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ABSTRACT
Virtualization provides several benefits to users in the data-
center in terms of infrastructure cost savings (e.g., capital, power,
space, cooling, labor). Examples include highly efficient and
available resource, networking, and storage management. As
many workloads have moved to virtualized environments, it
is critical that vSphere handles scale and performs optimally.
However, there are scenarios where the vSphere platform ex-
hibits suboptimal performance if user-level operations are sched-
uled poorly.

In this paper we propose a feedback-based approach to max-
imize the platform performance of vSphere with a gradient
based hill climbing algorithm. We have implemented the gra-
dient based hill climbing approach. Our initial results show
promising performance improvements, in terms of end-to-end
latency, under the vSphere environment.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness);
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Meth-
ods, and Search—Scheduling

General Terms
Management, Performance

Keywords
Task Scheduling, Feedback, Virtualization

1. INTRODUCTION
Virtualization [18] is massively deployed nowadays in the

private cloud environment. As the private data-center scales
up, management operations in the virtualized data-centersbe-
come pervasive, which places more pressure on the virtualiza-
tion platform. Therefore, it is important to manage the work-
loads in the virtualization platform effectively [13]. However,

.
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Figure 1: Tasks Throughput Experiment. The throughput
is measured by the batch size divided by the end-to-end batch
completion time for each batch size.

naïve scheduling of those user-level operations can overload
the virtual center and slow down the platform’s productivity
and overall performance.

With the current VMware vSphere [19] infrastructure, we
carried out a series ofboot-stormexperiments on the vSphere
platform where different groups of virtual machines (VMs)
were powered on to understand the impact of highly concur-
rent workloads on overall vSphere platform performance. We
show the results in Figure 1. A boot storm occurs when many
virtual machines start their operational workloads closerto-
gether, thus creating a larger load on the CPU, network, and
storage. A boot storm scenario is likely to occur after systems
have recovered from a power outage or when logging in for the
first time.

Our results indicated that the throughput of the system hits
a maxima after a certain batch size. Batch means a group of
concurrent operations, and batch size is the size of the group-
ing. When increasing the batch size beyond a certain num-
ber, throughput for that batch size dropped, indicating that the
vSphere platform encountered a bottleneck. The ideal batch
size that maximized throughput in our experiments was pow-
ering on 200 VMs in this test scenario.

Currently, there is no way for the vSphere client to get any
feedback from the vSphere platform if the system is overloaded
or under loaded. vSphere client solutions like Site Recovery
Manager [14], Virtual Desktop Infrastructure [17], and vCloud
Director [16] could potentially overload the platform and slow
down the performance. Static throttling schemes are often im-
plemented to prevent such scenarios. However, this approach
may observe limited performance when the platform is capa-
ble of supporting more tasks. What we are trying to solve could
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potentially help increase the throughput of vSphere-related plat-
forms. Furthermore, VMware customer feedback suggests that
provisioning and deployment scenarios tend to be bursty. Is-
suing an optimal number of tasks on the platform, during such
scenarios, would result in reduced recovery time, better end-
to-end boot time, and a quicker provisioning process.

Our work aims to identify the throughput maxima for any
given vSphere environment and control the number of tasks
issued to the system, while adapting to changes in the en-
vironment. To solve the above problem, we implemented a
prototype, call vATM (vSphere Adaptive Task Management),
combining feedback mechanism and adaptive hill-climbing al-
gorithm. Our initial results show promising performance im-
provement with the the proposed approach being adaptive to
the system background load. We achieved up to 54% improve-
ment in terms of end-to-end latency in the case of multiple
tasks experiment.

Note that we refer to vSphere as the target system through
out the paper, because our prototype implementation is based
on vSphere. However, our approach is generic enough to be
applicable to other components of the system such as vCloud
Director and the Cloud Infrastructure Suite (CIS) [2].

2. RELATED WORK
Feedback-based approaches have been widely applied in var-

ious field of computer systems [5] and networks [15] to provide
QoS (e.g., performance and power) guarantees in various lev-
els.

A standard feedback-based approach is using control theory,
which offers various methodologies to solve such problems
that demand dynamic throttling and task management. It has
been applied to database systems [4], storage systems [7, 8],
Web servers [3,10], and data-centers [9,21–23] to provide QoS
(e.g., performance and power) guarantees. Abdelzaher et al.
surveyed the application of feedback control to software sys-
tems [1] as well. A proportional-integral-derivative (PID) con-
troller [6, 11,20,23] is one such approach.

