
SAMT: Analysis of Amortized Insertion, Update, Delete,

Point Query, and Range Query

Richard P. Spillane, Leif Walsh, Erez Zadok
{necro351@gmail.com, leif.walsh@gmail.com, ezk@cs.sunysb.edu}

Computer Science Department, Stony Brook University

Stony Brook University Technical Report FSL-09-03

Full Asymptotic Performance

We analyze the performance of the SAMT using the
DAM [1] model, the standard model for analyzing
disk-bound data structures. The DAM model as-
sumes an internal and external memory. The in-
ternal memory of size M is divided into blocks of
size B and the external memory is arbitrarily large.
The cost in this model is the number of block trans-
fers between internal and external memory. The
amortized cost of an insertion, update, or delete is
O (log (N) /B) for N inserted elements. This cost
does not change when the disk is full.

Queries require us to do at most log (N) binary
searches, bounding our cost to O

(

log2 (N)
)

. This
cost is the same for beginning a range query, but
after the pointers are initialized in the heap, the
result can be merged quickly for a total cost of
O

(

log2 (N) + L/B
)

for L elements ranged over.

In this report we will analyze the cost in block-
transfers of N insertions before SAMT runs out of
disk space. Afterward we analyze the performance
of SAMT when the disk is full and SAMT is taking
only updates and deletes.

In this analysis we assume RAM (c0) is com-
pletely filled with inserts, is then flushed, and is
filled and flushed again, repeatedly, until all N el-
ements are inserted. We then continue to insert P
pushing elements until all N elements previously in-
serted are flushed and merged into the first cache
line large enough to hold them all: ck. T (ci) is
equal to the number of tuples that cache line ci can
hold. N > T (ck)/2, or else it wouldn’t have been
flushed into ck, and since the cache lines double in
size, P ∈ O (N).

Now we determine an upper bound on the

amount of block-transfers necessary to fill ck in
the manner described above. To fill both slots
in ci, ci−1’s two slots must be merged into ci

twice. A single merge entails reading two slots
for a total of T (ci−1)/B blocks from the two slots
in ci−1 and writing two merged arrays for a to-
tal of T (ci)/B blocks total to ci. We will say
that the number of block-transfers required to
cause a cache line ci to fill is C(ci), So the to-
tal cost in block-transfers to fill ci is C(ci) =
T (ci)/B + 2 ∗ T (ci−1)/B + 2 ∗ C(ci−1) = 3 ∗
(T (ci/2)/B +C(ci−1)) = O ((T (ci)/B) ∗ log(T (ci))).
Therefore, the cost to insert all N + P tu-
ples which is the cost to fill all cache lines

is
∑

k

i=0
(T (ci)/B) log(T (ci)) <

∑

k

i=0
(T (ci)/B) ∗

log(T (ck)), which isO ((N/B) log(N)) or amortized
across all N + P ∈ O (N) insertions,O (log(N)/B).
Once SAMT runs out of disk space, the last cache
line will perform a churn or a 3-way merge of at
most 3/2∗N elements, thus only effecting cost when
all cache lines are full, and even then only increas-
ing the cost of N + P updates by at most a con-
stant factor, keeping total amortized cost of inser-
tion bounded.

References

[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.


