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Abstract

Storage researchers have always been interested in un-
derstanding the complex behavior of storage systems with
the help of statistics, machine learning, and simple visual-
ization techniques. However, when a system’s behavior is
affected by hundreds or even thousands of factors, existing
approaches break down. Results are often difficult to inter-
pret, and it can be challenging for humans to apply domain
knowledge to a complex system. We propose to enhance
storage system analysis by applying interactive visual ana-
lytics, which can address the aforementioned limitations. We
have devised a suitable Interactive Configuration Explorer
(ICE), and conducted several case studies on a typical stor-
age system, to demonstrate its benefits for storage system re-
searchers and designers. We found that ICE makes it easy to
explore a large parameter space, identify critical parameters,
and quickly zero in on optimal parameter settings.

1 Introduction

Analyzing and understanding the behavior of storage sys-
tems has always been of interest to researchers and system
administrators. Previous work has presented analysis of var-
ious aspects: performance [8, 15], reliability [20], energy
consumption [31], etc. In recent years, storage systems have
grown more complex with the addition of new hardware, var-
ied workloads, and increasing scale. This makes analyzing
storage systems more important but also more challenging.

Both non-visual and visual techniques have been applied
in analyzing storage system behavior. Non-visual methods
include statistical measurements such as mean, standard de-
viation, and percentile(s) [12], plus machine-learning tech-
niques including classification and clustering analysis [3,42].
Visual approaches have included 2D techniques such as his-
tograms [19], box plots [8], etc., and 3D versions such as
surface plots [10, 38].

However, existing techniques are not enough for thorough
understanding of storage system behavior, for three reasons.
First, storage systems are often impacted by many factors.
Modern storage systems can easily have hundreds of tunable
parameters [9]. However, most commonly applied visualiza-
tion techniques (e.g., line, histogram, scatter plots) can focus
on one or few factors within one plot. To analyze the impact
of all parameters, multiple figures are needed. For example,
during our previous study of just nine parameters in a typical
storage system [9], we produced over 2,000 plots in an at-
tempt to fully analyze the parameters’ impact and dependen-
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cies. The problem is exacerbated because specific workloads
and the underlying hardware can also affect system behav-
ior [8,9,31]. Moreover, some storage parameters have cate-
gorical values, while many plotting approaches (line, scatter,
etc.) assume numerical axes. The standard regression tech-
nique of splitting categorical parameters into dummy binary
values does not scale well, because it makes the configura-
tion space grow exponentially [41].

Second, some traditional approaches lack interpretability.
Storage researchers often want not only to explain the num-
bers, but also to understand the underlying implications at
the system level. Many existing approaches project high-
dimensional data into low-dimensional spaces; the newly
constructed dimensions are usually linear or nonlinear com-
binations of the originals. Examples include Principal Com-
ponent Analysis (PCA) [32], Independent Component Anal-
ysis [17], and visual techniques such as Multi-Dimensional
Scaling (MDS) [23]. One major drawback of these ap-
proaches is that physical meaning of each dimension may
not be preserved after projection [24].

Third, it is difficult to infuse domain knowledge. 1t is
important and beneficial to combine expert knowledge into
analysis procedures. For example, in our previous study we
used our storage expertise to pick nine representative stor-
age parameters and four common workloads [9]. Similarly,
Basak et al. [3] pre-selected features manually when doing
workload characterization. Due to the complexity of storage
systems, there is no single master solution that can satisfy
all requirements; often a combination of statistics, visualiza-
tion, and human reasoning must be applied. However, cur-
rent storage papers mostly use static, non-interactive 2D (oc-
casionally 3D) plots, which make it inconvenient to exploit
domain knowledge while analyzing.

To address the aforementioned limitations, we propose to
apply another type of analytic technique in storage research:
interactive visual analytics. Interactive visual analytics can
often present high-dimensional spaces in a single 2D space,
allowing researchers to explore interactions among multiple
factors of the targeted system. They let users exploit their
domain knowledge and intuition via visual interaction; this
empowers users to take an active role in the analysis process,
better understand the target system, and make sound deci-
sions with high confidence.

