
Software Tools for Technology Transfer

Software Monitoring with Controllable Overhead
Xiaowan Huang, Justin Seyster, Sean Callanan, Ketan Dixit, Radu Grosu, Scott A. Smolka, Scott D. Stoller, Erez Zadok

Stony Brook University

Appears in the Proceedings of Software Tools for TechnologyTransfer

Abstract. We introduce the technique ofSoftware Monitor-
ing with Controllable Overhead(SMCO), which is based on
a novel combination of supervisory control theory of discrete
event systems and PID-control theory of discrete time sys-
tems. SMCO controls monitoring overhead by temporarily
disabling monitoring of selected events for as short a time as
possible under the constraint of a user-supplied target over-
headot. This strategy is optimal in the sense that it allows
SMCO to monitor as many events as possible, within the con-
fines ofot. SMCO is a general monitoring technique that can
be applied to any system interface or API.

We have applied SMCO to a variety of monitoring prob-
lems, including two highlighted in this paper:integer range
analysis, which determines upper and lower bounds on in-
teger variable values; andNon-Accessed Period (NAP) detec-
tion, which detects stale or underutilized memory allocations.
We benchmarked SMCO extensively, using both CPU- and
I/O-intensive workloads, which often exhibited highly bursty
behavior. We demonstrate that SMCO successfully controls
overhead across a wide range of target-overhead levels; its
accuracy monotonically increases with the target overhead;
and it can be configured to distribute monitoring overhead
fairly across multiple instrumentation points.

Key words: Software instrumentation, supervisory control

1 Introduction

Ensuring the correctness and guaranteeing the performance
of complex software systems, ranging from operating sys-
tems and Web servers to embedded control software, presents
unique problems for developers. Errors occur in rarely called
functions and inefficiencies hurt performance over the long
term. Moreover, it is difficult to replicate all of the environ-
ments in which the software may be executed, so many such

problems arise only after the software is deployed. Conse-
quently, testing and debugging tools, which tend to operate
strictly within the developer’s environment, are unable tode-
tect and diagnose all undesirable behaviors that the system
may eventually exhibit. Model checkers and other verifica-
tion tools can test a wider range of behaviors but require dif-
ficult to develop models of execution environments and are
limited in the complexity of programs they can check.

This situation has led to research in techniques to moni-
tor deployed and under-development software systems. Such
techniques include the DTrace [6] and DProbes [14] dynamic
tracing facilities for Solaris and Linux, respectively. These
frameworks allow users to build debugging and profiling tools
that insertprobesinto a production system to obtain informa-
tion about the system’s state at certain execution points.

DTrace-like techniques have two limitations. First, they
arealways on. Hence, frequently occurring events can cause
significant monitoring overhead. This raises the fundamental
question:Is it possible to control the overhead due to soft-
ware monitoring while achieving high accuracy in the mon-
itoring results?Second, these tools arecode-oriented: they
interpose on execution of specified instructions in the code;
events such as accesses to specific memory regions are diffi-
cult to track with these tools, because of their interrupt-driven
nature. Tools such as Valgrind allow one to instrument mem-
ory accesses, but benchmarks have shown a 4-fold increase in
runtimes even without any instrumentation [17]. This raises a
related question:Is it possible to control the overhead due to
monitoring accesses to specific memory regions?

To answer the first question, we introduce the new tech-
nique of Software Monitoring with Controllable Overhead
(SMCO). To answer the second question, we instrument the
application program, such that SMCO can exploit thevirtual
memory hardware, to selectively monitor memory accesses.

As the name suggests, SMCO is formally grounded in
control theory, in particular, a novel combination of super-
visory control of discrete event systems [15,1] and propor-
tional-integral-derivative (PID) control of discrete time sys-

2 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

Controller observed

overhead o

target

overhead o
t

Plant
Monitorenable/disable

monitoring

Instrumented

Program

Fig. 1. Structure of a typical SMCO application.

tems [18]. Overhead control is realized by temporarily dis-
abling interrupts generated by monitored events, thus avoid-
ing the overhead from processing these interrupts. Moreover,
such interrupts are disabled for as short a time as possible so
that the number of events monitored, under the constraint of
a user-suppliedtarget overheadot, is maximized.

Our main motivation for using control theory is to avoid
anad hocapproach to overhead control, in favor of a much
more rigorous one based on the extensive available litera-
ture [9]. We also hope to show that significant benefits can be
gained by bringing control theory to bear on software systems
and, in particular, runtime monitoring of software systems.

The structure of a typical SMCO application is illustrated
in Figure 1. The main idea is that given the target overheadot,
an SMCO controller periodically sends enable/disable mo-
nitoring commands to an instrumented program and its asso-
ciated monitor in such a way that the monitoring overhead
never exceedsot. Note that the SMCO controller is afeed-
back controller, as the current observed overhead level is con-
tinually fed back to it. This allows the controller to carefully
monitor the observed overhead and, in turn, disable moni-
toring when the overhead is close toot and, conversely, en-
able monitoring when the likelihood of the observed over-
head exceedingot is small. Also note that the instrumented
program sends events of interest to the monitor as they occur,
e.g., memory accesses and assignments to variables.

More formally, SMCO can be viewed as the problem of
designing an optimal controller for a class of nonlinear sys-
tems that can be modeled as the parallel composition of a set
of extended timed automata (see Section 2). Furthermore, we
are interested in proportional-integral-derivative (PID) con-
trollers. We consider two fundamental types of PID control-
lers: (1) a single, integral-likeglobal controller for all mon-
itored objects in the application software; and (2) acascade
controller, consisting of an integral-likeprimary controller
which is composed with a number of proportional-likesec-
ondary controllers, one for each monitored object in the ap-
plication. The main function of the primary controller is to
control the set point of the secondary controllers.

We use the suffix “-like” because our PID controllers are
event driven, as in the setting of discrete-event supervisory
control, and not time-driven, as in the traditional PID con-
trol of continuous or discrete time systems. The primary con-
troller and the global controller are integral-like because the
control action is based on the sum of recent errors (i.e., dif-
ferences between target and observed values). The secondary
controllers are proportional-like because the controller’s out-
put is directly proportional to the error signal.

We use both types of controllers because of the follow-
ing trade-offs between them. The global controller features
relatively simple control logic and hence is very efficient.It
may, however, undersample infrequent events. The cascade
controller, on the other hand, is designed to provide fair mon-
itoring coverage of all events, regardless of their frequency.

SMCO is a general runtime-monitoring technique that can
be applied toany system interface or API. To substantiate
this claim, we have applied SMCO to a number of monitor-
ing problems, including two highlighted in this paper:integer
range analysis, which determines upper and lower bounds
on the values of integer variables; andNon-Accessed Period
(NAP) detection, which detects stale or underutilized mem-
ory allocations. Integer range analysis is code-oriented,be-
cause it instruments instructions that update integer variables,
whereas NAP detection is memory-oriented, because it inter-
cepts accesses to specific memory regions.

The source-code instrumentation used in our integer range
analysis is facilitated by a technique we recently developed
calledcompiler-assisted instrumentation(CAI). CAI is based
on aplug-in architecture for GCC[5]. Using CAI, instrumen-
tation plug-ins can be separately compiled as shared objects,
which are then dynamically loaded into GCC. Plug-ins have
read/write access to various GCC internals, including abstract
syntax trees (ASTs), control flow graphs (CFGs), and static
single-assignment (SSA) representations.

The instrumentation in our NAP detector makes novel use
of virtual-memory hardware (MMU) by using themprotect
system call to guard each memory area suspected of being
underutilized. When a protected area is accessed, the MMU
generates a segmentation fault, informing the monitor thatthe
area is being used. If a protected area remains unaccessed
for a period of time longer than a user-specified threshold
(the NAP length), then the area is considered stale. SMCO
controls the total overhead of NAP detection by enabling and
disabling the monitoring of each memory area appropriately.

To demonstrate SMCO’s ability to control overhead while
retaining accuracy in the monitoring results, we performed
a variety of benchmarking experiments involving real appli-
cations. Our experimental evaluation considers virtuallyall
aspects of SMCO’s design space: cascade vs. global con-
troller, code-oriented vs. memory-oriented instrumentation,
CPU-intensive vs. I/O-intensive workloads (some of which
were highly bursty). Our results demonstrate that SMCO suc-
cessfully controls overhead across a wide range of target-
overhead levels; its accuracy monotonically increases with
the target overhead; and it can be configured, using the cas-
cade controller, to fairly distribute monitoring overheadacross

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 3

reference

input x

Controller

Q
Plant

P
control

input v
plant

output y

Fig. 2. Plant (P) and Controller (Q) architecture.

multiple instrumentation points. Additionally, SMCO’sbase
overhead, the overhead observed atot =0, is a mere 1–4%.

The rest of the paper is organized as follows. Section 2 ex-
plains SMCO’s control-theoretic foundations. Section 3 de-
scribes our architectural framework and the applications we
developed. Section 4 presents our benchmarking results. Sec-
tion 5 discusses related work. We conclude in Section 6 and
discuss future work.

2 Control-Theoretic Monitoring

The controller design problemis the problem of devising a
controllerQ that regulates the inputv to a processP (hence-
forth referred to as theplant) in such a way thatP ’s output
y adheres to areference inputx with good dynamic response
and small error; see the architecture shown in Figure 2.

Runtime monitoring with controllable overhead can ben-
eficially be stated as a controller design problem: The con-
troller is a feedback controller that observes the monitoring
overhead, the plant comprises the runtime monitor and the ap-
plication software, and the reference inputx to the controller
is given by the user-specifiedtarget overheadot. This struc-
ture is depicted in Figure 1. To ensure that the plant iscon-
trollable, one typically instrumentsthe application and the
monitor so that they emiteventsof interest to the controller.
The controller catches these events, and controls the plantby
enablingor disablingmonitoring and event signaling. Hence,
the plant can be regarded as adiscrete event process.

In runtime monitoring, overhead is the measure of how
much longer a program takes to execute because of monitor-
ing. If an unmodified and unmonitored program executes in
time R and executes in total timeR +M with monitoring,
we say that the monitoring has overheadM / R.

