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ABSTRACT

Virtualization provides several benefits to users in theadat
center in terms of infrastructure cost savings (e.g., ahmbwer,
space, cooling, labor). Examples include highly efficiemd a

available resource, networking, and storage management. A
many workloads have moved to virtualized environments, it

is critical that vSphere handles scale and performs optymal

However, there are scenarios where the vSphere platform ex-

hibits suboptimal performance if user-level operatiorssahed-
uled poorly.
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In this paper we propose a feedback-based approach to max- VM Batch Size (# of VMs powered on concurrently)

imize the platform performance of vSphere with a gradient

based hill climbing algorithm. We have implemented the gra- Figure 1: Tasks Throughput Experiment. The throughput

dient based hill climbing approach. Our initial results \who
promising performance improvements, in terms of end--en
latency, under the vSphere environment.

Categories and Subject Descriptors
H.3.4 Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness)

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Meth-
ods, and SearchSeheduling

General Terms
Management, Performance

Keywords
Task Scheduling, Feedback, Virtualization

1. INTRODUCTION

Virtualization [18] is massively deployed nowadays in the
private cloud environment. As the private data-centerescal
up, management operations in the virtualized data-cebters
come pervasive, which places more pressure on the virgualiz
tion platform. Therefore, it is important to manage the work
loads in the virtualization platform effectively [13]. Hewer,

is measured by the batch size divided by the end-to-end batch
completion time for each batch size.

naive scheduling of those user-level operations can aerlo
the virtual center and slow down the platform’s productivit
and overall performance.

With the current VMware vSphere [19] infrastructure, we
carried out a series dfoot-stormexperiments on the vSphere
platform where different groups of virtual machines (VMs)
were powered on to understand the impact of highly concur-
rent workloads on overall vSphere platform performance. We
show the results in Figure 1. A boot storm occurs when many
virtual machines start their operational workloads claser
gether, thus creating a larger load on the CPU, network, and
storage. A boot storm scenario is likely to occur after syste
have recovered from a power outage or when logging in for the
first time.

Our results indicated that the throughput of the system hits
a maxima after a certain batch size. Batch means a group of
concurrent operations, and batch size is the size of thepgrou
ing. When increasing the batch size beyond a certain num-
ber, throughput for that batch size dropped, indicating tie
vSphere platform encountered a bottleneck. The ideal batch
size that maximized throughput in our experiments was pow-
ering on 200 VMs in this test scenario.

Currently, there is no way for the vSphere client to get any
feedback from the vSphere platform if the system is oveddad
or under loaded. vSphere client solutions like Site Regover
Manager [14], Virtual Desktop Infrastructure [17], and oGt
Director [16] could potentially overload the platform aridvg
down the performance. Static throttling schemes are often i
plemented to prevent such scenarios. However, this approac
may observe limited performance when the platform is capa-
ble of supporting more tasks. What we are trying to solvedoul



potentially help increase the throughput of vSphere-eéel atat-
forms. Furthermore, VMware customer feedback suggests tha
provisioning and deployment scenarios tend to be bursty. Is
suing an optimal number of tasks on the platform, during such
scenarios, would result in reduced recovery time, bettdr en
to-end boot time, and a quicker provisioning process.

Our work aims to identify the throughput maxima for any
given vSphere environment and control the number of tasks

issued to the system, while adapting to changes in the en-

vironment. To solve the above problem, we implemented a
prototype, call vATM (vSphere Adaptive Task Management),
combining feedback mechanism and adaptive hill-climbing a
gorithm. Our initial results show promising performance im

provement with the the proposed approach being adaptive to
the system background load. We achieved up to 54% improve-

ment in terms of end-to-end latency in the case of multiple
tasks experiment.

Note that we refer to vSphere as the target system through

out the paper, because our prototype implementation isdbase

on vSphere. However, our approach is generic enough to be
applicable to other components of the system such as vCloud

Director and the Cloud Infrastructure Suite (CIS) [2].

