
Secure Deletion Myths, Issues, and Solutions∗

Nikolai Joukov, Harry Papaxenopoulos, and Erez Zadok
Stony Brook University

Computer Science Department
Stony Brook, NY 11794-4400

{kolya,harry,ezk}@cs.sunysb.edu

ABSTRACT
This paper has three goals. (1) We try to debunk several held mis-
conceptions about secure deletion: that encryption is an ideal solu-
tion for everybody, that existing data-overwriting tools work well,
and that securely deleted files must be overwritten many times. (2)
We discuss new and important issues that are often neglected: se-
cure deletion consistency in case of power failures, handling ver-
sioning and journalling file systems, and meta-data overwriting. (3)
We present two solutions for on-demand secure deletion. First,
we have created a highly portable and flexible system that per-
forms only the minimal amount of work in kernel mode. Second,
we present two in-kernel solutions in the form of Ext3 file sys-
tem patches that can perform comprehensive data and meta-data
overwriting. We evaluated our proposed solutions and discuss the
trade-offs involved.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Privacy Pro-
tection; D.4.3 [Software]: Operating Systems—File Systems Man-
agement

General Terms
Security, Design, Management

Keywords
Security, File systems, Unintended data recovery, Secure deletion

1. INTRODUCTION AND PRIOR WORK
For many years, computer systems have continued to mislead

end users into thinking that when they delete a file (or purge the
TrashBin), that those files are permanently deleted. In recent years,
theft and loss of laptops and portable storage media have resulted
in confidential and even top-secret data files reaching the wrong

∗This work was partially made possible by NSF CAREER
EIA-0133589 and CCR-0310493 awards and HP/Intel gifts num-
bers 87128 and 88415.1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-552-5/06/0010 ...$5.00.

hands. In most cases users and even security experts do not know
that their disk drives contain confidential information [5]. The
problem is exacerbated by the fact that even those who know that
deleted files can be recovered may forget that some storage device
had been used to store confidential data in the past. Therefore, un-
intended recovery of data is mostly a psychological problem [21].
Generally, recovery of non-overwritten data is trivial [7].

There are two ways to perform secure deletion: (1) overwrite the
data [9] or destroy the physical media; and (2) encrypt the data or
whole media and use one of the first methods to securely delete
the key [3]. Without the key the data cannot be decrypted. As with
most security solutions [10], secure deletion does not come for free.
Depending on the particular situation, either the first or the second
method might be more preferable.

Secure deletion via encryption usually adds significant overheads
and requires non-trivial efforts for the proper key management.
However, new governmental regulations (e.g., Sarbanes-Oxley [22])
assume data encryption for publicly-traded companies, health and
government organizations. Therefore, for these companies and or-
ganizations, secure deletion via encryption is much cheaper be-
cause the encryption-related overheads are paid in any case. As
a result, recent secure deletion research is mostly aimed at secure
deletion via encryption [18, 19, 28]. Unfortunately, some orga-
nizations, most individuals, and small businesses do not use data
encryption and, therefore, the encryption-based secure deletion is
too costly for them. At the same time, existing data-overwriting
tools have many reliability, performance, and other problems. This
has resulted in the unfortunate situation that today, deleted files’
data remains in the clear, with no secure, efficient, and easy-to-use
solutions available,

In this paper we have concentrated on the data-overwriting se-
cure deletion and have researched two data-overwriting solutions.
(1) We used FoSgen [13] to add interception functionality of data
deletion events to any existing file system’s sources. We perform
data overwriting from user mode. This automates the secure-deletion
functionality inside the OS, but provides only basic secure-deletion
for files’ data. This solution requires minimal OS modifications and
is mostly implemented in user space. (2) We have developed two
secure-deletion extensions for Linux’s Ext3 journalling file system.
Our design uses the journal to record one or more data-overwriting
actions, using the NISPOM [23] and NIST [8] standards; we sup-
port meta-data overwriting; we designed features to trade-off effi-
ciency for security and convenience; and we resume overwriting in
the case of a system crash.