Instead of controlling overhead directly, it is more conve-
nient to write the SMCO control laws in terms ofmonitoring
percentage: the percentage of execution time spent monitor-
ing events, which is equal toM/(R +M). Monitoring per-
centagem is related to the traditional definition of overhead
o by the equationm = o / (1 + o). Theuser-specified target
monitoring percentage(UTMP) mt is derived fromot in a
similar manner; i.e.,mt = ot / (1 + ot).

The classical theory of digital control [9] assumes that the
plant and the controller are linear systems. This assumption
allows one to semi-automatically design the controller by ap-
plying a rich set of design and optimization techniques, such
as the Z-transform, fast Fourier transform, root-locus analy-
sis, frequency response analysis, proportional-integrative-de-
rivative (PID) control, and state-space optimal design. For
nonlinear systems, however, these techniques are not directly

applicable, and various linearization and adaptation techniques
must be applied as pre- and post-processing, respectively.

The problem we are considering is nonlinear, because of
the enabling and disabling of interrupts. Intuitively, theinter-
rupt signal is multiplied by a control signal which is 1 when
interrupts are enabled and 0 otherwise. Although lineariza-
tion is one possible approach for this kind of nonlinear sys-
tem, automata theory suggests a better approach, recasting
the controller design (synthesis) problem as one ofsupervi-
sory controller design[15,1].

The main idea of supervisory control we exploit to en-
able and disable interrupts is the synchronization inherent in
theparallel compositionof state machines. In this setting, the
plantP is a state machine, the desired outcome (tracking the
reference input) is a languageL, and the controller design
problem is that of designing a controllerQ, which is also a
state machine, such that the languageL(Q‖P) of the compo-
sition ofQ andP is included inL. This problem is decidable
for finitestate machines [15,1].

Monitoring percentage depends on the timing (frequency)
of events and the monitor’s per-event processing time. The
specification languageL therefore consists oftimed words
a1, t1, . . . , al, tl where eachai is an (access) event that occurs
at time ti. Consequently, the state machines used to model
P andQ must also include a notion of time. Previous work
has shown that supervisory control is decidable fortimed au-
tomata[2,19] and fortimed transition models[16].

Modeling overhead control requires however, the use of
more expressive, extended timed automata (see Section 2.2),
and for such automata decidability is lost. The lack of decid-
ability means that a controller cannot be automatically syn-
thesized. This however, does not diminish the usefulness of
control theory. On the contrary, this theory becomes an indis-
pensable guide in the design of a controller that satisfies a set
of constraints. In particular, we use control theory to develop
a novel combination of supervisory and PID control. As in
classical PID control, the error from a given setpoint (and the
integral and derivative of the error) is employed to controlthe
plant. In contrast to classical PID control, the computation of
the error and its associated control happens in our framework
on an event basis, instead of a fixed, time-step basis.

To develop this approach, we must reconcile the seem-
ingly incompatible worlds of event- and time-based systems.
In the time-based world of discrete time-invariant systems,
the input and the output signals are assumed to be known and
available at every multiple of a fixed sampling interval∆t.
Proportional control (P) continually sets the current control
input v(n) as proportional to the current errore(n) accord-
ing to the equationv(n)= ke(n), wheren stands forn∆t
ande(n)= y(n)−x(n) (recall thatv, x, andy are depicted in
Figure 2). Integrative control (I) sums the previous and cur-
rent error and sets the control input tov(n)= k

∑n

i=0
e(n).

In contrast, in the event-based world, time information
is usually abstracted away, and the relation to the time-based
world, where controller design is typically done, is lost. How-
ever, in our setting the automata are timed, that is, they con-
tain clocks, ticking at a fixed clock interval∆t. Thus, events

4 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

can be assumed to occur at multiples of∆t, too. Of course,
communication is event based, but all the necessary infor-
mation to compute the proper control valuev(t) is available,
whenever an event is thrown at a given timet by the plant.

We present two controller designs with different trade-
offs and correspondingly different architectures. Ourglobal
controller is a single controller responsible for all objects of
interest in the monitored software; for example, these objects
may be functions or memory allocations, depending on the
type of monitoring being performed. The global controller
features relatively simple control logic and hence is very ef-
ficient: its calculations add little to the observed overhead.
It does not, however, attempt to be fair in terms of monitor-
ing infrequently occurring events. Ourcascade controller, in
contrast, is designed with fairness in mind, as the composition
of a primary controller and a set ofsecondary controllers,
one for each monitored plant.

Both of the controller architectures temporarily disable
interrupts to control overhead. One must therefore consider
the impact of events missed during periods of non-monitoring
on the monitoring results. The two applications of SMCO we
consider are integer range analysis and the detection of under-
utilized memory. For under-utilized memory detection, when
an event is thrown, we are certain that the corresponding ob-
ject is not stale. We can therefore ignore interrupts for a defi-
nite interval of time, without compromising soundness and at
the same time lowering the monitoring percentage.

Similarly, for integer range analysis, two updates to an
integer variable that are close to each other in time (e.g., con-
secutive increments to a loop variable) are often near each
other in value as well. Hence, processing the interrupt for the
first update and ignoring the second, is often sufficient to ac-
curately determine the variable’s range, while also lowering
monitoring percentage. For example, in the benchmarking ex-
periments described in Section 4, we achieve high accuracy
(typically 90% or better) in our integer range analysis witha
target overhead of just 10%.

2.1 Target Specification

The target specification for a single controlled plant is given
as a timed languageL, containing timed words of the form
a1, t1, . . . , al, tl, whereai is an event andti is the time at
which ai has occurred. Each plant has a local target moni-
toring percentagemlt, which is effectively that plant’s por-
tion of the UTMPmt. Specifically,L contains timed words
a1, t1, . . . , al, tl that satisfy the following conditions:

1. The average monitoring percentagem= (l pa) / (tl−t1)
is such thatm≤mlt, wherepa is the average time taken
by the monitor and controller to process an event.

2. If the strict inequalitym< mlt holds, then the monito-
ring-percentage undershoot is due to time intervals with
low activity during which all events are monitored.

The first condition bounds only themean monitoring per-
centagem within a timed wordw∈L. Hence, various poli-
cies for handling monitoring percentage, and thus enabling

v?en / i=1 v?di / i=0

[i=1] / y
f
!ac, k

2
=0

[k
1
 ≤ MT]

[k
2
 ≤ p

M
]

k
1
 ≥ MT

[true]

[k
2
 ≥ p

m
] / y

f
! ac

running stopped

monitor access

k
1
=0, i=1

Fig. 3. Automaton for the hardware plantP of one monitored object.

and disabling interrupts, are allowed. The second condition
is a best-effortcondition which guarantees that if the target
monitoring percentage is not reached, this is only because the
plant does not throw enough interrupts. As our benchmark-
ing results of Section 4 demonstrate, we designed the SMCO
global and cascade controllers (described in Section 2.3) to
satisfy these conditions.

When considering the target specification languageL and
the associated mean monitoring percentagem, it is important
to distinguish plants in which all interrupts can be disabled
(as in Figure 3) from the other (as in Figure 4). Hardware-
based execution platforms (e.g., CPU and MMU) and vir-
tual machines such as the JVM belong to the former cate-
gory. (The JVM supports disabling of software-based inter-
rupts through just-in-time compilation.)

Software plants written in C, however, typically belong to
the latter category, because code inserted during instrumenta-
tion is not removed at run-time. In particular, as discussed
in Section 2.2.2, when function calls are instrumented, the
instrumented program always throws function-call interrupts
af c. Consequently, for such plants, in addition tom, there is
also an unavoidablebase monitoring percentagemb = k pf c,
wherek is the number of function calls.

2.2 The Plant Models

This section specifies the behavior of the above plant types
in terms ofextended timed automata(introduced below). For
illustration purpose, eachhardware plantis controlled by a
secondary controller, and the uniquesoftware plantis con-
trolled by the global controller.

2.2.1 The Hardware Plant

Timed automata(TA) [2] are finite-state automata extended
with a set of clocks, whose values are positive reals. Clock
predicates on transitions are used to model timing behavior,
while clock predicates appearing within locations (states) are
used to enforce progress properties. Clocks may be reset by
transitions.Extended TAare TA with local variables and a
more expressive clock predicate/assignment language.

The hardware plantP is modeled by the extended TA in
Figure 3. Its alphabet consists of input and output events. The
clock predicates labeling its locations and transitions are of
the formk∼ c, wherek is a clock, c is a natural number or

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 5

variable, and∼ is one of<, ≤, =, ≥, and>. For example,
the predicatek1 ≤MT labelingP ’s staterunning is a clock
constraint, wherek1 is a clock andMT is the maximum-
monitoring-time parameter discussed below.

Transition labels are of the form[guard]In/Cmd, where
guard is a predicate overP ’s variables;In is a sequence of
input events of the formv?e denoting the receipt of valuee
(written as a pattern) on channelv; andCmd is a sequence
of output and assignment events. An output event is of the
form y!a denoting the sending of valuea on channely; an as-
signment event is simply an assignment of a value to a local
variable of the automaton. All fields in a transition label are
optional. The use of? and! to denote input and output events
is standard, and first appeared in Hoare’s paper on CSP [12].

A transition isenabledwhen its guard is true and the spec-
ified input events (if any) have arrived. A transition is not
forcedto be taken unless letting time flow would violate the
condition (invariant) labeling the current location. For exam-
ple, the transition out of the statemonitor accessin Figure 3
is enabled as soon ask2 ≥ pm, but not forced untilk2 ≥ pM .
The choice is nondeterministic, and allows to succinctly cap-
ture any transition in the interval[pm, pM]. This is a classic
way of avoiding overspecification.

P has an input channelv where it may receiveenable
anddisablecommands, denoteden anddi, respectively, and
an output channelyf where it may send begin and end ofac-
cessmessages, denotedac andac, respectively. Upon receipt
of di, interrupt biti is set to 0, which prevents the plant from
sending further messages. Upon receipt ofen, i is set to 1,
which allows the plant to send an access messageac at ar-
bitrary moments in time. Once an access message is sent,P
resets the clock variablek2 and transitions to a new state. At
any time in the interval[pm, pM], P can leave this state and
send an end of access messageyf !ac to the controller.