To demonstrate the benefits of applying interactive visual
analytics, we took storage-system performance analysis as
an example. We conducted studies on our three-year dataset
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Figure 1: Screenshot of ICE. Block Group was cropped out, shown as “... " in the figure, to increase text readability.

collected on a typical storage system; the dataset has 9 di-
mensions and 100k configurations (about 500k data points in
total); many large installations often collect numerous sim-
ilar telemetrics [26,27,30]. We prototyped a new tool, the
Interactive Configuration Explorer (ICE), which uses an en-
hanced box plot whose form is well understood by storage
researchers, with an embedded density plot for throughput
distribution, to present the data to the user in a compact, eas-
ily interpretable form. We have found that ICE can help re-
searchers explore the interaction among multiple storage pa-
rameters (numeric, discrete, and categorical), and understand
system performance, efficiency, stability, reliability, etc. We
hope our study and this paper will lead to more use of inter-
active visual analytic approaches in storage research.

Related Work. Interactive visual analytics is helpful to
explore and understand many real-world datasets. Existing
tools and approaches include plotly [33], Tableau [35], Par-
allel Coordinates [18], Parallel Sets [21], and Data Context
Maps [11]. Rodeh et al. [29] visualized block I/O work-
loads on a 2D grid, to help analyze measurements such
as read/write ratios and sequentiality, and to catch hit-rate
changes over time. Interactive visual analytics have been
shown to be useful in other types of system analyses, in-
cluding tracking data movement in SSDs [44], network traf-
fic [2,13,14,28,40], and database query optimization [4,37].
Due to the nature of storage parameters, however, many ex-
isting interactive visual analytic techniques may not be di-
rectly applicable. We detail their limitations in Section 2.

2 ICE: Interactive Configuration Explorer

A motivating example. Maria is an analyst responsible for
a large storage system. She has been working on a perfor-
mance problem for weeks, without success. Fortunately she
has a testbed for benchmarking the system and has collected
lots of data about different configurations and workloads.
But she needs to make sense of all those numbers, which
is what our interactive visual analytic tool, the Interactive

Configuration Explorer (ICE), is designed to do. Launch-
ing it, Maria first sees Figure 1. The metric that matters to
her is throughput (Y axis—higher is better). Her system is
currently used as a file server, so she clicks on “Workload”,
fixing it to “fileserver”, and the screen reconfigures to show
just the file-server data (Figure 2, zoomed to show only the
first two sections). The mean performance of each filesystem
is shown by the black dots, and the range by the length of the
bar. Maria sees that both btrfs and xfs have high through-
put, but xfs has less variance. Nevertheless, she decides to
look further into btrfs because of its snapshoting capabilities.
Choosing that option produces Figure 3, where she chooses
an 8KB inode size for its low variance, and sees that selecting
compress for the “SpecialOp” will reduce variance further.

Maria knows that the system might later be used as an
OLTP database server. Will btrfs still behave well? She
backs out, selects dbserver, and sees Figure 4. It turns out
that Btrfs is terrible for database workloads. But Ext4 seem
to contain some high-throughput configurations (indicated
by the peaks in the magenta regions inside the bar). She
can now use ICE to select ext4 and again explore different
parameter selections for the database workload.

Both researchers and administrators commonly encounter
this scenario: analyzing storage systems that are impacted
by tunable parameters and other factors including workload,
hardware, software, etc. As in the example, interactive visual
analytics allow quick exploration of many configuration op-
tions. We now describe the design of ICE, and in Section 3
we will show examples of how we used it to understand stor-
age system behavior.