The rest of this paper is organized as follows. We describe secure
deletion myths in Section 2 and related issues in Section 3. We
present our solutions in Sections 4 and 5. We evaluate our solutions
in Section 6. We conclude in Section 7.

2. MYTHS
Even security experts hold several misconceptions which we crit-

icize in this position paper.

2.1 Encryption Solves the Problem
Many researchers promote encryption as a solution to secure

deletion. The advantage of encryption is that it protects live data
as well as deleted data. Also, it simplifies secure deletion from
archived copies: archives cannot be decrypted without a key that
is discarded. Unfortunately, encryption also carries with it addi-
tional, significantly increased costs: (1) managing keys for many
files or data blocks is cumbersome and costly; (2) encryption adds
CPU overheads [25] for most file system operations; and (3) keys
could be lost or broken (especially for long-term archival storage).
Worse, a compromised key may allow recovery of both existing as
well as deleted files. Using per-file keys for the purpose of secure
deletion adds even more overhead and key management costs [18].

To comply with new security regulations, public companies and
many organizations do encrypt their data. This means that they are
paying the encryption overheads and key management costs any-
way. Therefore, these companies and organizations can use secure
deletion via encryption with a small extra cost. However, most in-
dividual users and small businesses do not encrypt their data and,
therefore, do not use secure deletion by discarding the key.

In addition, key revocation is problematic even for existing (not
deleted) files because it sometimes requires re-encrypting the data.
For example, if one creates a file encrypted with the new key and
then deletes the old file which was encrypted with the old (compro-
mised) key, then the old key can still be used to decrypt the data:
the old encrypted file can be easily recovered if not overwritten.
Even if one writes the file encrypted with the new key directly over
the old file, there is still a chance that the old data can be recov-
ered using hardware tools. This suggests that for optimal security,
encryption must be combined with data overwriting [19].

2.2 Data Overwriting Works Well
There is a plethora of existing user-level tools available today,

many of which are commercial and incorrectly tout strong secu-
rity [2, 6]. In practice, they are inconvenient and unreliable. Also,
inconvenience usually results in lower security as users refrain from
performing inconvenient operations. Most tools either require users
to overwrite whole disks, whole partitions [11], or all the free space
on a file system (by creating a new file that is as big as the amount
of the free space on a file system). Such procedures are lengthy and
do not guarantee data overwriting [2, 6]. We will further describe
secure deletion problems via data overwriting in Section 3.

2.3 Overwrite Data Many Times
Years ago it was shown that there is a chance that even after the

data is overwritten, it can potentially be recovered [15]. Many ex-
perts believe that unless one can overwrite the data numerous times,
that it is not worth to overwrite it even once [9]. Nothing could
be further from the truth. Even the government’s own NIST and
NISPOM standards for secure deletion of top-secret files call for
overwriting no more than three-times [8, 23]; and, for most users,
a single overwrite will suffice and greatly enhance security. In par-
ticular, one overwrite will make any software-based data recovery
impossible. Thus, hackers who gain privileged access to the sys-
tem will not be able to recover files deleted from its hard disks. To
date, no commercial services are available to recover data that was
overwritten even just once [24].

3. ISSUES WITH SECURE DELETION VIA
OVERWRITING

While experts continue to debate how many times a file should
be overwritten to prevent, say, the military from recovering one’s
files, several practical issues have been largely ignored.

3.1 Automation
Most secure-deletion systems work on whole drives, partitions,

or file systems’ free space [2, 6]. In these cases secure deletion
takes hours if not days even for small hard drives. Reliable, au-
tomatic, efficient, per-file-delete data overwriting requires instru-
mentation in file systems [13]. File-system–specific solutions are
complicated and are not portable even between versions of the same
file system [1].