In this paper, we picked a simple feedback based hill climb-
ing algorithm instead of exploring a PID controller which in-
volves specifying a fixed set point variable that the system tries
to converge upon based on the controller feedback and requires
additional expertise and experiments. The vSphere system is
constantly under flux because of the wide variety of operations
being executed by varying amount of users, which essentially
means that the system does not have a specific set point where
it performs optimally, rather the set point varies dynamically
based on the type of workload and number of users issuing
tasks on the system. We also expect to achieve much more per-
formance improvement once the current prototype takes into
account the token-based normalization as we discussed in Sec-
tion 6.

3. DESIGN AND IMPLEMENTATION

3.1 Overall Design
vSphere has a broad spectrum of tasks ranging from VM

operations like clone and power on to host operations like add
and remove a host. Each operation has an associated cost attri-
bution in terms of operation latency. We introduce the notion
of a work unit called atoken to represent one unit of opera-
tion cost. If we usetp to represent the notion of the maximum
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Figure 3: Architecture

token capacity of the vSphere platform installation, it means
that the vSphere platform hastp tokens to give. Currently, we
assign each task one token to play around with. We will use
this notation of work units and throughput when we describe
the details of the feedback controller in Section 3.3.

vATM (vSphere Adaptive Task Management) is our own in-
vented new term to describe the prototype we built. It is re-
sides between the clients and vSphere. We envision this to be
either a stand-alone service or a component residing withinthe
vSphere suite. The precondition is that all tasks are directed
through this component. Our vATM comprises of two main
components: Task Management and a Feedback Controller.
The task management component is responsible for sending
tasks to vSphere as well as collecting task information suchas
operation latency. The task-management part determines how
many tasks to launch in each round. The feedback controller
leverages this information in combination with system feed-
back to adaptively control the outstanding operations on the
system. The architecture of the above discussion is shown in
Figure 3.

We explain the two components mentioned above in more
detail in subsection 3.2 and 3.3.

3.2 Task Management
All task requests reach vSphere through the task manage-

ment component. If the task management component detects
that the vSphere platform is overloaded, it buffers the request
in an internal queue and reissue it when the platform is ready.
In our prototype, the queue is large enough to hold all the re-
quests. If, however, no overload condition is detected, then
the task request passes through. This component relies on the
feedback controller to obtain the overload condition.

Task management can be made more effective by targeting
tasks towards a granular domain such as a data-center, cluster,
or other grouping based-on the affinity of tasks. The advantage
of going with a granular approach is that we prevent hot spots
(e.g., a busy cluster) from unnecessarily throttling otherparts
of the inventory. This is especially a concern in the multi-user
environment where the use cases and performance character-
istics may vary across parts of the virtual center server inven-
tory. For example, cluster A could be overloaded with several
boot storms, and hence additional tasks to cluster A may need
to be queued by the vATM to avoid cluster busy time. At the
same time, there could be another idle cluster B where tasks do
not need to be queued and therefore the performance feedback
metrics from cluster A do not need to be applied to cluster B.
In order to adopt this approach, vATM requires a mechanism
to map each task to an inventory component. Such a mecha-
nism of queuing tasks separately based on tasks ownership is
one of the extensions of this paper that needs further study with
additional experiments in future work.
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Figure 2: Fluctuation and variation. Observations with static throttling. A “round“ is completed when batched concurrent tasks
are finished. Throughput is measured for a single round.

3.3 Feedback Controller
Once tasks start arriving, the task management component

normalizes the workload via the token-based management sys-
tem and asks the feedback controller for guidance as to whether
to queue up the tasks or pass them through.

If the current queued task numbertcurr is less than the con-
currency target numberttar, then the controller does not kick
in and tasks are passed to vSphere. However, in the case that
tcurr is greater thanttar, the controller kicks in.

Initially, ttar is set totmin, the initial number of concurrent
tasks that the system will handle to start processing tasks.tmin

is a configurable value. In case thattcurr is greater thanttar,
ttar is increased to be twice as much astmin, in order to col-
lect at least two data points about the task throughput to help
identify the trend of the throughput hill. To avoid overshooting
the system,tmin should not be too large. Further increase of
ttar is determined by the feedback controller according to the
hill-climbing mechanism.ttar is gradually increased till the
system achieves an experimental maxima with capacitytp.

During each round, the controller issuesttar tasks concur-
rently and waits for them to complete. As tasks are completed
in each round, the throughput is measured after all the tokens
in the current round were received. The next batch size, rep-
resented byttar+1, is increased or decreased based on the fol-
lowing formula:

gradient =
thpttar − thpttar−1

ttar − ttar−1

(3.1)

gradientnorm = arctan(gradient)/90 (3.2)

ttar+1 = ttar ∗ (1 + gradientnorm) (3.3)

wherethpttar is the overall throughput as of the current round,
thpttar−1 is the overall throughput as of the previous round,
ttar is the number of concurrent tokens issued in the current
round,ttar−1 is the concurrent tokens issued for the previous
round. We divide by90 in the formula to ensure the normal-
ized gradientgradientnorm is between−1 (inclusive) and1
(exclusive).