P terminates when the maximum monitoring timeMT ,
a parameter of the model, is reached, i.e., when clockk1

reaches valueMT . Initially, i =1 andk1 =0.
A running program can have multiple hardware plants,

with each plant a source of monitored events. For example,
a program running under our NAP detection tool for finding
under-utilized memory has one hardware plant for each moni-
tored memory region. The NAP detector’s controller can indi-
vidually enable or disable interrupts for each hardware plant.

2.2.2 The Software Plant

In a software plantP , the application program is instrumented
to handle, together with the monitor, the interrupt logic read-
ily available to hardware plants (see Figure 4).

A software plant represents a single function that can run
with interrupts enabled or disabled. In practice, the function
toggles interrupts by choosing between two copies of the func-
tion body each time it is called: one copy that is instrumented
to send event interrupts and one that is left unmodified.

Whenever a function call happens at thetop levelstate
of P , the instrumented program resets the clock variablek1,
sends the messagefc onyf to the controller andwaits for its

monitored program

(execute function)

[k
1
 ≤ F]

[k
1
 ≥ F]

instrumented program

(choose function body)

[k
2
 ≤ p

M
]fc

monitored program

(monitor access)

[k
2
 ≤ p

M
]

instrumented program

(top level)

[true]

instrumented program

(wait for controller)

[true]

y
f
!ac, k

2
=0

v
f
?m / cm=m, k

2
=0

fc[k
2
 ≥ p

m
 & cm=di] / y

f
!fc

[k
2
 ≥ p

m
] / y

f
!ac

y
f
!fc, k

1
=0

fc[k
2
 ≥ p

m
& cm=ei] / y

f
!fc

Fig. 4. Automaton for the software plantP of all monitored objects.

response. If the response onvf isdi , indicating that interrupts
are disabled, then the unmonitored version of the function
body is called. This is captured inP by returning to the top
level state at any time in the interval[pfc

m , pfc
M]. This interval

represents the time required to implement the call logic.
If the response onvf is ei , indicating that interrupts are

enabled, then the monitored version of the function body is
called. This is captured inP by transitioning to the stateexe-
cute functionwithin the same interval[pfc

m , pfc
M].

Within the monitored function body, the monitor may send
on yf a begin of access eventac to the controller, whenever
a variable is accessed, and transition to the statemonitor ac-
cess. The time spent by monitoring this access is expressed
with a transition back toexecute functionthat happens at any
time in the interval[pm, pM]. This transition sends an end of
access messageac onyf to the controller.

P terminates processing functionf when the maximum
monitoring timeF , a parameter of the model, is reached; that
is, when clockk1 ≥F .

2.3 The Controllers

2.3.1 The Global Controller

Integrative control uses previous behavior of the plant to con-
trol feedback. Integrative control has the advantage that it has
good overall statistical performance for plants with consis-
tent behavior and is relatively immune tohysteresis, in which
periodicity in the output of the plant produces periodic, out-
of-phase responses in the controller. Conversely, proportional
control is highly responsive to changes in the plant’s behav-
ior, which makes it appropriate for long-running plants that
exhibit change in behavior over time.

We have implemented an integral-like global controller
for plants with consistent behavior. Architecturally, theglobal
controller is in a feedback loop with a single plant represent-
ing all objects of interest to the runtime monitor. The archi-
tecture of the global controller is thus exactly that of Figure 1,

6 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

True

y
f
?ac / τ=τ+k, k=0

y
f
?fc / p=p+k, k=0

True

[p/(τ+p)

> m

t
] y

f
?fc / v

f
!di, τ=τ+k, k=0

x?mt / m
t
=mt, k=0, p=0, τ=0

[p/(τ+p) ≤ m
t
] y

f
?fc / v

f
!ei, τ=τ+k, k=0

[true][true] [true]
y

f
?ac / p=p+k, k=0

m
t
=mt, k=0, p=0, τ=0

variable

access
function

call
top

level

Fig. 5. Automaton for global controller.

which is identical to the classical plant-controller architecture
of Figure 2, except that in Figure 1, the plant is decomposed
into the runtime monitor and the software it is monitoring.

In presenting the extended TA for the global controller,
we assume it is in a feedback loop with a software-oriented
plant whose behavior is given by the extended TA of Figure 4.
This is done without loss of generality, as the global con-
troller’s state machine is simpler in the case of a hardware-
oriented plant. The global controller thus assumes the plant
emits events of two types:function-call eventsand access
events, where the former corresponds to the plant having en-
tered a C function, and the latter corresponds to updates to
integer variables, in the case of integer range analysis.

The global controller’s automaton is given in Figure 5
and consists of three locations:top level, the function-call
processing location, and thevariable-accessprocessing lo-
cation. Besides the UTMPmt, the automaton for the global
controller makes use of the following variables: clock vari-
ablek, a running totalτ of the program’s execution time, and
a running totalp of the instrumented program’s observed pro-
cessing timep. Variableτ keeps the time the controller spent
in total (over repeated visits) in its top-level location, whereas
variablep keeps the time the controller spent in total in its
function-call and access-event processing locations. Hence,
at every moment in time, the observed overhead iso= p / τ
and the observed monitoring percentage ism = p / (τ + p).

In the top-level location, the controller can receive the
UTMP on channelx. The controller transitions from the top-
level to the function-call processing location whenever a func-
tion-call event occurs. In particular, when functionf is called,
the plant emits anfc signal to the controller alongyf (re-
gardless of whether access event interrupts are enabled for
f), transitioning the controller to the function-call process-
ing location along one of two edges. If the observed moni-
toring percentage for the entire program execution is above
the UTMPmt, the edge taken sends thedi signal alongvf to
disable monitoring of interrupts for that function call. Other-
wise, the edge taken enables these interrupts. Thus, the global
controller decides to enable/disable monitoring on a per func-
tion-call basis. Moreover, since the enable/disable decision
depends on the sign of thecumulativeerrore =m−mt, the
controller isintegrative.

The time taken in the function-call processing location,
which the controller determines by reading clockk’s value
upon receipt of anfc signal from the plant, is considered mon-

x PQ

Q
1

x
1

u
1

Q
2

x
2

u
2

Q
n

x
n

u
n

...

P
1

v
1

y
1

P
2

v
2

y
2

P
n

v
n

y
n

y
1

y
2

y
n

Fig. 6. Overall cascade control architecture.

itoring time; the transition back to the initial state thus adds
this time to the total monitoring timep.

The controller transitions from the top-level to the variable-
access processing location whenever a functionf sends the
controller an access eventac and interrupts are enabled forf .
Upon receipt of anac event signaling the completion of event
processing in the plant, the controller measures the time it
spent in its variable-access location, and adds this quantity to
p. To keep track of the plant’s total execution timeτ , each of
the global controller’s transitions exiting the initial location
updatesτ with the time spent in the top-level location.

Note that all of the global controller’s transitions are event-
triggered, as opposed to time-triggered, as it interacts asyn-
chronously with the plant. This aspect of the controller model
reflects the discrete-event-based nature of our PID controllers.

2.3.2 The Cascade Controller

As per the discussion of monitoring-percentage undershoot
in Section 2.1, some plants (functions or objects in a C pro-
gram) mightnot generate interrupts at a high rate, and there-
fore might not make use of the target monitoring percentage
available to them. In such situations it is desirable to redis-
tribute such unused UTMP to more active plants, which are
more likely to make use of this monitoring percentage. More-
over, this redistribution of the unused UTMP should be per-
formed fairly, so that less-active plants are not ignored.

This is the rationale for the SMCO cascade controller (see
Figure 6), which consists of a set of secondary controllersQi,
each of which directly control a single plantPi, and a primary
controllerPQ that controls the reference inputsxi to the sec-
ondary controllers. Thus, in the case of cascade control, each
monitored plant has its own secondary controller that enables
and disables its interrupts. The primary controller adjusts the

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 7

[true]
y

f
?ac / v!di, τ=k, k=0

[k ≥ d] / v!en, k=0

x?mlt / m
lt
=mlt, k=0

y
f
?ac / p=k , u!k, d=p/m

lt
-p-τ , k=0

[k ≤ d] [true]
accesstop wait

Fig. 7. Automaton for secondary controllerQ.

τ
1

p
1

Start

Monitoring

Event

d
1

τ
2

Controller gets

τ
1
 and p

1
 sets d

1

Start

Monitoring

Stop

Monitoring

Time

Legend Monitoring
Not Monitoring

p
2

Event

Stop

Monitoring

d
2

Controller gets

τ
2
 and p

2
 sets d

2

Fig. 8. Timeline for secondary controller.

local target monitoring percentage(LTMP) mlt for the sec-
ondary controllers.

The secondary controllers.Each monitored plantP has a
secondary controllerQ, the state machine for which is given
in Figure 7. Within each iteration of its main control loop,Q
disables interrupts by sending messagedi alongv upon re-
ceiving an access eventac alongy, and subsequently enables
interrupts by sendingen alongv. Consider thei-th execu-
tion of Q’s control loop, and letτi be thetime monitoring is
on within this cycle; i.e., the time between eventsv!en and
y?ac. Let pi be the time required toprocesseventy?ac, and
let di be thedelay timeuntil monitoring is restarted; i.e., until
eventv!en is sent again. See Figure 8 for a graphical depic-
tion of these intervals. Then the overhead in thei-th cycle is
oi = pi / (τi + di) and accordingly, themonitoring percent-
ageof thei-th cycle ismi = pi / (pi + τi + di).

To ensure thatmi = mlt whenever the plant is throw-
ing access events at a high rate,Q computesdi as the least
positive integer greater than or equal topi/mlt − (τi + pi).
Choosingdi this way lets the controller extend the total time
spent in thei-th cycle so that itsmi is exactly the targetmlt.

To see how the secondary controller is like a proportional
controller, regardpi as a constant (pi does not vary much
in practice), so thatpi/mlt—the desired value for the cycle
time—is also a constant. The equation fordi becomes now
the difference between the desired cycle time (which we take
to be the controller’s reference value) and the actual cycle
time measured when eventi is finished processing. The value
di is then equal to the proportional error for thei-th cycle,
making the secondary controller behave like a proportional
controller with proportional constant 1.