3.2 Reliability
Convenient per-file overwriting tools target file systems that over-

write previous data while writing new data (e.g., Ext2 and VFAT).
Overwriting large files or overwriting files multiple times can add
significant overheads. For performance reasons many existing tools
use asynchronous data overwriting which can leave data not over-
written in case of a power failure. Most modern file systems use
journalling for reliability reasons. Journalling can be beneficial in
ensuring that overwritten data is committed to the journal and can
be replayed even after a power failure or system crash.

3.3 Meta-Data Overwriting
Most secure-deletion systems concern themselves with the file’s

data, neglecting the file’s meta-data: the file’s name, owner, group,
access and modification times, size, and other information avail-
able in the file’s inode. All these additional pieces of information,
if left alone, can provide attackers important information about the
original file’s contents. Alas, secure-deletion of meta-data is trick-
ier, because meta-data tends to be spread out throughout a file sys-
tem; moreover, individual disk blocks contain meta-data for multi-
ple files, and hence must be overwritten partially and carefully.

3.4 Versioning Systems
With the advent of large and inexpensive disks, versioning file

systems and versioning storage systems have become more popu-
lar [16]. This means that when a piece of data is overwritten, it
is not overwritten in place due to copy-on-write semantics. Mod-
ern versioning file systems, therefore, must support secure-deletion
functionality that is capable of deleting a file’s data, meta-data, and
all historical versions thereof. Only encryption-based solutions are
currently available [19].

3.5 Persistent Caches
Probably the most difficult problem to solve is that, due to an

ever-widening performance gaps between CPUs and disk I/O, ven-
dors have increased their use of caching using non-volatile RAM
in storage systems. These caches not just defer writing to the ac-
tual physical media, but they also prevent multiple overwrites to
the same storage location, so as to coalesce costly repeated writes
to the same file into one bulk write operation. This performance
feature interferes with the desire to overwrite data multiple times.
Therefore, one needs to disable write-caching for hard disks that
may require multiple data overwrites.

In general, the solution to this issue requires changes to lower
level, well established disk APIs, as well as by storage system ven-
dors. Currently, most SCSI disks and some ATA disks support
hardware-based overwriting. Unfortunately, the API allows only
whole drive overwriting [11].

4. SOLUTIONS
In this section we describe our solutions that allow consistent

information overwriting: (1) a portable file system extension for
versatile automatic data overwriting via renaming; and (2) our two
Ext3 patches.

4.1 Secure Deletion via Renaming
User mode tools are attractive because they are portable and easy

to develop. shred is a standard utility available on many popular
systems. It performs synchronous file overwriting and must be in-
voked manually [20]. To overwrite deleted files automatically and
immediately when they are deleted, file system support is needed.
FoSgen is our tool to add file system extensions to any file system
on a number of OSs automatically [13]. It parses extensions writ-
ten using the FiST language [27] and applies them directly to the
file systems’ code as shown in Figure 1. If the source code for a
file system is not available, FoSgen can add extensions to stack-
able file systems. A stackable file system can be inserted between
the Virtual File System (VFS) and a lower file system to intercept
or modify file system requests [26]. Our portable and consistent
data-overwriting system consists of two components: (1) a file sys-
tem extension which can be applied to any file system and (2) a
user-mode shred tool.

FoSgen

Original File System

New File System

FiST Extension

Figure 1: FoSgen operation.

Our file system extension intercepts file system events that re-
quire overwriting and move the corresponding files into a special
per-file-system directory called ForSecureDeletion. The ex-
tension can either do it for all the files or only for these marked
with a special file attribute. There are two file system operations
that may require overwriting of the old data: unlink (called to
delete a file) and truncate (called to change the file size). Our
extension first moves files to the ForSecureDeletion direc-
tory. Then, for set attr operations that truncate the file, our
extension creates a new file with the name of the original file and
may need to copy a portion of the original file to the new one (in
case of a partial file truncation). Partial file truncations may require
copying substantial amounts of data but, fortunately, such opera-
tions are rare.