Data collection. ICE evolved from an earlier project [9]
where we collected a large amount of experimental data on
7 different file system types and 4 representative workloads
using Filebench [1,39]. We experimented with block size,
inode size, blocks per group, mount option, journal option,
special option, I/O scheduler, and with 4 different storage
devices. There were 24,288 unique configurations, and we
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Figure 2: Partial screenshot of ICE after selecting the “fileserver”
Workload.
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Figure 3: Using ICE to select parameter values for btrfs under the
fileserver workload (partial screenshots).
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Figure 4: Partial screenshot of ICE after selecting the “dbserver”
Workload.

collected more than 500,000 data points over 3 years [7].
Our datasets now consist of 10T dimensions, i.e., tunable file
system and kernel parameters, hardware devices, and work-
loads, which makes analysis challenging when using only
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Figure 5: Annotated bar plot explaining how to read it.

traditional analytic approaches, due to the limitations dis-
cussed in Section 1. This motivated us to develop ICE.

Design of ICE. We started by applying existing popular
interactive visual analytic approaches, such as Parallel Coor-
dinates [18] and Parallel Sets [21]. We found that many of
them were not directly applicable. For example, the Parallel
Coordinates approach lists and orders the values of one pa-
rameter along one axis, and thus poorly supports categorical
parameters (common in storage systems). Moreover, these
tools can sometimes be complex and difficult for storage re-
searchers to use, requiring a relatively long training period.
Therefore, one design principle of ICE is usability.

ICE shows various configurations as bars, each of which
is carefully designed to present rich information about the
throughput distribution resulting from selected parameter
values. Bars in ICE are a combination of stacked bar plots
and violin plots [16], which are box plots superimposed with
rotated kernel density plots. Figure 5 shows an annotated
example of one such bar. The shading distinguishes dif-
ferent throughput percentiles: the darker shades on the top
and bottom represent the range from the maximum to the
90" percentile and from the minimum to the 10" percentile.
Medium shades mark the ranges for the 90™ to 75" and the
10" to 25™ percentiles; the lightest shades in the middle
mark the 75" to 25" percentiles. The black horizontal lines
in each bar mark major percentile boundaries (90, 75, 50
(median), 25", and 10™). The mean of the data is indicated
by a solid black dot. In addition, the distribution of the data
is shown by the magenta-colored area(s) on each bar, giv-
ing more detail about how the configurations represented by
that bar are distributed in the throughput space. We chose
all colors and shades carefully by using ColorBrewer [5, 6],
ensuring that they are visible on a variety of displays and to
users who suffer from color-blindness.

Returning to Figure 1, ICE is inspired by scented wid-
gets [43], which were originally proposed as graphical user
interface controls enhanced with embedded visualizations
that facilitate navigation in information spaces. We see that
ICE displays multiple bars grouped by parameters, with each



bar representing the throughput distribution of a subset of
configurations in which one parameter is fixed to a given
value. Since ICE is interactive, all of these bars change as the
user explores the data. Note that some parameter types have
been omitted for space reasons; a full version of the display
can be seen at http://www.fsl.cs.stonybrook.edu/ %7Ezhccao/ice.
A cumulative bar at the right-hand side of the figure, which
also changes during exploration, shows the throughput dis-
tribution of the union of the chosen configurations. In this
example, the initial display shows the distribution of all con-
figurations for 7 file systems across 4 workloads.

Given an initial setting, the user can select any combina-
tion of workload, file system, and storage parameters, and
the bars will be updated to show throughput distribution, as
we saw in the example above. With this design, users can
easily select parameters with different objectives. For exam-
ple, Maria maximized throughput by selecting the bar with
the highest solid black dot, but she could also reduce perfor-
mance variance by focusing on shorter bars. Our case studies
in Section 3 show how ICE can help users make such con-
figuration decisions.

ICE is able to display selected datasets in real time, taking
less than 2 seconds per update in our case. It was designed
for generic datasets collected on different storage systems.
We plan to make ICE open-source to facilitate research on
understanding storage parameter spaces and optimizing large
storage systems.