2. RELATED WORK
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Figure 3: Architecture

token capacity of the vSphere platform installation, it mea
that the vSphere platform hag tokens to give. Currently, we
assign each task one token to play around with. We will use
this notation of work units and throughput when we describe
the details of the feedback controller in Section 3.3.

VATM (vSphere Adaptive Task Management) is our own in-
vented new term to describe the prototype we built. It is re-
sides between the clients and vSphere. We envision this to be
either a stand-alone service or a component residing witiein
vSphere suite. The precondition is that all tasks are ditect
through this component. Our vVATM comprises of two main
components: Task Management and a Feedback Controller.
The task management component is responsible for sending
tasks to vSphere as well as collecting task information ssch
operation latency. The task-management part determings ho

Feedback-based approaches have been widely applied in varmany tasks to launch in each round. The feedback controller

ious field of computer systems [5] and networks [15] to previd
QoS (e.g., performance and power) guarantees in various lev
els.

leverages this information in combination with system feed
back to adaptively control the outstanding operations @n th
system. The architecture of the above discussion is shown in

A standard feedback-based approach is using control theory Figure 3.

which offers various methodologies to solve such problems

that demand dynamic throttling and task management. It has

We explain the two components mentioned above in more

been applied to database systems [4], storage systems [7, 8] qetail in subsection 3.2 and 3.3.

Web servers [3,10], and data-centers [9,21-23] to provin® Q

(e.g., performance and power) guarantees. Abdelzaher et al

surveyed the application of feedback control to softwaie sy
tems [1] as well. A proportional-integral-derivative (Bl&bn-
troller [6,11, 20, 23] is one such approach.

In this paper, we picked a simple feedback based hill climb-
ing algorithm instead of exploring a PID controller which in
volves specifying a fixed set point variable that the systées t
to converge upon based on the controller feedback and esuir
additional expertise and experiments. The vSphere system i
constantly under flux because of the wide variety of openatio
being executed by varying amount of users, which essentiall

means that the system does not have a specific set point wher

it performs optimally, rather the set point varies dynarjca

based on the type of workload and number of users issuin
yp gr_(e.g., a busy cluster) from unnecessarily throttling oftents

tasks on the system. We also expect to achieve much more pe
formance improvement once the current prototype takes into
account the token-based normalization as we discussedin Se
tion 6.

3. DESIGN AND IMPLEMENTATION
3.1 Overall Design

vSphere has a broad spectrum of tasks ranging from VM
operations like clone and power on to host operations like ad

3.2 Task Management

All task requests reach vSphere through the task manage-
ment component. If the task management component detects
that the vSphere platform is overloaded, it buffers the estu
in an internal queue and reissue it when the platform is ready
In our prototype, the queue is large enough to hold all the re-
quests. If, however, no overload condition is detectedn the
the task request passes through. This component relieson th
feedback controller to obtain the overload condition.

Task management can be made more effective by targeting

etasks towards a granular domain such as a data-centeerclust

or other grouping based-on the affinity of tasks. The adggnta
of going with a granular approach is that we prevent hot spots

of the inventory. This is especially a concern in the mu#téu
environment where the use cases and performance character-
istics may vary across parts of the virtual center servegrinv
tory. For example, cluster A could be overloaded with sdvera
boot storms, and hence additional tasks to cluster A may need
to be queued by the vVATM to avoid cluster busy time. At the
same time, there could be another idle cluster B where tasks d
not need to be queued and therefore the performance feedback
metrics from cluster A do not need to be applied to cluster B.
In order to adopt this approach, vATM requires a mechanism

and remove a host. Each operation has an associated cbst attr to map each task to an inventory component. Such a mecha-

bution in terms of operation latency. We introduce the notio
of a work unit called aokento represent one unit of opera-
tion cost. If we usé,, to represent the notion of the maximum

nism of queuing tasks separately based on tasks ownership is
one of the extensions of this paper that needs further sttty w
additional experiments in future work.
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(a) Throughput fluctuates due to background activities
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(b) Optimal throughput varies as system is more loaded

Figure 2: Fluctuation and variation. Observations with static throttling. A “round” is completevhen batched concurrent tasks

are finished. Throughput is measured for a single round.