The shred tool, invoked either manually or by a cron dae-
mon, overwrites the files moved to the ForSecureDeletion
directory. The frequency of shred invocations can be used to
balance security and convenience. On one hand, frequent shred
invocations reduce the time window when data is still left on the
disk not overwritten but adds overheads for overwriting. On the
other hand, nightly overwrites of data can significantly improve
performance even compared with file systems that do not support
secure deletion. Indeed, ordinary file unlink operations are sig-
nificantly slower than file rename operations. There even exist
patches to several Linux file systems that perform unlink opera-
tions asynchronously [4]. Note that users can have many differ-
ent secure-deletion policies. For example, they can invoke shred

manually on the files stored in the special directory right after the
file is moved there. Our design has several benefits:

• The overwrite operations are performed automatically. Users
do not need to invoke shred manually on every file they
want to delete.

• Our file system FiST extension and the shred tool are
portable and can be used on most Linux and FreeBSD file
systems without any modifications.

• The system contains only the minimal amount of kernel code
necessary to detect deletion events reliably. Therefore, the
system is easier to maintain.

• All overwrite operations are performed consistently. Even
if a file is not completely overwritten before a power failure
or a system crash, it will be overwritten after the system is
rebooted.

• The system is flexible and offers a number of ways to balance
security with convenience and performance. Users can use a
cron daemon to overwrite the data as many times as neces-
sary when the system is idle. This can even improve overall
performance due to faster delete operations. If, however, the
data has to be overwritten immediately (e.g., before giving
away a used data drive) then one can call shred manually.
Also, one may raise the overwriting frequency and reduce
the time data is kept on disk after deletion.

• A beneficial side effect of our FiST extension is the presence
of a trash-bin functionality. Files that are not overwritten
right away can be recovered if deleted by mistake.

One may argue that this design opens a window of vulnerability
before the data is overwritten. However, this window exists for any
data-overwriting system that overwrites the data asynchronously
(for efficiency). In our system, the size of the window can be con-
figured to balance security with convenience and performance. In
fact, we believe that a hybrid secure deletion and trash-bin function-
ality approach has another significant advantage: it is not difficult
to add reliable and convenient secure deletion functionality for file
systems that already support trash-bin functionality.

4.2 Ext3 Secure Deletion Enhancements
We have created two secure-deletion patches for the Ext3 file

system. The first patch is small and simple but allows only single
data overwrite. It is designed for the majority of users. Although
somewhat slower, the second patch supports comprehensive over-
writing policies including multiple overwrites and random charac-
ter overwrites. It is designed to protect much more sensitive in-
formation, as it is tailored to secure delete with the best possible
protection.

4.2.1 Single Overwrite Ext3 Patch
Ext3’s ext3 free blocks method is called when some pre-

viously used blocks need to be deallocated: upon file deletion and
truncation. These are the cases when we need to overwrite the old
data. Important for us, Ext3 provides atomicity for file delete and
truncate operations. First, it encapsulates all related sub-operations
into a single journal transaction. Second, it adds information about
a file being deleted to the orphan list. This is necessary to handle
deletion of large files atomically, whose deletion transaction may
not fit in the journal. The orphan list is, in fact, a special journal for
file-deletion transactions.

We have created a patch for the Linux Ext3 file system that en-
capsulates data-block overwrite and data-block release operations
into a single transaction. The fact that both operations are encap-
sulated within one transaction guarantees overwriting consistency.
Even if the file-overwriting process is interrupted, it will be com-
pleted after the system is restarted and the journal is replayed. We
have submitted a simple version of the patch to the core Linux file
systems developers [12]. Our patch consistently overwrites data
once in all three of Ext3’s journalling modes: writeback, ordered
(default), and data. Therefore, it is impossible to recover overwrit-
ten data at least using the software-recovery methods. Note that in
the data-journalling mode of Ext3 (which is rarely used) one may
want also to wipe out the journal by writing more data than the
journal’s size to any file. This is simple and fast because the jour-
nal is usually small and in most cases gets reused as a cyclic buffer
relatively quickly.