3 Case Studies

In Section 2 we showed one example of using ICE to analyze
storage system throughput and tune parameters to achieve
high performance. In this section, we describe two more case
studies to show how ICE can also help analyze performance
stability and reliability. These studies are based on our real
experience in analyzing and tuning storage systems [9,45].

3.1 Performance Stability

Now suppose that Maria wants to configure a system as an
email server, for which she cares about performance stability.
The range (difference between maximum and minimum) and
Inter-Quartile Range (IQR) (difference between 75" quartile
and 25" quartile) are often used to quantify stability in sys-
tem performance [8]. ICE visually presents the range as the
length of each bar, and IQR as the length of the lightest shade
in the middle of each bar (see Figure 5). Maria starts her
analysis with ICE and selects the mailserver Workload. The
left part of Figure 6 shows a partial ICE screenshot after do-
ing so. The bars for each parameter value present the updated
throughput distribution if that value is chosen. For example,
the bar above “btrfs” shows the throughput distribution of
all Btrfs configurations under the mailserver workload. The
updated bars guide Maria to select a value for another pa-
rameter, based on her objectives. Clearly, under mailserver
xfs has by far the smallest throughput range, even though its

ghput
5
£

Throu
N
o
l*

g=E

oF
R
| D&A|

22 2 5> ST )
o, 'Q O 2, O O
$%% 3.0 % v
%
FileSystem BlockSize Device

Figure 6: Using ICE to optimize a mail server (partial screenshots).
We chose Workload = “mailserver”; FileSystem = “ext4”; and
BlockSize = “1024”.

highest throughput value is slightly lower than those of nilfs
and ext2. Since stability is the primary concern, Maria thus
decides to configure her server using XFS.

Unfortunately, Maria’s boss informs her that upper man-
agement has established a policy that all corporate computers
have to use the Ext4 file system, regardless of the applica-
tion. She returns to ICE, selecting ext4. Since Ext4 shows a
wide range of throughput, indicating unstable performance,
she now continues configuring its parameters. As shown in
the middle part of Figure 6, a value of 1024 for BlockSize
gives the most stable result; Maria thus chooses this value.

The right part of Figure 6 shows the final step. Maria has
three types of HDDs available: “sas” (a 146GB SAS HDD),
“500sas” (a S00GB SAS HDD), and “sata” (a 250GB SATA
HDD). She estimates that her email system will only need
100GB, so she can ignore the HDD capacity and focus solely
on performance. The bar associated with sas appears the the
shortest, which means the 146GB SAS HDD has the most
stable performance. Therefore, Maria selects that HDD.

3.2 Constrained Tuning

When analyzing storage systems, multiple objectives some-
times need to be considered at the same time. For example,
system administrators may want to configure a stable sys-
tem (i.e., low variability) and still achieve high performance.
In this case certain constraints may be added to the analysis
process. Here we show an example of how ICE can be easily
applied to reflect such constraints and help the analysis.
This time Maria wants to configure her system as an OLTP
database server that uses Ext4. However, she wants to en-
sure reliability for the file system; therefore, she sets the
Ext4 journaling mode to data=journal. She then uses ICE
to analyze the system and help her find the configuration that
leads to the highest throughput under the current constraints,
as shown in Figure 7. She has already tested four device
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Figure 7: Using ICE to optimize multiple constraints (partial
screenshots). We chose Workload=“dbserver”; FileSystem =
“extd”; Device = “ssd”; InodeSize = “128”; BlockSize = “2048”.

types, 3 HDDs and 1 SSD. Unsurprisingly, the SSD shows
the highest maximum throughput (top of bar) so she chooses
that. ICE then updates the rest of the display to reflect that
choice, and Maria then focuses on the Inode Size. A 128-byte
inode is clearly preferable in this situation, so she selects that
and moves to the Block Size where 2KB has better stability.
Finally, she chooses deadline for the I/O Scheduler, as it im-
proves stability more without hurting performance, as shown
in the rightmost part of Figure 7.