If plant P throws events at a low rate, then all events
are monitored anddi =0. When processing ofac is finished,
which is assumed to occur within the interval[pm, pM], Q
sends the processing timek to the primary controller along
channelu.

The primary controller. Secondary controllerQ achieves its
LTMP mlt only if plant P throws events at a sufficiently
high rate. Otherwise, its mean monitoring percentagem is
less thanmlt. When monitoring a large number of plantsPi

simultaneously, it is possible to take advantage of this under-
utilization ofmlt by increasing the LTMP of those controllers
Qi associated with plants that throw interrupts at a high rate.
In fact, we can adjust themlt of all secondary controllersQi

by the same amount, as the controllersQj of plantsPj with
low interrupt rates will not take advantage of this increase.
Furthermore, we do this everyT seconds, a period of time
we call theadjustment interval. The periodic adjustment of
the LTMP is the task of the primary controllerPQ.

Its extended TA is given in Figure 9. After first inputting
the UTMPmt on x, PQ computes the initial LTMP to be
mt/n, thereby partitioning the global target monitoring per-
centage evenly among then secondary controllers. It assigns
this initial LTMP to the local variablemlt and outputs it to
the secondary controllers. It also assignsmt to local variable
mgt, theglobal target monitoring percentage(GTMP). PQ
also maintains an arrayp of total processing time, initially
zero, such thatp[i] is the processing time used by secondary
controllerQi within the last adjustment interval ofT seconds.
Array entryp[i] is updated wheneverQi sends the processing
timepj of the most recent eventaj ; i.e.,p[i] is the sum of the
pj thatQi generates during the current adjustment interval.

When the time bound ofT seconds is reached,PQ com-
putes the errore = mgt −

∑n

i=1
p[i]/T , as the difference

between the GTMP and the observed monitoring percentage
during the current adjustment interval.PQ also updates a cu-
mulative errorec, which is initially 0, such thatec = ec + e,
making it the sum of the error over all adjustment intervals.
To correct for the cumulative error,PQ computes an offset
KIec that it uses to adjustmlt down to compensate for over-
utilization, and up to compensate for under-utilization. The
new LTMP is set tomlt =mgt/n +KIec and sent to all sec-
ondary controllers, after which arrayp and clockk are reset.

8 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

u
i
?p

i
/ p[i]

= p[i] + p

i

[k ≤ T] [k ≥ T] / e
c
=e

c
+(m

gt
-Σp[i]/T), m

lt
=m

gt
/n+K

I
e

c
, x

1
!m

lt
 ,..., x

n
!m

lt
, k=0, p=[0,...,0]

x?m
t
 / m

lt
=m

t
/n, x

1
!m

lt
, ... x

n
!m

lt
, m

gt
=m

t
, e

c
=0, k=0, p=[0,...,0]

i=1

n

adjust

LTMP

Fig. 9. Automaton for the primary controller.

Instrumented Program

f’ g’

Range Checker

Controller

activations events

ih

Fig. 10. SMCO architecture forrange-solver.

Because the adjustmentPQ makes to the LTMPmlt over
a given adjustment interval is a function of a cumulative error
termec, primary controllerPQ behaves as anintegrative con-
troller. In contrast, each secondary controllerQi alone main-
tain no state beyondpi andτi. They are therefore a form of
proportional controller, which respond directly as the plant
output changes. The controller parameterKI in PQ’s adjust-
ment termKIec is known in control theory as theintegra-
tive gain. It is essentially a weight factor that determines to
what extent the cumulative errorec affects the local monitor-
ing percentagemlt. The larger theKI value, the larger the
changesPQ will make tomlt during the current adjustment
interval to correct for the observed overhead.

Thetarget specification languageLP is defined in a fash-
ion similar to the one for the secondary controllers, except
that the events of the plantP are replaced by the events of the
parallel compositionP1 ‖P2 ‖ . . . ‖Pn of all plants.

3 Design and Implementation

This section presents two applications that we have imple-
mented for SMCO. Section 3.1 describes our integer range-
analysis tool. Section 3.2 introduces our novel memory under-
utilization monitor. Section 3.3 summarizes the development
effort for these monitoring tools and their controllers.

3.1 Integer Range Analysis

Integer range analysis [7] determines the range (minimum
and maximum value) of each integer variable in the moni-
tored execution. These ranges are useful for finding program
errors. For example, analyzing ranges on array subscripts may
reveal bounds violations.

Figure 10 is an overview ofrange-solver, our integer
range-analysis tool.range-solver usescompiler-assisted
instrumentation(CAI), an instrumentation framework based
on a plug-in architecture for GCC [5]. Ourrange-solver
plug-in adds range-update operations after assignments toglo-
bal, function-level static, and stack-scoped integer variables.

L2:

while (i < len) {

 total += values[i];

 update_range("func:total", total);

 i++;

 update_range("func:i", i);

}

return total;

if (controller("func")) goto L2; else goto L1;

L1:

while (i < len) {

 total += values[i];

 i++;

}

return total;

Fig. 11. range-solver adds a distributor with a call to the SMCO con-
troller. The distributed passes control to either the original, uninstrumented
function body shown on the left, or the instrumented copy shown on the right.

The Range Checker module (shown in Figure 10) consumes
these updates and computes ranges for all tracked variables.
Range updates are enabled or disabled on a per-function ba-
sis. In Figure 10, monitoring is enabled for functionsf andg;
this is reflected by the instrumented versions of their function
bodies, labeledf ′ andg′, appearing in the foreground.

To allow efficient enabling and disabling of monitoring,
the plug-in creates a copy of the body of every function to
be instrumented, and adds instrumentation only to the copy.
A distributor block at the beginning of the function calls the
SMCO controller to determine whether monitoring for the
function is currently enabled. If so, the distributor jumpsto
the instrumented version of the function body; otherwise, con-
trol passes to the original, unmodified version. Figure 11 shows
a function modified by therange-solver plug-in to have a
distributor block and a duplicate instrumented function body.
Functions without integer updates are not duplicated and al-
ways run with monitoring off.

Because monitoring is enabled or disabled at the function
level, the instrumentation notifies the controller of function-
call events. As shown in Figure 10, the controller responds by
activating or deactivating monitoring for instrumented func-
tions. With the global controller, there is a single “on-off”
switch that affects all functions: when monitoring is off, the
uninstrumented versions of all function bodies are executed.
The cascade controller maintains a secondary controller for
each instrumented function and can switch monitoring on and
off for individual functions.

Timekeeping.As our controller logic relies on measurements
of monitoring time,range-solver queries the system time
whenever it makes a control decision. TheRDTSC instruc-
tion is the fastest and most precise timekeeping mechanism
on the x86 platform. It returns the CPU’s timestamp counter
(TSC), which stores a processor cycle timestamp (with sub-
nanosecond resolution), without an expensive system call.

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 9

time

access

nap threshold

nap nap

a b c d e

Fig. 12. Accesses to an allocation, and the resulting NAPs. NAPs can vary
in length, and multiple NAPs can be reported for the same allocation.

Instrumented Program

f hg i

MMU / Allocator

Memory m n o p

NAP detector

m

n

p

o
Splay

tree

faults, allocs, frees

Controller

faultsactivations

Fig. 13. SMCO architecture for NAP detector.

However, we found that evenRDTSC can be too slow for
our purposes. On our testbed, we measured theRDTSC in-
struction to take 45 cycles on average, more than twenty times
longer than an arithmetic instruction. With time measurements
necessary on every function call for ourrange-solver, this
was too expensive. Our firstrange-solver implementation
calledRDTSC inline for every time measurement, resulting in
a 23% overhead even with all monitoring turned off.

To reduce the high cost of timekeeping, we modified the
range-solver to spawn a separate “clock thread” to handle
its timekeeping. The clock thread periodically callsRDTSC
and stores the result in a memory location thatrange-solver

uses as its clock.range-solver can read this clock with
a simple memory access. This is not as precise as calling
RDTSC directly, but it is much more efficient.

3.2 Memory Under-Utilization

Our memory under-utilization detector is designed to iden-
tify allocated memory areas (“allocations” for short) thatare
not accessed during time periods whose duration equals or
exceeds a user-specified threshold. We refer to such a time
period as aNon-Accessed Period, or NAP, and to the user-
specified threshold as theNAP threshold. Figure 12 depicts
accesses to an allocation and the resulting NAPs. For ex-
ample, the time from accessb to accessc exceeds the NAP
threshold, so it is a NAP. Note that we are not detecting al-
locations that are never touched (i.e., leaks), but rather allo-
cations that are not touched for a sufficiently long period of
time to raise concerns about memory-usage efficiency.

Sampling by enabling and disabling monitoring at the
function level would be ineffective for finding NAPs. An al-
located region could appear to be in a NAP if some functions
that access it are not monitored, resulting in false positives.
Ideally, we want to enable and disable monitoringper allo-
cation, so we never unintentionally miss accesses to moni-
tored allocations. To achieve per-allocation control overmon-
itoring, we introduce a novel memory-access interposition
mechanism that takes advantage of memory-protection hard-

ware. Figure 13 shows the architecture of our NAP Detector.
To enable monitoring for an allocation, the controller calls
mprotect to turn on read and write protections for the mem-
ory page containing the allocation.

In Figure 13, memory regionsm ando are protected: any
access to them will cause a page fault. The NAP detector in-
tercepts the page fault first to record the access; information
about each allocation is stored in a splay tree. Then, the con-
troller interprets the fault as an event and turns monitoring
off for the faulting allocation by removing its read and write
access protections. Because the NAP detector restores read
and write access after a fault, the faulting instruction canex-
ecute normally once the page fault handler returns. It is not
necessary to emulate the effects of a faulting instruction.

Within the cascade controller, each allocation has a sec-
ondary controller that computes a delayd, after which time
monitoring should be re-enabled for the allocation. After pro-
cessing an event, the controller checks for allocations that are
due for re-enabling. If no events occur for a period of time,
a background thread performs this check instead. The back-
ground thread is also responsible for periodically checking
for memory regions that have been protected for longer than
the NAP threshold and reporting them as NAPs.