Ext3 (and Ext2) already support special attributes to mark files
that require secure deletion, using

chattr +s filename

However, Ext3 does not support secure deletion functionality itself.
Our patch can either overwrite all files or only these marked with
the secure deletion attribute.

4.2.2 Comprehensive Ext3 Patch
The second Ext3 patch that we created (1) supports multiple

overwrites, and (2) it securely deletes a file’s meta-data (user and
group IDs and access, modification, and creation times) and its di-
rectory entry (name) in addition to its data. Similar to the first
patch, it works in all three of Ext3’s journalling modes and can ei-
ther overwrite all files or only those marked with the secure deletion
file attribute.

Ext3’s journalling facility has the notion of compacting trans-
actions. For performance reasons, Ext3’s journal merges write re-
quests to the same block if these requests are within the same trans-
action. In other words, under a single transaction, if one changes
some buffer-heads multiple times, only the last change will be com-
mitted to disk. Therefore, our patch has to create a separate trans-
action for every overwrite. This means that we cannot overwrite
from within the same Ext3 function as we did for the simple patch
because it is already called within a file delete transaction. For-
tunately, Ext3 supports a special journalling-like mechanism for
deletion operations by using the orphan list. Therefore, even if it is
performed within several separate transactions, the deletion opera-
tion is still performed atomically. The orphan list is permanently
stored on the storage media. Any members of that list are deleted
at the beginning of the Ext3 mount process. Therefore, our secure
deletion operations are restarted in case of a power failure. Our
Ext3 patch is indirectly called through the unlink and setattr
operations that may delete or truncate a file, respectively. Inside of
these operations we add a file to the orphan list and create separate
transactions for every round of overwrites. After that we allow Ext3
to add its ordinary transaction to handle the rest of the unlink or
setattr operations and remove the file from the orphan list at
the end.

In addition to data overwriting, our comprehensive patch can
also overwrite file names and other meta-data. Despite the fact that
most users perceive file names as yet another meta-data, they are
part of the namespace, stored differently, and require a separate
overwriting implementation. Also, our comprehensive patch sup-
ports overwriting with arbitrary patterns that may include random
characters. One can separately choose the overwriting policies for
each of the data, meta-data and directory entry (name) of a file.

Patterns can consist of printable characters, hexadecimal numbers,
and random numbers. For example, a user can choose to overwrite
the file with the characters ‘\FRs’. This pattern indicates that the
file is to be first overwritten with the hex number 0xF, followed by
a random character, and the literal character ‘s’. There is a limit
on the length of the mount options and the syntax of our overwrit-
ing policies parameters is designed to minimize the length of the
corresponding string. For example, the following mount command
specifies that file data (denoted as ‘D’) should be overwritten with
‘0’s three times, and file names (denoted as ‘N’) should be over-
written with random characters once:

mount -t ext3 \
-o secdel="D:3:\\0;N:1:R" /dev/sda1 /mnt

We confirmed that out patch indeed overwrites files for the spec-
ified number of times and does not merge overwrites together by
tracing write requests at the device driver level.

5. IMPLEMENTATION
Table 1 summarizes the complexity of our proposed solutions in

terms of the number of lines of kernel C code.

Solution No. of lines of C code
Move on delete 92
Ext3 basic 68
Ext3 comprehensive 609

Table 1: Number of kernel lines of C code for our proposed
solutions (The move on delete solution is written in C-based
FiST language).