If the gradient calculated acrossttar and ttar−1 is posi-
tive, it suggests that there is additional headroom within the
system andttar+1 is increased in accordance. The larger the
gradient value is, the larger the batch size will be for the next
round, and the quicker the local maxima will be found. If the
gradient is negative, it means that the token throughput has

dropped: vATM then decreases the tokens based on the gradi-
ent, to obtain a high overall throughput across rounds. We set
a floor value for the system available tokens as well so that the
vATM is able to launch at least one operation in the worst case.

The increase in batch size is reflective of the throughput
trend of the system (e.g., the batch size will be increased more
aggressively if the vATM detects a steep rise in throughput).
Once the throughput curve starts flattening out, the batch size
will be increased more conservatively. At any given instant,
the vATM maintains a constant in-flow ofttar tokens on the
system until the feedback controller updatesttar.

3.4 Observations
Two observations influenced our design and implementa-

tion. In the first experiment, we have in total 400 VM reconfig-
uration RAM operations. We launch 10 tasks per round stati-
cally and observe the throughput of each single round. In the
second experiment, we have in total 200 VM power on opera-
tions. We issue 10 tasks per round in a static way and observe
the throughput of each single round.

The first one is shown in Figure 2(a). We can see that even
when the number of operations is fixed, the throughput of each
round fluctuates. This is especially true for shorter rounds.
That challenges the hill-climbing based approach a lot since
it is sensitive to fluctuations. Therefore, our prototype should
be able to minimize these fluctuations (i.e., smoothing) by uti-
lizing the overall throughput across multiple rounds instead of
the throughput obtained from a single round, as we will see in
Section 4.

The second observation is shown in Figure 2(b). We can see
that when the number of operations is fixed, the throughput for
a single round decreases as more and more virtual machines
are powered on, increasing the background load. It suggests
that the maximum throughput for a single round is likely to
vary depending on what the background load is. Therefore,
our prototype should be able to launch the optimal number of
tasks adapting to varying background loads.

4. EVALUATION

4.1 System Setup
For experiments, we used a cluster consisting of three ESX

hosts. Each host is a Dell PowerEdge R610 machine with
dual quad-core Intel Xeon 3.0GHz processor and 16–49GB of
RAM with 540GB local disk. We installed hundreds of VMs
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(a) Static throttling of reconfigRAM operations
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(c) Static throttling of powerOn operations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  5  10  15  20

# round

Tokens
# Ops
Thpt

(d) vATM throttling of powerOn operations
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(e) Static throttling of mixed operations
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(f) vATM throttling of mixed operations

Figure 4: Two different approaches on operations throttling. Throughput here is the overall throughput defined by total number
of finished tasks divided by total latency. The unit is numberof tasks per min. Tokens in the figures are the system available tokens.
One operation represents one task. Since we assign one tokento each operation,x tokens should trigger launchingx operations as
long as there are enough tasks left in one specific round.

on each of the host. Each VM has one virtual CPU, 256MB
RAM, and one 20GB virtual disk.

We implemented the vATM prototype with the gradient-based
approach in Java using vSphere SDK [12] using about 4K LoC.
We evaluated the system with different workloads such as boot-
storm workload, reconfiguration workload, and workload with
mixed operations. We carried out experiments via both the
vATM and static throttling approaches.

4.2 Results
We now present the results we got with different approaches.

We show how the vATM approach adapts to the overall through-
put variations, while the static throttling approach does not.

As shown in Figure 4, we performed three groups of ex-
periments. Figure 4(a) and Figure 4(b) represent the case of
VM RAM reconfiguration operations, where there are in to-
tal 400 concurrent tasks. Figure 4(c) and Figure 4(d) repre-

sent the case of VM power-on operations, where there are in
total 200 concurrent tasks. Figure 4(e) and Figure 4(f) repre-
sent the case of mixed VM operations with equal distribution
among four operations: VM RAM reconfiguration, VM power
on, VM creation, and VM snapshot creation operations. There
are in total 800 concurrent tasks. The figures on left side de-
scribes the static throttling approach, whereas the figureson
right side show the vATM approach.

In the case of VM RAM reconfiguration operations, the static
throttling approach, as seen in Figure 4(a), launches 10 tasks
in each round. For the vATM approach, as seen in Figure 4(b),
starts launching 10 tasks in the first round, and 20 tasks in
the second round as required by the gradient calculation, and
then adapts to the overall throughput variations. In the static
case, the overall throughput is relatively stable. However, it
is not improving further, even when there is still a large gap
for performance improvement. The vATM approach, on the
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other hand, adapts to the overall throughput variations by first
decreasing the batch size—as it observes overall throughput
drops in the beginning several rounds—and then increasing the
batch size as it observes overall throughput improvement inthe
last several rounds. In the last round, there are not enough tasks
left; therefore, the number of operations is not the same as the
value of tokens.