3.3 Feedback Controller

dropped: VATM then decreases the tokens based on the gradi-

Once tasks start arriving, the task management component©nt, to obtain a high overall throughput across rounds. We se

tem and asks the feedback controller for guidance as to wheth
to queue up the tasks or pass them through.

If the current queued task numhgr... is less than the con-
currency target numbek,., then the controller does not kick

VATM is able to launch at least one operation in the worst case
The increase in batch size is reflective of the throughput

trend of the system (e.g., the batch size will be increase@ mo

aggressively if the VATM detects a steep rise in throughput)

in and tasks are passed to vSphere. However, in the case thafPnce the throughput curve starts flattening out, the baizh si

teurr IS greater tham,,,, the controller kicks in.
Initially, t¢qr, IS Set totmin, the initial number of concurrent
tasks that the system will handle to start processing tasks.
is a configurable value. In case that., is greater tham:,,,
tiqr 1S increased to be twice as muchtas.,, in order to col-
lect at least two data points about the task throughput to hel
identify the trend of the throughput hill. To avoid oversting
the system¢,. should not be too large. Further increase of
tiar IS determined by the feedback controller according to the
hill-climbing mechanism.t.., is gradually increased till the
system achieves an experimental maxima with capagity
During each round, the controller issues, tasks concur-

rently and waits for them to complete. As tasks are completed

in each round, the throughput is measured after all the ®ken

will be increased more conservatively. At any given instant
the vVATM maintains a constant in-flow of,, tokens on the
system until the feedback controller updatgs..

3.4 Observations

Two observations influenced our design and implementa-
tion. In the first experiment, we have in total 400 VM reconfig-
uration RAM operations. We launch 10 tasks per round stati-
cally and observe the throughput of each single round. In the
second experiment, we have in total 200 VM power on opera-
tions. We issue 10 tasks per round in a static way and observe
the throughput of each single round.

The first one is shown in Figure 2(a). We can see that even
when the number of operations is fixed, the throughput of each

in the current round were received. The next batch size, rep- round fluctuates. This is especially true for shorter rounds

resented by..-+1, IS increased or decreased based on the fol-
lowing formula:

thpttar' - thpttar'f 1

gradient = (3.1)
ttar - tta'rfl

gradientyorm = arctan(gradient)/90  (3.2)

trar+1 = ttar * (1 4+ gradientnorm) 3.3)

wherethpt.., is the overall throughput as of the current round,
thptiar—1 is the overall throughput as of the previous round,

tiar IS the number of concurrent tokens issued in the current

round,t+.-—1 is the concurrent tokens issued for the previous
round. We divide byd0 in the formula to ensure the normal-
ized gradienyradient,orm is between—1 (inclusive) andl
(exclusive).

If the gradient calculated across:,, andti.,—1 IS posi-
tive, it suggests that there is additional headroom withim t
system and..-+1 IS increased in accordance. The larger the

That challenges the hill-climbing based approach a lotesinc
it is sensitive to fluctuations. Therefore, our prototypetdt

be able to minimize these fluctuations (i.e., smoothing) by u
lizing the overall throughput across multiple rounds iastef

the throughput obtained from a single round, as we will see in
Section 4.

The second observation is shown in Figure 2(b). We can see
that when the number of operations is fixed, the throughput fo
a single round decreases as more and more virtual machines
are powered on, increasing the background load. It suggests
that the maximum throughput for a single round is likely to
vary depending on what the background load is. Therefore,
our prototype should be able to launch the optimal number of
tasks adapting to varying background loads.