6. EVALUATION
We evaluated our system on a P4 1.7GHz machine with 1GB of

memory. Its system and test disks were 30GB 7200 RPM Western
Digital Caviar IDE drives and were formatted with Ext3. We re-
mounted the test file systems before every benchmark run to purge
file system caches. We ran each test at least ten times and used the
Student-t distribution to compute the 95% confidence intervals for
the mean elapsed, system, user, and wait times. Wait time is the
elapsed time less CPU time used and consists mostly of I/O, but
process scheduling can also affect it. In each case, the half-widths
of the confidence intervals were less than 5% of the mean. The
test machine was running a Fedora Core 4 Linux distribution with
a vanilla 2.6.15 kernel.

We evaluated and compared the following three configurations:
vanilla Ext3 (EXT3); Ext3 with a FiST extension to move files to
a special folder on delete (MOVE); and Ext3 3 versions of instru-
mented with secure deletion patches. PATCH-BASIC is Ext3 instru-
mented with our basic patch for one data overwrite. PATCH-COMPR
is Ext3 instrumented with our comprehensive patch that overwrites
file names, meta-data, and data twice. PATCH-COMPR-R is the
same configuration but with an overwriting pattern composed of
randomly generated characters.

6.1 CPU-Bound Workload
First, we evaluated our secure deletion systems under a compile

workload—a CPU-intensive workload that is similar to the work-
loads generated during normal user activities (i.e., more CPU ac-
tivity than file system I/O activity). We compiled the Am-utils ver-
sion 6.1.1 [17]. Am-utils contains over 60,000 lines of C code in
430 files. The build process begins by running several hundred

Solution Simplicity Portability Atomicity Automation Meta-data
User-mode +++ +++ + + no
Move on delete ++ ++ ++ ++ no
Ext3 basic ++ + +++ +++ no
Ext3 comprehensive + + +++ +++ yes

Table 2: Comparison of traditional user-mode solutions, our move-on-delete solution, and our two Ext3 patches. More ‘+’ symbols
means better. The comprehensive Ext3 patch is the only solution that can overwrite meta-data.

 0

 100

 200

 300

 400

 500

 600

patch-com
pr-r

patch-com
pr

patch-basic

m
ove

E
xt3

E
la

ps
ed

 ti
m

e
(s

ec
)

Configuration

247 249 247

463
513Wait

User
System

Figure 2: Am-utils benchmark times.

small configuration tests to detect system features. It then builds a
shared library, ten binaries, four scripts, and documentation: a to-
tal of 152 new files and 19 new directories. Although the Am-utils
compile is CPU intensive, it contains a fair mix of file system oper-
ations. The Am-utils build process uses 25% writes, 22% lseek op-
erations, 20.5% reads, 10% open operations, 10% close operations,
and the remaining operations (12.5%) are a mix of readdir, lookup,
etc. Most important for us, the build process performs 4,696 file
deletions.

Figure 2 shows the measured build times. Both MOVE and PATCH-
BASIC add less than 1% elapsed time overheads over the EXT3
configuration. PATCH-COMPR adds 87% elapsed time overheads
mostly due to synchronous journal and data writes. Generation of
random characters adds extra 37% overhead to the system time.

6.2 I/O-Bound Workload
We evaluated our system using an I/O-intensive workload gen-

erator. Postmark [14] simulates the operation of electronic mail
servers. It performs a series of file appends, reads, creations, and
deletions. We configured Postmark to create 20,000 files, between
512–1M bytes, and perform 200,000 transactions. We selected the
create/delete and read/append operation ratios with equal probabil-
ity. In this test, Postmark’s final phase is to delete 20,000 such files
(totaling 10–20GB of data).

Figure 3 shows the benchmark results for our three test con-
figurations. The MOVE configuration that moves data for over-
writing into a special directory adds less than 4% overhead. The
PATCH-BASIC configuration which overwrites the data once adds
61% elapsed time overheads, mostly in I/O time. PATCH-COMPR
runs 8.5 times slower relative to Ext3. This is because of the syn-
chronous journal and data writes. Postmark represents the worst-
case workload for secure deletion tools because it has numerous
deletion operations (every fourth operation is a truncation) com-
bined with other I/O-intensive operations.