In the case of VM power on operations, the static throt-
tling approach, as seen in Figure 4(c), launches five tasks in
each round. For the vATM approach, as seen in Figure 4(d),
starts launching five tasks in the first round, and ten tasks in
the second round as required by the gradient calculation, and
then reacts in an adaptive way. For the static case, the over-
all throughput drops in the first several rounds because of the
fluctuations as we discussed in Section 3.4, and then becomes
relatively stable. The vATM approach, on the other hand, de-
creases the batch size in the third round, and then increases
the batch size in the following rounds until it hits a local max-
ima. Then, the system becomes overloaded since there are now
more powered-on VMs, and the overall throughput drops as
we discussed in Section 3.4. At this point, the vATM approach
adapts to the changing background load by dynamically drop-
ping the token value, and therefore, maintaining an overallhigh
throughput.

In the case of mixed VM operations, the static throttling ap-
proach, as shown in Figure 4(e), launches four tasks in each
round. For the vATM approach, as shown in Figure 4(f), starts
launching four tasks in the first round, and eight tasks in the
second round as required by the gradient calculation, and then
launches in an adaptive way. With static throttling, the overall
throughput fluctuates and degrades in the first several rounds
because of the issues we discussed in Section 3.4, and then
turns to be relatively stable. The vATM approach, instead,
adapts to the local overall throughput changes, and hits two
local maxima in the beginning several rounds, and then grad-
ually increases the batch size to further improve the perfor-
mance throughput in the last several rounds. In the last round,
there are not enough tasks left; therefore, the number of oper-
ations is not the same as the value of tokens.

We also collected the end-to-end workload completion time
for different approaches with the above three groups of exper-
iments. We considered the optimal static throttling case, i.e.,
the best static threshold we could derive based on offline anal-
ysis of workload, and naïve static case, i.e., the thresholdused
for the static experiments described above. These comparisons
are shown in Table 1.

Operation Type Naive Static Optimal Static vATM
reconfigRAM 2.45 1.56 1.67

powerOn 1.70 1.35 1.39
mixed 11.99 4.67 5.47

Table 1: End-to-end latency comparison (minutes)

We can see from the table that the vATM approach, com-
pared with the naïve static approach, improves the end-to-end
latency of the VM RAM reconfiguration operations, VM power
on operations, and VM mixed operations, by 32%, 18%, and
54%, respectively. It shows that the vATM approach is ef-
fective in adjusting to the vSphere overload and therefore im-
proves overall throughput.

The vATM approach shows great performance improvement

compared with the naïve static-throttling approach. When com-
pared with the optimal static approach which usually requires
manual analysis on the history raw data, vATM is close. The
optimal static approach outperforms the vATM approach by
4% for VM RAM reconfiguration operations, 3% for VM power
on operations, and 7% for VM mixed operations, respectively.
The reason is that the vATM approach takes some time to find
the local maxima as the it starts launching tasks conservatively.
We believe that with a larger enough operation set, the time pe-
riod the vATM takes to find the local maxima can be ignored,
and the vATM approach will perform even better.

5. CONCLUSION
In this paper, we proposed one feedback based approach

aiming to maximize the vSphere platform performance with
gradient-based hill-climbing approach. We have implemented
the gradient-based hill-climbing approach, and the results showed
promising performance improvement under the vSphere envi-
ronment. Compared with the naïve static approach, vATM im-
proves the end-to-end latency of the VM RAM reconfiguration
operations, VM power on operations, and VM mixed opera-
tions, by 32%, 18%, and 54%, respectively. Compared with
the optimal static approach, vATM is close with 4% less for
VM RAM reconfiguration operations, 3% less for VM power
on operations, and 7% less for VM mixed operations, respec-
tively.

6. FUTURE WORK
We plan to assign tasks with dynamic tokens based on what

the background load is at specific time. We plan to integrate
the token normalization approach, that normalizes each task
token adaptively, into the vATM and collect some results with
various task loads. We also plan to have a periodic interven-
tion thread to update the system token in a more timely way in
case there are any system metrics (e.g., system resource usage,
individual operation latency, etc) that vSphere has to abide to.
This will prevent the hill-climbing approach from grossly over-
shooting the throughput hill. Besides, to further improve sys-
tem throughput, we plan to enable launching tasks in the mid-
dle of each round once vATM observes task completeness and
has enough system tokens to assign to additional tasks. More-
over, we plan to scale the experimental setup to perform larger
tests as well to understand the vATM behavior in the long run.
Lastly, the current implementation considers task management
at the entire vSphere level. However, going forward, we plan
to use a more granular approach to manage tasks across both
data-centers and clusters.
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