4. EVALUATION
4.1 System Setup

For experiments, we used a cluster consisting of three ESX

gradient value is, the larger the batch size will be for the next hosts. Each host is a Dell PowerEdge R610 machine with
round, and the quicker the local maxima will be found. If the dual quad-core Intel Xeon 3.0GHz processor and 16—49GB of
gradient is negative, it means that the token throughput has RAM with 540GB local disk. We installed hundreds of VMs



STATIC: Concurrently Launching ReconfigRAM Ops

200 o # Ops
e ey — Thpt -

150

100

50

0 5 10 15 20 25 30 35 40
# round

(a) Static throttling of reconfigRAM operations

STATIC: Concurrently Launching PowerOn Ops
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(c) Static throttling of powerOn operations
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(b) vATM throttling of reconfigRAM operations
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(d) vATM throttling of powerOn operations
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(e) Static throttling of mixed operations (f) vATM throttling of mixed operations

Figure 4: Two different approaches on operations throttling. Throughput here is the overall throughput defined by totahbar
of finished tasks divided by total latency. The unit is nundbéasks per min. Tokens in the figures are the system avaitakéns.
One operation represents one task. Since we assign onetmkach operationg tokens should trigger launching operations as
long as there are enough tasks left in one specific round.

on each of the host. Each VM has one virtual CPU, 256MB sent the case of VM power-on operations, where there are in
RAM, and one 20GB virtual disk. total 200 concurrent tasks. Figure 4(e) and Figure 4(f)eaepr
We implemented the vVATM prototype with the gradient-based sent the case of mixed VM operations with equal distribution
approach in Java using vSphere SDK [12] using about 4K LoC. among four operations: VM RAM reconfiguration, VM power
We evaluated the system with different workloads such asboo on, VM creation, and VM snapshot creation operations. There
storm workload, reconfiguration workload, and workloadhwit  are in total 800 concurrent tasks. The figures on left side de-
mixed operations. We carried out experiments via both the scribes the static throttling approach, whereas the figanes
VATM and static throttling approaches. right side show the vATM approach.
In the case of VM RAM reconfiguration operations, the static
4.2 Results _throttling approach, as seen in Figure 4(a), Iaur_lche_s 1@ tas
o in each round. For the vVATM approach, as seen in Figure 4(b),
We now present the results we got with different approaches. starts launching 10 tasks in the first round, and 20 tasks in
We show how the vATM approach adapts to the overall through- the second round as required by the gradient calculatiah, an
put variations, while the static throttling approach doet n then adapts to the overall throughput variations. In théicsta
As shown in Figure 4, we performed three groups of ex- case, the overall throughput is relatively stable. Howeiter
periments. Figure 4(a) and Figure 4(b) represent the case ofjs not improving further, even when there is still a large gap

VM RAM reconfiguration operations, where there are in to-  for performance improvement. The VATM approach, on the
tal 400 concurrent tasks. Figure 4(c) and Figure 4(d) repre-



other hand, adapts to the overall throughput variationsriy fi
decreasing the batch size—as it observes overall throaghpu
drops in the beginning several rounds—and then increaking t
batch size as it observes overall throughput improvemethiein
last several rounds. In the last round, there are not en@stls t
left; therefore, the number of operations is not the saméas t
value of tokens.

In the case of VM power on operations, the static throt-

compared with the naive static-throttling approach. When-c
pared with the optimal static approach which usually rezgiir
manual analysis on the history raw data, vVATM is close. The
optimal static approach outperforms the VATM approach by
4% for VM RAM reconfiguration operations, 3% for VM power
on operations, and 7% for VM mixed operations, respectively
The reason is that the VATM approach takes some time to find
the local maxima as the it starts launching tasks conseehati

tling approach, as seen in Figure 4(c), launches five tasks in We believe that with a larger enough operation set, the tieae p

each round. For the vVATM approach, as seen in Figure 4(d),
starts launching five tasks in the first round, and ten tasks in
the second round as required by the gradient calculatiah, an

riod the VATM takes to find the local maxima can be ignored,
and the vATM approach will perform even better.