 0

 5000

 10000

 15000

 20000

 25000

patch-com
pr-r

patch-com
pr

patch-basic

m
ove

E
xt3

E
la

ps
ed

 ti
m

e
(s

ec
)

Configuration

2067 2151
3476

17488
18793

Wait
User

System

Figure 3: Postmark benchmark times.

7. CONCLUSIONS
Erasure of data from the storage, upon file delete, is consistent

with users’ perception of what a delete operation should do. We
have discussed several common myths about secure deletion of
data. We have shown that (1) existing secure deletion tools are
inconvenient for most file systems (including journalling file sys-
tems) and have security problems; (2) encryption alone does not
solve the secure deletion problem and should be combined with
data overwriting; and (3) overwriting data many times is unneces-
sary: even a single data overwrite can significantly improve secu-
rity, and three overwrites are sufficient even by the highest govern-
ment standards.

We have designed a portable data-overwriting system which uses
an existing user mode tool called shred, as well as a file-system–
independent extension. Our data-overwriting system overwrites
data automatically, is portable and simple, consistently overwrites
even in case of power loss or system failures, and allows users to
balance security, convenience, and efficiency. In case of delayed
overwriting, our system can also provide a trash-bin like function-
ality to further enhance user convenience. We envision that existing
file systems that already support trash-bin functionality for delayed
deletion can be easily extended to support reliable and convenient
secure deletion.

Also, we have designed two patches for the Ext3 journalling
file system. The first one automatically overwrites data one time
in a consistent way and thus provides protection against possible
software-based deleted-data recovery tools. The second Ext3 patch
supports overwriting of meta-data and comprehensive overwriting
policies including those described in the NIST and NISPOM stan-
dards. We present our solutions and compare them to traditional
user-mode solutions in Table 2.

We have demonstrated that under typical user workloads that are
not I/O intensive and single overwrite policies, overheads are neg-

ligible. Also, we have shown that even under I/O-intensive and
delete-intensive workloads, our data overwriting systems add ac-
ceptable overheads of 4–61% in the case of a common single over-
write policy.

Future Work
We plan to integrate our patch with the Ext3 journal which will
allow us to decrease overheads. For example, it will allow us to
overlap random number generation time with the wait time and de-
crease total elapsed time. Also, we plan to port FoSgen and FiST
extension to a number of other OSs.

Acknowledgments
We would like to thank Theodore T’so for the project support and
Charles P. Wright for his help with the paper’s preparation.

More information about the project is available at
www.fsl.cs.sunysb.edu/project-sdfs.html.

8. REFERENCES
[1] S. Bauer and N. B. Priyantha. Secure Data Deletion for

Linux File Systems. In Proceedings of the 10th Usenix
Security Symposium, pages 153–164, Washington, DC,
August 2001. USENIX Association.

[2] H. Berghel and D. Hoelzer. Disk wiping by any other name.
Communications of the ACM, 49(8):17–21, August 2006.

[3] D. Boneh and R. Lipton. A Revocable Backup System. In
Proceedings of the Sixth USENIX UNIX Security Symposium,
pages 91–96, San Jose, CA, July 1996. USENIX
Association.

[4] M. Cao, T. Y. Tso, B. Pulavarty, S. Bhattacharya, A. Dilger,
and A. Tomas. State of the art: Where we are with the ext3
filesystem. In Proceedings of the Linux Symposium, Ottawa,
ON, Canada, July 2005.

[5] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In Proceedings of the 13th USENIX
Security Conference, pages 321–336, San Diego, CA,
August 2004. USENIX Association.

[6] T. J. Fitzgerald. Deleted but Not Gone. New York Times,
November 2005.

[7] Free Downloads Center. Linux Disk DoD.
www.freedownloadscenter.com/Best/
linux-disk-dod.html.

[8] T. Grance, M. Stevens, and M. Myers. Guide to Selecting
Information Security Products, chapter 5.9: Media
Sanitizing. National Institute of Standards and Technology
(NIST), October 2003.