We did not integrate the NAP detector with the global
controller because its means of overhead control does not
allow for this kind of per-allocation control. When a moni-
tored evente occurs and the accumulated overhead exceeds
ot, a global controller should establish a period ofglobal
zero overhead by disabling all monitoring. Globally disabling
monitoring has the same problem as disabling monitoring at
the function level: allocations that are unlucky enough to be
accessed only during these zero-overhead periods will be er-
roneously classified as NAPs.

We also implemented a shared library that replaces the
standard memory-management functions, includingmalloc

andfree, with versions that store information about the cre-
ation and deletion of allocations in splay trees.

To control access protections for individual allocations,
each such allocation must reside on a separate hardware page,
becausemprotect has page-level granularity. To reduce the
memory overhead, the user can set a size cutoff: allocations
smaller than the cutoff pass through to the standard memory
allocation functions, and are never monitored (under-utilized
small allocations are of less interest than under-utilizedlarge
allocations anyway). In our experiments, we chose double the
page size (equal to 8KB on our test machine) as the cutoff,
limiting the maximum memory overhead to 50%. Though
this cutoff would be high for many applications, in our ex-
periments, 75% of all allocations were monitored.

3.3 Implementation Effort

To implement and test therange-solver tool described in
Section 3.1, we developed two libraries, totaling 821 linesof
code, that manage the logic for the cascade and global con-
trollers and perform the integer range analysis. We also de-

10 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

veloped a 1,708-line GCC plug-in that transforms functions
to report integer updates to our integer range-analysis library.

The NAP Detector described in Section 3.2 consists of a
2,235-line library that wraps the standard memory-allocation
functions, implements the cascade controller logic, and trans-
parently handles page faults in the instrumented program.

4 Evaluation

This section describes a series of benchmarks that together
show that SMCO fulfills its goals: it closely adheres to the
specified target overhead, allowing the user to specify a pre-
cise trade-off between overhead and monitoring effectiveness.
In addition, our cascade controller apportions the target over-
head to all sources of events, ensuring that each source gets
its fair share of monitoring time.

Our results highlight the difficulty inherent in achieving
these goals. The test workloads vary in behavior consider-
ably over the course of an execution, making it impractical
to predict sources of overhead. Even under these conditions,
SMCO is able to control observed overhead fairly well.

To evaluate SMCO’s versatility, we tested it on two work-
loads, one CPU-intensive and one I/O-intensive, and with our
two different runtime monitors. Section 4.1 discusses our ex-
perimental testbed. Section 4.2 describes the workloads and
profiles them in order to examine the challenges involved in
controlling monitoring overhead. In Section 4.3, we bench-
mark SMCO’s ability to control the overhead of our integer
range analysis monitor using both of our control strategies.
Section 4.4 benchmarks SMCO overhead control with our
NAP detector. Section 4.5 explains how we optimized certain
controller parameters.

4.1 Testbed

Since controlling overhead is most important for long-running
server applications, we chose a server-class machine for our
testbed. Our benchmarks ran on a Dell PowerEdge 1950 with
two quad-core 2.5GHz Intel Xeon processors, each with a
12MB L2 cache, and 32GB of memory. It was equipped with
a pair of Seagate Savvio 15K RPM SAS 73GB disks in a mir-
rored RAID. We configured the server with 64-bit CentOS
Linux 5.3, using a CentOS-patched 2.6.18 Linux kernel.

For our observed overhead benchmark figures, we aver-
aged the results of ten runs and computed 95% confidence
intervals using Student’st-distribution. Error bars represent
the width of a measurement’s confidence interval.

We used the/proc/sys/vm/drop caches facility pro-
vided by the Linux kernel to drop page, inode, and dentry
caches before each run of our I/O-intensive workload to en-
sure cold caches and to prevent consecutive runs from influ-
encing each other.

4.2 Workloads

We tested our SMCO approach on two applications: the CPU-
intensivebzip2 and an I/O-intensivegrep workload. The
bzip2 benchmark is a data compression workload from the
SPEC CPU2006 benchmark suite, which is designed to max-
imize CPU utilization [11]. This benchmark uses thebzip2

utility to compress and then decompress a 53MB file consist-
ing of text, JPEG image data, and random data.

Our range-solver monitor, described in Section 3.1,
found 80 functions inbzip2, of which 61 contained integer
assignments, and 445 integer variables, 242 of which were
modified during execution. Integer-update events were spread
very unevenly among these variables. The least-updated vari-
ables were assigned only one or two times during a run, while
the most-updated variable was assigned 2.5 billion times.

Figure 14 shows the frequency of accesses to two differ-
ent variables, the most updated variable and the99th most
updated variable, over time. The data was obtained by instru-
mentingbzip2 to monitor a single specified variable with
unbounded overhead. The monitoring runs for these two vari-
ables took 76.4 seconds and 55.6 seconds, respectively. The
two histograms show different extremes: the most updated
variable is constantly active, while accesses to the99th most
updated variable are concentrated in short periods of high ac-
tivity. Both variables, however, experience heavy bursts of ac-
tivity that make it difficult to predict monitoring overhead.

Our I/O-intensive workload uses GNUgrep 2.5, the pop-
ular Linux regular expression search utility. In our bench-
marks,grep searches the entire GCC 4.5 source tree (about
543MB in size) for an uncommon pattern. When we tested
the workload with the Unixtime utility, it reported that these
runs typically used only 10–20% CPU time. Most of each run
was spent waiting for read requests, making this an I/O-heavy
workload. Because thegrep workload repeats the same short
tasks, we found that its variable accesses were distributed
more uniformly than inbzip2. Ourrange-solver reported
489 variables, with 128 actually updated in each run, and 149
functions, 87 of which contained integer assignments. The
most updated variable was assigned 370 million times.

4.3 Range Solver

We benchmarked therange-solver monitor discussed in
Section 3.1 on both workloads using both of the controllers in
Section 2. Sections 4.3.1 and 4.3.2 present our results for the
global controller and cascade controller, respectively. Sec-
tion 4.3.3 compares the results from the two controllers. Sec-
tion 4.3.4 discussesrange-solver’s memory overhead.

4.3.1 Global Controller

Figure 15 shows how the global controller performs on our
workloads for a range of target overheads (on thex-axis),
with the observed overhead on they-axis and the total number
of events monitored on they2-axis for each target-overhead

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 11

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

of

 e
ve

nt
s

(m
ill

io
ns

)

time (seconds)

(a) Most updated variable

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

of

 e
ve

nt
s

(m
ill

io
ns

)

time (seconds)

(b) 99
th most updated variable

Fig. 14. Event distribution histogram for the most updated variable(a) and99th most updated variable (b) inbzip2. Execution time (x-axis) is split into 0.4
second buckets. They-axis shows the number of events in each time bucket.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 5

 10

 15

 20

 25

 30

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)
Target Overhead (%)

overhead
events

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(b) grep

Fig. 15. Global controller with range-solverobserved overhead (y-axis) for a range of target overhead settings (x-axis) and two workloads.

12 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 5

 10

 15

 20

 25

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(b) grep

Fig. 16. Cascade controller with range-solverobserved overhead (y-axis) for a range of target overhead settings (x-axis) and two workloads.

setting. With target overhead set to 0%, both workloads ran
with an actual overhead of 4%, which is the controller’sbase
overhead. The base overhead is due to the controller logic
and the added complexity from unused instrumentation.

The dotted line in each plot shows the ideal result: ob-
served overhead equals target overhead up to an ideal max-
imum. We computed the ideal maximum to be the observed
overhead from monitoring all events in the program with all
control turned off. Any observed overhead above the ideal
maximum is the result of overhead incurred by the controller.

At target overheads of 10% and higher, Figure 15(a) shows
that the global controller tracked the specified target overhead
all the way up to 140% in thebzip2 workload. Thegrep
workload (Figure 15(b)) showed a general upward trend for

increasing target overheads, but never exceeded 9% observed
overhead. In fact, at 9% overhead,range-solver is already
at nearly full coverage, with 99.7% percent of all program
events being monitored. Thegrep workload’s low CPU us-
age imposes a hard limit onrange-solver’s ability to use
overhead. The controller has no way to exceed this limit.
Confidence intervals for thegrep workload were generally
wider than forbzip2, because I/O operations are noisier than
CPU operations, making run times less consistent.

4.3.2 Cascade Controller

Figure 16 shows results from experiments that are the same
as those for Figure 15 except using the cascade controller in-

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 13

stead of the global controller. The results were similar. Onthe
bzip2 workload, the controller tracked the target overhead
well from 10% to 100%. With targets higher than 100%, the
observed overhead continued to increase, but the controller
was not able to adjust overhead high enough to reach the tar-
get because observed overhead was already so close to the
120% maximum. On thegrep workload, we saw the same
upward trend and eventual saturation with 9% observed over-
head monitoring 99.5% of events.

4.3.3 Controller Comparison

The global and cascade controllers differ in the distribution
of overhead across different event sources. To compare them,
we developed an accuracy metric for the results of a bounded-
overhead range-solver run. We measured the accuracy of a
bounded-overhead run of the range-solver against a reference
run with full coverage of all variables (allowing unbounded
overhead). The reference run determined the actual range for
every variable.

In a bounded-overhead run, the accuracy of a range com-
puted for a single variable is the ratio of the computed range
size to the range’s actual size (which is known from the ref-
erence run). Missed updates in a bounded-overhead run can
causerange-solver to report smaller ranges, so this ratio
is always in the interval[0, 1]. For a set of variables, the ac-
curacy is the average accuracy for all variables in the set.

Figure 17 shows a breakdown ofrange-solver’s ac-
curacy by how frequently variables are updated. We group-
ed variables into sets with geometrically increasing bounds:
the first set containing variables with 1–10 updates, the sec-
ond group containing variables with 10–100 updates, etc. Fig-
ure 17(a) shows the accuracy for each of these sets, and Fig-
ure 17(b) shows the cumulative accuracy, with each set con-
taining the variables from the previous set.

We used 10% target overhead for these examples, because
we believe that low target overheads represent the most likely
use cases. However, we found similar results for all other tar-
get overhead values that we tested.

