it possible to cope with high event rates, by reducing theuses memory-oriented instrumentation. Both the per-fanct
number of controller decisions. Even with this technique, w checks in the integer range analyzer and the per-memosy-are
found that direct calls t&RDTSC by the controller—an ap- checks in the NAP detector are activated and deactivated by
proach that is practical for the low event rates in QVM'’s the same generic controller, which achieves a user-spacifie
benchmarks—are too expensive at high event rates like thosmrget overhead with either of these systems running.

24

Our extensive benchmarking results demonstrate that it is 2.

possible to perform runtime monitoring of large softwars-sy

tems with fixed target overhead guarantees. As such, SMCO3-

is promising both for developers, who desire maximal moni-
toring coverage, and system administrators, who need a way
to effectively manage the impact of runtime monitoring on
system performance. Moreover, SMCO s fully responsive

to both increases and decreases in system load, even highly’

bursty workloads, for both CPU- and 1/O-intensive applica-
tions. As such, administrators need not worry about unusual
effects in instrumented software caused by load spikes.

Future work There are many potential uses for SMCO, in- 5,

cluding such varied techniques as lockset profiling andichec
ing, runtime type checking, feedback-directed algoritten s

lection, and intrusion detection. SMCO could be used to man- 6.

age disk or network time instead of CPU time. For exam-
ple, a background file-system consistency checker could use
SMCO to ensure that it gets only a specific fraction of disk
time, and a background downloader could use SMCO to en-
sure that it consumes only a fixed proportion of network time.

Though our cascade controller adheres to its target over-g.

head goals very well, it is dependent on somewhat careful
adjustment of thé(; control parameter. Changes to the mon-
itor can alter the system enough to require retunifig It
would be useful to automate the process for optimizitg

for low and high overheads so that developing new monitors 9:

does not require tedious experimentation. An automated pro
cedure could model the response time and level of oscillatio
as a function ofK; in order to find a good trade-off.

We also believe that SMCO as a technique can be im-
proved. One improvement would be to handependencies
between monitored events in cases where correctly monitor-

ing an event requires information from previous events. For{1.

example, if a runtime type checker fails to monitor the event

that initializes an object’s type, it would be useless to mon 12.

tor type-checking events for that object; the controllendd
therefore be able to ignore such events.

7 Acknowledgments

14.

The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions. They would alsgs
like to thank Michael Gorbovitski for insightful discussi®

and help with the benchmarking results. Research supported

in part by AFOSR Grant FA9550-09-1-0481, NSF Grants16.

CNS-0509230, CCF-0926190, and CNS-0831298, and ONR
Grant NO0014-07-1-0928.

17.

References

1. A. Aziz, F. Balarin, R. K. Brayton, M. D. Dibenedetto, A.
Sladanha, and A. L. Sangiovanni- Vincentelli. Supervismmg-
trol of finite state machines. In P. Wolper, edit@th Inter-
national Conference On Computer Aided Verificatisalume
939, pages 279-292, Liege, Belgium, 1995. Springer Verlag.

10. M. Hauswirth and T. M. Chilimbi.

13.

18.

Xiaowan Huang et al.: Software Monitoring with ContrbliaOverhead

R. Alurand D. L. Dill. A theory of timed automat&heoretical
Computer Sciencel26(2):183-235, 1994.

M. Arnold, M. Vechey, and E. Yahav. QVM: An efficient run-
time for detecting defects in deployed systems. Phoceed-
ings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applitatio
(OOPSLA) Nashville, TN, October 2008. ACM.

S. Callanan, D. J. Dean, M. Gorbovitski, R. Grosu, J. Ssyst
S. A. Smolka, S. D. Stoller, and E. Zadok. Software Monitgrin
with Bounded Overhead. IRroceedings of the 2008 NSF Next
Generation Software Workshop, in conjunction with the 2008
International Parallel and Distributed Processing Symipos
(IPDPS 2008) Miami, FL, April 2008.

S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with
modular GIMPLE optimizations. IfProceedings of the 2007
GCC Developers’ Summibttawa, Canada, July 2007.

B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic in
strumentation of production systems.Rroceedings of the An-
nual USENIX Technical Conferenqeages 15-28, 2004.

7. L. Feiand S. P. Midkiff. Artemis: Practical runtime maring

of applications for errors. Technical Report TR-ECE-05-02
Electrical and Computer Engineering, Purdue Universitg®
docs. |i b. purdue. edu/ ecetr/ 4/ .

L. Feiand S. P. Midkiff. Artemis: Practical runtime maning

of applications for execution anomalies. Pnoceedings of the
2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI '06pttawa, Canada, June
2006.

G.F. Franklin, J.D. Powell, and M. Workmamigital Control

of Dynamic Systems, Third EditioAddison Wesley Longman,
Inc., 1998.

Low-overhead memory
leak detection using adaptive statistical profilifgroceedings

of the 11th International Conference on Architectural Supp
for Programming Languages and Operating Systems (ASPLOS
2004) pages 156-164, October 2004.

J. L. Henning. SPEC CPU2006 benchmark descriptiGasn-
puter Architecture New84(4):1—17, September 2006.

C. A. R. Hoare. Communicating Sequential Proces€zsn-
munications of the ACM21:666—677, August 1978.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isol
tion via remote program sampling. Rroceedings of the 2003
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'03)San Diego, CA, June 2003.

R. Moore. A universal dynamic trace for Linux and othef op
erating systems. IRroceedings of the 2001 USENIX Annual
Technical Conferengelune 2001.

. P.J. Ramadge and W.M. Wonham. Supervisory control of a

class of discrete event systen®AM J. Control and Optimiza-
tion, 25(1):206—230, 1987.

P.J. Ramadge and W.M. Wonham. Supervisory control @&dim
discrete-event system$EEE Transactions on Automatic Con-
trol, 38(2):329-342, 1994.

J. Seward, N. Nethercote, and J. Fitzhardinge. Valgtindp:

/1 val grind. kde. or g, August 2004.

Q.-G. Wang, Z. Ye, W.-J. Cai, and C.-C. HangID Control
For Multivariable ProcesseslLecture Notes in Control and In-
formation Sciences, Springer, March 2008.

9. H. Wong-Toi and G. Hoffmann. The control of dense remaleti

discrete event systems. Rroc. of 30th Conf. Decision and
Control, pages 1527-1528, Brighton, UK, 1991.