[9] P. Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In Proceedings of the Sixth USENIX
UNIX Security Symposium, pages 77–90, San Jose, CA, July
1996. USENIX Association.

[10] R. Hasan, S. Myagmar, A. Lee, and W. Yurcik. Toward a
Threat Model for Storage Systems. In Proceedings of the
First ACM Workshop on Storage Security and Survivability
(StorageSS 2005), pages 94–102, FairFax, VA, November
2005. ACM.

[11] G. Hughes. CMRR Protocols for Disk Drive Secure Erase.
Technical report, Center for Magnetic Recording Research,
University of California, San Diego, October 2004.
http://cmrr.ucsd.edu/Hughes/
CmrrSecureEraseProtocols.pdf.

[12] N. Joukov. Patch: Secure Deletion Functionality in Ext3.
http://lwn.net/Articles/171924/, February
2006.

[13] N. Joukov and E. Zadok. Adding Secure Deletion to Your
Favorite File System. In Proceedings of the third
international IEEE Security In Storage Workshop (SISW
2005), San Francisco, CA, December 2005. IEEE Computer
Society.

[14] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[15] I. Mayergoyz, C. Seprico, C. Krafft, and C. Tse. Magnetic
Imaging on a Spin-Stand. Journal of Applied Physics,
87(9):6824–6826, May 2000.

[16] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and
E. Zadok. A Versatile and User-Oriented Versioning File
System. In Proceedings of the Third USENIX Conference on
File and Storage Technologies (FAST 2004), pages 115–128,
San Francisco, CA, March/April 2004. USENIX
Association.

[17] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.1b3 edition, July 2003. www.am-utils.org.

[18] R. Perlman. Secure Deletion of Data. In Proceedings of the
third international IEEE Security In Storage Workshop
(SISW 2005), San Francisco, CA, December 2005. IEEE
Computer Society.

[19] Z. N. J. Peterson, R. Burns, A. Stubblefield J. Herring, and
A. D. Rubin. Secure Deletion for a Versioning File System.
In Proceedings of the Fourth USENIX Conference on File
and Storage Technologies (FAST ’05), pages 143–154, San
Francisco, CA, December 2005. USENIX Association.

[20] C. Plumb. shred(1) - delete a file securely, first overwriting it
to hide its contents. Free Software Foundation, August 2004.

[21] J. Rosenbaum. In Defence of the DELETE Key. The Green
Bag, 3(4), Summer 2000.
www.greenbag.org/rosenbaum_deletekey.pdf.

[22] P. Sarbanes and M. G. Oxley. Sarbanes-Oxley Act of 2002.
U.S. Government Printing Office, July 2002.

[23] Defense Security Service. National Industrial Security
Program Operating Manual (NISPOM), chapter 8:
Automated Information System Security. U.S. Government
Printing Office, January 1995.

[24] C. H. Sobey. Recovering Unrecoverable Data: The Need for
Drive-Independent Data Recovery. Technical report, Action
Front Data Recovery Labs, Inc., April 2004.

[25] C. P. Wright, J. Dave, and E. Zadok. Cryptographic File
Systems Performance: What You Don’t Know Can Hurt
You. In Proceedings of the Second IEEE International
Security In Storage Workshop (SISW 2003), pages 47–61,
Washington, DC, October 2003. IEEE Computer Society.

[26] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright.
On Incremental File System Development. ACM
Transactions on Storage (TOS), 2(2):161–196, May 2006.

[27] E. Zadok and J. Nieh. FiST: A Language for Stackable File
Systems. In Proc. of the Annual USENIX Technical
Conference, pages 55–70, San Diego, CA, June 2000.
USENIX Association.

[28] Q. Zhu and W. W. Hsu. Fossilized index: The linchpin of
trustworthy non-alterable electronic records. In Proceedings
of the ACM SIGMOD Conference, pages 395–406, June
2005.