The cascade controller’s notion of fairness results in bet-
ter coverage, and thus better accuracy, for rarely updated vari-
ables. In this example, the cascade controller had better accu-
racy than the global controller for variables with fewer than
100 updates. As the global controller does not seek to fairly
distribute overhead to these variables, it monitored a smaller
percentage of their updates. Most dramatically, Figure 17(a)
shows that the global controller had 0 accuracy for all vari-
ables in the 10–100 updates range, meaning it did not monitor
more than one event for any variable in that set. The 3 vari-
ables in the workload with 10–100 updates were used while
there was heavy activity, causing their updates to get lost in
the periods when the global controller had to disable moni-
toring to reduce overhead.

However, with the same overhead, the global controller
was able to monitor many more events than the cascade con-
troller, because it did not spend time executing the cascade
controller’s more expensive secondary controller logic. These

Table 1. range-solver memory usage, including executable size, vir-
tual memory usage (VSZ), and physical memory usage (RSS).

Exe Size VSZ RSS
bzip2 (unmodified) 68.6KB 213KB 207KB
bzip2 (global) 262KB 227KB 203KB
bzip2 (cascade) 262KB 225KB 201KB
grep (unmodified) 89.2KB 61.4MB 1260KB
grep (global) 314KB 77.1MB 1460KB
grep (cascade) 314KB 78.2MB 1470KB

extra events gave the global controller much better coverage
for frequently updated variables. Specifically, it had better ac-
curacy for variables with more than106 updates.

Between these two extremes, i.e., for variables with100–
106 updates, both approaches had similar accuracy. The cu-
mulative accuracy in Figure 17(b) shows that overall, consid-
ering all variables in the program, the two controllers achieved
similar accuracy. The difference is primarily in where the ac-
curacy was distributed.

4.3.4 Memory Overhead

Althoughrange-solver does not use SMCO to control its
memory overhead, we measured memory use of our con-
trollers for both workloads. Table 1 shows our memory over-
head results. HereExe Sizeis the size of the compiled binary
after stripping debugging symbols (as is common in produc-
tion environments). This size includes the cost of the SMCO
library, which contains the compiled controller and monitor
code.VSZis the total amount of memory mapped by the pro-
cess, andRSS(Resident Set Size) is the total amount of that
virtual memory stored in RAM. We obtained the peak VSZ
and RSS for each run using the Unixps utility.

Both binaries increased in size by 3–4 times. Most of this
increase is the result of function duplication, which at least
doubles the size of each instrumented function. Duplicated
functions also contain a distributor block and instrumentation
code. The 17KB SMCO library adds a negligible amount to
the instrumented binary’s size. As few binaries are more than
several megabytes in size, we believe that even a 4x increase
in executable size is acceptable for most environments; this
is more true these days, with increasing amounts of RAM in
popular 64-bit systems.

The worst-case increase in virtual memory use was only
27.4%, for thegrep workload with the cascade controller.
The additional virtual memory is allocated statically to store
integer variable ranges and per-function overhead measure-
ments (when the cascade controller is used). This extra mem-
ory scales linearly with the number of integer variables and
functions in the monitored program, not with runtime mem-
ory usage. Thebzip2workload uses more memory thangrep,
so we measured in this case a much lower 6.6% virtual mem-
ory overhead.

14 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

Global - 100Hz
Cascaded - KI=0.1

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

Global - 100Hz
Cascaded - KI=0.1

(b) Cumulative

Fig. 17. Comparison of range-solver accuracyfor both controllers withbzip2 workload. Variables are grouped by total number of updates.

4.4 NAP Detector

Figure 18 shows the results of our NAP detector, described in
Section 3.2, onbzip2 using the cascade controller. The NAP
detector’s instrumentation incurs no overhead while ignoring
events, so it has a very low base overhead: only 1.1%. The
NAP detector also tracks the user-specified target overhead
well from 10–140%. The results also show that the NAP de-
tector takes advantage of extra overhead that the user allows
it. As target overhead increased, the number of monitored
events scaled smoothly from only 300,000 to over 4 million.

Because the global controller is not designed to use per-
allocation sampling (as explained in Section 3.2), we used
only cascade control for our NAP detector experiments.

Table 2. NAP detector memory usage, including executable size, virtual
memory usage (VSZ), and physical memory usage (RSS).

Exe Size VSZ RSS
bzip2 (unmodified) 68.6KB 213KB 207KB
bzip2 (cascade) 89.4KB 225KB 209KB

Table 2 shows memory overhead for the NAP detector.
Exe Size, VSZ, andRSZare the same as in Section 4.3.4. Al-
though it is possible for the NAP detector to increase memory
usage by as much as 50% (see Section 3.2), thebzip2 bench-
mark experienced only a 5.3% increase in virtual memory
usage (VSZ). All of the allocations monitored in the bench-

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 15

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

O
bs

er
ve

d
ov

er
he

ad
 (

%
)

E
ve

nt
s

(m
ill

io
ns

)

Target overhead (%)

Observed overhead
Ideal

Access events

Fig. 18. Cascade controller with NAP detectorobserved overhead (y-axis) and number of monitored memory access events (y2-axis) for a range of target
overhead settings (x-axis) running on thebzip2 workload.

mark were 10–800 times larger than the page size, so forcing
these allocations to be in separate pages resulted in very little
wasted space. The 20.8KB increase in Exe size is from the
statically linked SMCO library.

4.5 Controller Optimization

This section describes how we chose values for several of our
control parameters in order to get the best performance from
our controllers. Section 4.5.1 discusses our choice of clock
precision for time measurements. Section 4.5.2 explains how
we chose the integrative gain and adjustment interval for the
primary controller. Section 4.5.3 discusses optimizing the ad-
justment interval for an alternate primary controller.

4.5.1 Clock Frequency

The control logic for ourrange-solver implementation uses
a clock thread, as described in Section 3.1, which trades off
precision for efficiency. This thread can keep more precise
time by updating its clock more frequently, but more frequent
updates result in higher timekeeping overhead. Recall thatthe
RDTSC instruction is relatively expensive, taking 45 cycles on
our testbed.

We performed experiments to determine how much preci-
sion was necessary to control overhead accurately. Figure 19
shows therange-solver benchmark in Figure 15 repeated
for four different clock frequencies. Theclock frequencyis
how often the clock thread wakes up to read the TSC.

At only 10Hz, the controller’s time measurements were
not accurate enough to keep the overhead below the target.
With infrequent updates, most monitoring operations occurred
without an intervening clock tick and therefore appeared to
take 0 seconds. The controller ended up with an under-estimate
of the actual monitoring overhead and thus overshot its goal.

At 100Hz, however, controller performance was good and
the clock thread’s impact on the system was still negligible,
incurring the 45-cycleRDTSC cost only one hundred times for
every 2.5 billion processor cycles on our test system. More
frequent updates did not perform any better and wasted re-
sources, so we chose 100Hz for our clock update frequency.

In choosing the clock frequency, we wanted to ensure that
we also preserved SMCO’s effectiveness. Figure 20 shows
the accuracy of therange-solver at 10% target overhead
using the four clock frequencies we tested. We used the same
accuracy metric as in Section 4.3.3 and plotted the results
as in Figure 17. Therange-solver accuracy is similar for
100Hz, 1000Hz, and 2500Hz clocks. These three values re-
sulted in similar observed overheads in Figure 19. It therefore
makes sense that they achieve similar accuracy, since SMCO
is designed to support trade-offs between effectiveness and
overhead. The 10Hz run has the best accuracy, but this result
is misleading because it attains that accuracy at the cost of
higher overhead than the user-requested 10%. Testing these
clock frequencies at higher target overheads showed similar
behavior. Note that the 100Hz curves in Figure 20 are the
same as the global controller curves from the controller com-
parison in Figure 17.

4.5.2 Integrative Gain

The primary controller component of the cascade controller
discussed in Section 2 has two parameters: the integrative
gainKI and the adjustment intervalT . The integrative gain
is a weight factor that determines how much the cumulative
errorec (the deviation of the observed monitoring percentage
from the target monitoring percentage) changes the local tar-
get monitoring percentagemlt (the maximum percent of ex-
ecution time that each monitored plant is allowed to use for

16 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

10 Hz
100 Hz

1000 Hz
2500 Hz

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

10 Hz
100 Hz

1000 Hz
2500 Hz

ideal

(b) grep

Fig. 19. Observed overhead for global controller clock frequencieswith 4 different clock frequencies and 2 workloads usingrange-solver instrumentation.

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 17

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

10Hz
100Hz

1000Hz
2500Hz

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

10Hz
100Hz

1000Hz
2500Hz

(b) Cumulative

Fig. 20. Accuracy of global controller clock frequencieswith 4 different clock frequencies usingrange-solver instrumentation. Variables are grouped
by total number of updates.

monitoring). WhenKI is high, the primary controller makes
larger changes tomlt to correct for observed deviations.

The adjustment interval is the period of time between pri-
mary controller updates. With a lowT value, the controller
adjustsmlt more frequently.

There are processes for choosing good control parame-
ters for most applications of control theory, but our systemis

tolerant enough that good values forKI andT can be deter-
mined experimentally.

We tuned the controller by runningrange-solver on
an extendedbzip2 workload with a range of values forKI

andT and then recording how the primary controller’s out-
put variable,mlt, stabilized over time. Figure 21 shows our
results for fourKI values and threeT values with target over-

18 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(a) T = 0.4s

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(b) T = 2s

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(c) T = 10s

Fig. 21. Local target monitoring percentage (mlt) over timeduringbzip2workload forrange-solverwith cascade control. Results shown with target
overhead set to 20% for 4 different values ofKI and 3 values ofT .

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 19

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

ideal

Fig. 22. Observed overhead for primary controllerKI valuesusingrange-solver with T = 400ms and four differentKI values.

head set to 20% for all runs. These results revealed trends in
the effects of adjusting the controller parameters.