then reacts in an adaptive way. For the static case, the over-5 - CONCLUSION

all throughput drops in the first several rounds becauseeof th

fluctuations as we discussed in Section 3.4, and then becomes

relatively stable. The VATM approach, on the other hand, de-

creases the batch size in the third round, and then increase

the batch size in the following rounds until it hits a localxma

In this paper, we proposed one feedback based approach
aiming to maximize the vSphere platform performance with

Jgradient-based hill-climbing approach. We have implement

the gradient-based hill-climbing approach, and the reshiowed

ima. Then, the system becomes overloaded since there are nowP"oMising performance improvement under the vSphere envi-

more powered-on VMs, and the overall throughput drops as
we discussed in Section 3.4. At this point, the vVATM approach
adapts to the changing background load by dynamically drop-
ping the token value, and therefore, maintaining an ovaigh
throughput.

In the case of mixed VM operations, the static throttling ap-
proach, as shown in Figure 4(e), launches four tasks in eac
round. For the VATM approach, as shown in Figure 4(f), starts
launching four tasks in the first round, and eight tasks in the
second round as required by the gradient calculation, s th
launches in an adaptive way. With static throttling, theralle

ronment. Compared with the naive static approach, vVATM im-
proves the end-to-end latency of the VM RAM reconfiguration
operations, VM power on operations, and VM mixed opera-
tions, by 32%, 18%, and 54%, respectively. Compared with
the optimal static approach, vATM is close with 4% less for
VM RAM reconfiguration operations, 3% less for VM power

pon operations, and 7% less for VM mixed operations, respec-

tively.

6. FUTURE WORK

We plan to assign tasks with dynamic tokens based on what

throughput fluctuates and degrades in the first several sound e background load is at specific time. We plan to integrate
because of the issues we discussed in Section 3.4, and thenpe token normalization approach, that normalizes eadh tas
turns to be relatively stable. The vATM approach, instead, token adaptively, into the vATM and collect some resultswit

adapts to the local overall throughput changes, and hits two y4rigus task loads. We also plan to have a periodic interven-
local maxima in the beginning several rounds, and then grad- tion thread to update the system token in a more timely way in

ually increases the batch size to further improve the perfor
mance throughput in the last several rounds. In the lastdhoun
there are not enough tasks left; therefore, the number af ope
ations is not the same as the value of tokens.

We also collected the end-to-end workload completion time
for different approaches with the above three groups of expe
iments. We considered the optimal static throttling case, i
the best static threshold we could derive based on offline ana
ysis of workload, and naive static case, i.e., the thresteddi
for the static experiments described above. These conoparis
are shown in Table 1.

Operation Type | Naive Static| Optimal Static [ VATM
reconfigRAM 2.45 1.56 1.67
powerOn 1.70 1.35 1.39
mixed 11.99 4.67 5.47

Table 1: End-to-end latency comparison (minutes)

We can see from the table that the vVATM approach, com-
pared with the naive static approach, improves the enado-e
latency of the VM RAM reconfiguration operations, VM power
on operations, and VM mixed operations, by 32%, 18%, and
54%, respectively. It shows that the VATM approach is ef-
fective in adjusting to the vSphere overload and therefore i
proves overall throughput.

The vVATM approach shows great performance improvement

case there are any system metrics (e.g., system resouge, usa
individual operation latency, etc) that vSphere has toealid

This will prevent the hill-climbing approach from grosslyes-
shooting the throughput hill. Besides, to further improys-s
tem throughput, we plan to enable launching tasks in the mid-
dle of each round once VATM observes task completeness and
has enough system tokens to assign to additional tasks.-More
over, we plan to scale the experimental setup to perfornetarg
tests as well to understand the vATM behavior in the long run.
Lastly, the current implementation considers task managem

at the entire vSphere level. However, going forward, we plan
to use a more granular approach to manage tasks across both
data-centers and clusters.
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