In general, we found that higher values ofKI increased
controller responsiveness, allowingmlt to more quickly com-
pensate for under-utilization of monitoring time, but at a cost
of driving higher-amplitude oscillations inmlt. This effect is
most evident withT = 0.4s (see Figure 21(a)). All the values
we tested fromKI = 0.1 to KI = 2.0 successfully met our
overhead goals, but values greater than 0.1 oscillated wildly
enough that the controller had to sometimes turn monitoring
off completely (by settingmlt to almost 0) to compensate
for previous spikes inmlt. With KI = 0.1 however,mlt os-
cillated stably for the duration of the run after a 50-second
warm-up period.

When we changedT to 2s (see Figure 21(b)), we ob-
served that 0.1 was no longer the optimal value forKI . But
with KI = 0.5, we were able to obtain performance as good
as the optimal performance withT = 0.4s: the controller met
its target overhead goal and had the same 50-second warmup
time. We do see the consequences of choosing too small a
KI , however: withKI = 0.1, the controller was not able
to finish warming up before the benchmark finished, and the
system failed to achieve its monitoring goal.

The same problem occured whenT = 10s (see Figure 21(c)):
the controller updated so infrequently that it only completed
its warm-up for the highestKI value we tried. Even with the
highestKI , the controller still undershot its monitoring per-
centage goal.

Because of its stability, we choseKI = 0.1 (with T =
0.4s) for all of our cascade controlledrange-solver ex-
periments with low target overhead. Figure 22 shows how
the controller tracked target overhead for all theKI values
we tried. AlthoughKI = 0.1 worked well for low over-
heads, we again observed warmup periods that were too long
when target overhead was very high. The warmup period took

longer with very high overhead because of the larger gap be-
tween target overhead and the initial observed overhead. To
deal with this discrepancy, we actually use twoKI values,
KI = 0.1 for normal cases, and a special high-overheadKH

I

for cases with target overhead greater than 70%. We chose
KH

I = 0.5 using the same experimental procedure we used
for KI .

4.5.3 Adjustment Interval

Before settling on the integrative control approach that weuse
for our primary controller, we attempted an ad hoc control
approach that yielded good results for therange-solver,
but was not stable enough to control the NAP Detector. We
also found the ad hoc primary controller to be more difficult
to adjust than the integrative controller. Though we no longer
use the ad hoc approach, the discussion of how we tuned it
illustrates some of the properties of our system.

Rather than computing error as a difference, the ad hoc
controller computes erroref fractionally as the Global Tar-
get Monitoring Percentage (GTMP, as in Section 2.3.2) di-
vided by the observed global monitoring percentage for the
entire program run so far. The value ofef is greater than one
when the program is under-utilizing its monitoring time and
less than one when the program is using too much monitor-
ing time. After computing the fractional error, the controller
computes a new value formlt by multiplying it byef .

The ad hoc primary controller has only one parameter to
adjust. Like the integrative controller, it has an intervaltime
T between updates tomlt.

Figure 23 shows therange-solver benchmark in Fig-
ure 16 repeated for four values ofT . For thebzip2 workload
(Figure 23(a)), the best results were obtained with aT inter-
val of 10 seconds. SmallerT values led to an unstable pri-
mary controller: the observed overhead varied from the target

20 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

400 msec
2 sec

10 sec
20 sec

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

400 msec
2 sec

10 sec
20 sec

ideal

(b) grep

Fig. 23. Observed overhead for an ad hoc cascade controller’sT valueswith 4 different values ofT and 2range-solverworkloads.

and results became more random, as shown by the wider con-
fidence intervals for these measurements.

This result contradicts the intuition that a smallerT should
stabilize the primary controller by allowing it to react faster.
In fact, the largerT gives the controller more time to correctly
observe the trend in utilization among monitoring sources.
For example, with a shortT , the first adjustment interval of
bzip2’s execution used only a small fraction of all the vari-
ables in the program. The controller quickly adjustedmlt

very high to compensate for the monitoring time that the un-
accessed variables were failing to use. In following intervals,
the controller needed to adjustmlt down sharply to offset the
overhead from many monitoring sources becoming active at
once. The controller spent the rest of its run oscillating to

correct its early error, never reaching equilibrium duringthe
entire run.

Figure 24 shows how the observed monitoring percent-
age for each adjustment interval fluctuates during an extended
range-solver run of thebzip2 workload as a result of the
primary controller’smlt adjustments. WithT = 0.4 seconds,
the observed monitoring percentage spikes early on, so ob-
served overhead is actually very high at the beginning of the
program. Near 140 seconds, the controller overreacts to a
change in program activity, causing another sharp spike in
observed monitoring percentage. As execution continues, the
observed monitoring percentage sawtooths violently, and there
are repeated bursts of time when the observed percentage is

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 21

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

O
bs

. M
on

ito
rin

g
%

 w
ith

in
 In

te
rv

al
s

(%
)

Time (seconds)

400 ms
10s

Fig. 24. Observed monitoring percentage over bzip2range-solver execution.The percent of each adjustment interval spent monitoring for 2 values of
T . The target monitoring percentage is shown as a dotted horizontal line.

much higher than the target percentage (meaning observed
overhead is much higher than the user’s target overhead).

With T = 10 seconds, the observed monitoring percent-
age still fluctuates, but the extremes do not vary as far from
the target. As execution continues, the oscillations dampen,
and the system reaches stability.

In our bzip2 workload, the first few primary controller
intervals were the most critical: bad values at the beginning of
execution were difficult to correct later on. The more reason-
able 10 secondT made its first adjustment after a larger sam-
ple of program activity, so it did not overcompensate. Over-
all, we expect that a primary controller with a longerT is less
likely to be misled by short bursts or lulls in activity.

There is a practical limit to the length ofT , however. In
Figure 23(a), a controller withT = 20 seconds overshot its
target overhead. Because the benchmark runs for only about
one minute, the slower primary controller was not able to ad-
justmlt often enough to converge on a stable value before the
benchmark ended.

As in Section 4.5.1 we also tested how the choice ofT af-
fects therange-solver’s accuracy, using the same accuracy
metric as in Section 4.3.3. Figure 25 shows the accuracy for
thebzip2 workload using four different values forT with a
10% target overhead. The accuracy results confirm our choice
of 10 seconds. Only the 20 second value forT yields better
accuracy, but it does so because it consumes more overhead
than the primary controller withT = 10 seconds. Tests with
higher target overheads gave similar results.

Evaluation SummaryOur results show that in all the cases
we tested, SMCO was able to track the user-specified target
overhead for a wide range of target overhead values. Even
when there were too few events during an execution to meet
the target overhead goal, as was the case for thegrep work-

load with target overheads greater than 10%, SMCO’s con-
troller was able to achieve the maximum possible observed
overhead by monitoring nearly all events. We also showed
that the overhead trade-off is a useful one: higher overheads
allowed for more effective monitoring. These results are for
challenging workloads with unpredictable bursts in activity.

Although our results relied on choices for several param-
eters, we found that it was practical to find good values for
all of these parameters empirically. As future work, we plan
to explore procedures for automating the selection of optimal
controller parameters, which can vary with different typesof
monitoring.

5 Related Work

Chilimbi and Hauswirth [10] propose an overhead-control
mechanism for memory under-utilization detection that ap-
proximates memory-access sampling by monitoring a pro-
gram’s basic blocks for memory accesses. Low overhead is
achieved by reducing the sampling rate of blocks that gener-
ate a high rate of memory accesses. The aim of their sampling
policy is, however, to reduce overhead over time; once moni-
toring is reduced for a particular piece of code, it is never in-
creased again, regardless of that code’s future memory-access
behavior. As a NAP (Non-Accessed Period) is most com-
monly associated with a memory allocation and not a ba-
sic block, there is no clear association between the sampling
rate for blocks and confidence that some memory region is
under-utilized. In contrast, SMCO’s NAP detector uses vir-
tual-memory hardware to directly monitor areas of allocated
memory, and overhead control is realized by enabling and
disabling the monitoring of memory areas appropriately.

22 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

400 msec
2 sec

10 sec
20 sec

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

400 msec
2 sec

10 sec
20 sec

(b) Cumulative

Fig. 25. Accuracy of cascade controllerT valueswith 4 values ofT on thebzip2workload usingrange-solver instrumentation. Variables are grouped
by total number of updates.

Artemis [8] reduces CPU overhead due to runtime mon-
itoring by enabling monitoring for only certain function ex-
ecutions. By default, Artemis monitors a function execution
only if the function is called in acontextthat it has not seen
before. In theory, a function’s context consists of the values
of all memory locations it accesses. Storing and comparing
such contexts would be too expensive, so Artemis actually
uses weaker definitions of “context” and “context matching,”
which may cause it to miss some interesting behaviors [8].
Artemis’ context-awareness is orthogonal to SMCO’s feed-
back control approach. SMCO could be augmented to prefer
new contexts, as Artemis does, in order to monitor more con-
texts within an overhead bound. The main difference between

Artemis and SMCO is in the goals they set for overhead man-
agement. Artemis uses context awareness to reduce—but not
bound—the overhead. The overhead from monitoring a func-
tion in every context varies during program execution and can
be arbitrarily high, especially early in the execution, when
most contexts have not yet been seen. The user does not know
in advance whether the overhead will be acceptable. In con-
trast, SMCO is designed to always keep overhead within a
user-specified bound. As a result of this different goal, SMCO
uses very different techniques than Artemis. In summary, over-
head reduction techniques like those in Artemis are useful
but, unlike SMCO, they do not directly address the problem
of unpredictable and unacceptably high overheads.

Xiaowan Huang et al.: Software Monitoring with Controllable Overhead 23

Liblit et al.’s statistical debugging technique [13] seeks
to reduce per-process monitoring overhead by partitioning
a monitoring task across many processes running the same
program. This approach is attractive when applicable but has
several limitations: it is less effective when an application is
being tested and debugged by a small number of developers;
privacy concerns may preclude sharing of monitoring results
from deployed applications; and for some monitoring tasks,it
may be difficult to partition the task evenly or correlate moni-
toring data from different processes. Furthermore, in contrast
to SMCO, statistical debugging does not provide the ability
to control overhead based on a user-specified target level.

We first introduced the concept of a user-specified target
overhead, along with the idea of using feedback control to
enforce that target, in an NSF-sponsored workshop [4]. The
controller we implemented in that workshop is the basis for
our cascade controller.

The Quality Virtual Machine (QVM) [3] also supports
runtime monitoring with a user-specified target overhead. It’s
overhead-management technique is similar to our cascade con-
troller in that it splits control into global and local overhead
targets and prioritizes infrequently executed probes to increase
coverage. The QVM overhead manager assigns asampling
frequencyto each overhead source, and it adjusts the sam-
pling frequency to control overhead. Unlike SMCO, which
uses an integral controller to adjust local target monitoring
percentages, these adjustments are made by anad hoccon-
troller that lacks theoretical foundations. The section onthe
overhead manager in QVM does not describe (or justify) the
computations used to adjust sampling frequency.

In its benchmarks, QVM did not track overhead goals as
accurately as SMCO. For example, configured for 20% tar-
get overhead, two of QVM’s benchmarks,eclipse andfop,
showed an actual overhead of about 26% [3]. Though we can-
not test Java programs, ourbzip workload is a comparable
CPU-bound benchmark. SMCO’s worst case forbzip was a
22.7% overhead with NAP Detector instrumentation, shown
in Figure 18. This suggests that controllers, like SMCO’s, that
are based on established control theory principle can provide
more accurate control. This is not surprising, since meeting
an overhead goal is inherently a feedback control problem.

SMCO achieves accurate overhead control even when mon-
itored events happen very frequently. Ourrange-solver at-
tempts to track every integer assignment in a program, han-
dling many more events than QVM’s monitors, which track
calls to specified methods. We measured the rate of total events
per second in benchmarks from both systems: the rate of in-
teger assignment events in ourbzip2 workload and the rate
of potentially monitored method calls in the DaCapo bench-
marks that QVM uses. Thebzip2 event rate was more than
fifty times the DaCapo rate. Our technique of toggling moni-
toring at the function level, using function duplication, makes
it possible to cope with high event rates, by reducing the
number of controller decisions. Even with this technique, we
found that direct calls toRDTSC by the controller—an ap-
proach that is practical for the low event rates in QVM’s
benchmarks—are too expensive at high event rates like those

in range-solver. We overcame this problem by introduc-
ing a separate clock thread, as described in Section 3.1.

QVM and SMCO make sampling decisions at different
granularities, reflecting their orientation towards monitoring
different kinds of properties. QVM makes monitoring deci-
sions at the granularity of objects. In theory, for each object,
QVM monitors all relevant operations (method invocations)
or none of them. In practice, this is problematic, because the
target overhead may be exceeded if QVM decides to track
an object that turns out to have a high event rate. QVM deals
with this by usingemergency shutdownto abort monitoring of
such objects. In contrast, SMCO is designed for monitors that
do not need to observe every operation on an object to pro-
duce useful results. For example, even if monitoring is tem-
porarily disabled for a memory allocation, our NAP detector
can resume monitoring the allocation and identify subsequent
NAPs.

QVM and SMCO are designed for very different execu-
tion environments. QVM operates in a modified Java Vir-
tual Machine (JVM). This makes implementation of efficient
monitoring considerably easier, because the JVM sits conve-
niently between the Java program and the hardware. SMCO,
on the other hand, monitors C programs, for which there is no
easy intermediate layer in which to implement interception
and monitoring. Monitoring of C programs is complicated by
the fact that C is weakly typed, pointers and data can be ma-
nipulated interchangeably, and all memory accesses are ef-
fectively global: any piece of code in C can potentially access
any memory address via any pointer. Low-level instrumenta-
tion techniques allow SMCO to control overhead in spite of
these complications: function duplication reduces overhead
from instrumentation that is toggled off, and our novel use of
memory management hardware allows efficient tracking of
accesses to heap objects.

6 Conclusions and Future Work

We have presented Software Monitoring with Controllable
Overhead (SMCO), an approach to overhead control for the
runtime monitoring of software. SMCO is optimal in the sense
that it monitors as many events as possible without exceed-
ing the target overhead level. This is distinct from other ap-
proaches to software monitoring that promise low or adaptive
overhead, but where overhead, in fact, varies per application
and under changing usage conditions. The key to SMCO’s
performance is the use of underlying control strategies fora
nonlinear control problem represented in terms of the com-
position of timed automata.

Using SMCO as a foundation, we developed two sophisti-
cated monitoring tools: an integer range analyzer, which uses
code-oriented instrumentation, and a NAP detector, which
uses memory-oriented instrumentation. Both the per-function
checks in the integer range analyzer and the per-memory-area
checks in the NAP detector are activated and deactivated by
the same generic controller, which achieves a user-specified
target overhead with either of these systems running.

24 Xiaowan Huang et al.: Software Monitoring with Controllable Overhead

Our extensive benchmarking results demonstrate that it is
possible to perform runtime monitoring of large software sys-
tems with fixed target overhead guarantees. As such, SMCO
is promising both for developers, who desire maximal moni-
toring coverage, and system administrators, who need a way
to effectively manage the impact of runtime monitoring on
system performance. Moreover, SMCO is fully responsive
to both increases and decreases in system load, even highly
bursty workloads, for both CPU- and I/O-intensive applica-
tions. As such, administrators need not worry about unusual
effects in instrumented software caused by load spikes.

Future work There are many potential uses for SMCO, in-
cluding such varied techniques as lockset profiling and check-
ing, runtime type checking, feedback-directed algorithm se-
lection, and intrusion detection. SMCO could be used to man-
age disk or network time instead of CPU time. For exam-
ple, a background file-system consistency checker could use
SMCO to ensure that it gets only a specific fraction of disk
time, and a background downloader could use SMCO to en-
sure that it consumes only a fixed proportion of network time.

Though our cascade controller adheres to its target over-
head goals very well, it is dependent on somewhat careful
adjustment of theKI control parameter. Changes to the mon-
itor can alter the system enough to require retuningKI . It
would be useful to automate the process for optimizingKI

for low and high overheads so that developing new monitors
does not require tedious experimentation. An automated pro-
cedure could model the response time and level of oscillation
as a function ofKI in order to find a good trade-off.

We also believe that SMCO as a technique can be im-
proved. One improvement would be to handledependencies
between monitored events in cases where correctly monitor-
ing an event requires information from previous events. For
example, if a runtime type checker fails to monitor the event
that initializes an object’s type, it would be useless to moni-
tor type-checking events for that object; the controller should
therefore be able to ignore such events.

7 Acknowledgments

The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions. They would also
like to thank Michael Gorbovitski for insightful discussions
and help with the benchmarking results. Research supported
in part by AFOSR Grant FA9550-09-1-0481, NSF Grants
CNS-0509230, CCF-0926190, and CNS-0831298, and ONR
Grant N00014-07-1-0928.

References

1. A. Aziz, F. Balarin, R. K. Brayton, M. D. Dibenedetto, A.
Sladanha, and A. L. Sangiovanni- Vincentelli. Supervisorycon-
trol of finite state machines. In P. Wolper, editor,7th Inter-
national Conference On Computer Aided Verification, volume
939, pages 279–292, Liege, Belgium, 1995. Springer Verlag.

2. R. Alur and D. L. Dill. A theory of timed automata.Theoretical
Computer Science, 126(2):183–235, 1994.

3. M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient run-
time for detecting defects in deployed systems. InProceed-
ings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Nashville, TN, October 2008. ACM.

4. S. Callanan, D. J. Dean, M. Gorbovitski, R. Grosu, J. Seyster,
S. A. Smolka, S. D. Stoller, and E. Zadok. Software Monitoring
with Bounded Overhead. InProceedings of the 2008 NSF Next
Generation Software Workshop, in conjunction with the 2008
International Parallel and Distributed Processing Symposium
(IPDPS 2008), Miami, FL, April 2008.

5. S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with
modular GIMPLE optimizations. InProceedings of the 2007
GCC Developers’ Summit, Ottawa, Canada, July 2007.

6. B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic in-
strumentation of production systems. InProceedings of the An-
nual USENIX Technical Conference, pages 15–28, 2004.

7. L. Fei and S. P. Midkiff. Artemis: Practical runtime monitoring
of applications for errors. Technical Report TR-ECE-05-02,
Electrical and Computer Engineering, Purdue University, 2005.
docs.lib.purdue.edu/ecetr/4/.

8. L. Fei and S. P. Midkiff. Artemis: Practical runtime monitoring
of applications for execution anomalies. InProceedings of the
2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’06), Ottawa, Canada, June
2006.

9. G.F. Franklin, J.D. Powell, and M. Workman.Digital Control
of Dynamic Systems, Third Edition. Addison Wesley Longman,
Inc., 1998.

10. M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling.Proceedings
of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
2004), pages 156–164, October 2004.

11. J. L. Henning. SPEC CPU2006 benchmark descriptions.Com-
puter Architecture News, 34(4):1—17, September 2006.

12. C. A. R. Hoare. Communicating Sequential Processes.Com-
munications of the ACM, 21:666–677, August 1978.

13. B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isola-
tion via remote program sampling. InProceedings of the 2003
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’03), San Diego, CA, June 2003.

14. R. Moore. A universal dynamic trace for Linux and other op-
erating systems. InProceedings of the 2001 USENIX Annual
Technical Conference, June 2001.

15. P.J. Ramadge and W.M. Wonham. Supervisory control of a
class of discrete event systems.SIAM J. Control and Optimiza-
tion, 25(1):206–230, 1987.

16. P.J. Ramadge and W.M. Wonham. Supervisory control of timed
discrete-event systems.IEEE Transactions on Automatic Con-
trol, 38(2):329–342, 1994.

17. J. Seward, N. Nethercote, and J. Fitzhardinge. Valgrind. http:
//valgrind.kde.org, August 2004.

18. Q.-G. Wang, Z. Ye, W.-J. Cai, and C.-C. Hang.PID Control
For Multivariable Processes. Lecture Notes in Control and In-
formation Sciences, Springer, March 2008.

19. H. Wong-Toi and G. Hoffmann. The control of dense real-time
discrete event systems. InProc. of 30th Conf. Decision and
Control, pages 1527–1528, Brighton, UK, 1991.