It is important to note that Maria is not restricted to follow-
ing the particular path given in this example. She could have
chosen an I/O scheduler first, followed by selecting the best
block and inode sizes, and waited to the end to chose a disk
type. She also could have selected an inode size, observed
how it interacted with the other parameters, and backed out
so that should could pick a value later based on her choices
for something else. One of the benefits of ICE is that the
user can easily and quickly try different options to see how
it affects the results, exploring the parameter space along the
path that best suits her needs and research style.

4 Future Work

This position paper advocates the use of interactive visual
analytics for storage systems analysis and research. We plan
to continue this work. In particular, the following three en-
hancements to ICE are promising: (1) During interactive
analysis, it is useful to track the progression of the analy-
sis and how the current state compares to previous ones. We
plan add a provenance scheme [25,34] that would show pre-
vious results along a timeline, enabling us to see the “path”
by which a particular analysis was reached. (2) ICE is al-
ready scalable in the number of presented configurations
since it displays distributions, and new datasets can be dy-
namically imported. We plan to further improve ICE to
support even larger spaces, consisting of hundreds or thou-
sands of parameters. Previous work has demonstrated that
some parameters have greater impact than others [9,41]. We
plan to expand ICE to visualize and help analyze parame-
ter importance based on measures of redundancy, unique-

ness, coverage, mutual information [9], etc. (3) ICE was
designed generically for storage-system analysis, where cat-
egorical parameters are quite common. It can already be
used to explore many metrics, such as stability, I/O latency,
etc. We plan to further extend ICE so that users can ex-
plore multiple metrics simultaneously. For instance, users
might want to achieve high throughput while maintaining
relatively low energy consumption. (4) ICE evolved from
our efforts to analyze and auto-tune storage system perfor-
mance. We collected large amounts of data and ICE suc-
cessfully helped our analytic work. Since ICE can easily vi-
sualize the importance and correlation of parameter values,
we plan to investigate how ICE, fed with a small amount
of data initially, can guide a further data collection process
by suggesting promising configurations to experiment with.
(5) We designed ICE to analyze computer system parameter
spaces, where some previous techniques have not proven as
useful as one might wish. Nevertheless, we are investigat-
ing ways to incorporate approaches such as Parallel Coordi-
nates [18], Parallel Sets [21], and Data Context Maps [11]
into ICE. We also would like to integrate machine-learning
techniques [22,36,41] to help guide the analyst in exploring
large parameter spaces.

Lastly, we will open-source ICE to benefit the storage re-
search community and hopefully lead to more work on this
new but promising area of interactive visual analysis.

5 Conclusions

The Interactive Configuration Explorer (ICE) is an interac-
tive visual analytics tool that helps analyze and understand
storage systems. It addresses the limitations of existing tech-
niques, such as dealing with high-dimensional spaces and
infusing domain knowledge, by making it easy for humans
to understand and explore large parameter spaces. We de-
scribed ICE and presented several exemplary case studies on
a typical storage system to demonstrate how it can help an-
alyze and understand performance efficiency, stability, etc.
We believe that interactive visual analytics such as ICE, pos-
sibly in conjunction with other techniques (e.g., Parallel Co-
ordinates [18] or Data Context Maps [11]), can greatly im-
prove our ability to manage complex computer systems. ICE
has the potential to pave the way for more applications of in-
teractive visual analytics to storage research, leading to bet-
ter understanding and more robust design of storage systems.
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6 Discussion Topics

In this position paper, we propose to apply interactive visual
analytics in storage research. We designed and prototyped
ICE, which uses an enhanced box plot whose form is well
understood by storage researchers, with an embedded den-
sity plot for throughput distribution, to present the data to
the user in a compact, easily interpretable form. We expect
our position paper to raise discussion issues on the storage
research community from the following perspectives.

e What kind of visual approaches have the audience been
using during their research on storage systems? How
effective did they find their visual analytics approaches?

e How much does the audience believe interactive visual
analytic approaches can benefit and help analyzing and
understanding storage system behavior?

e What feedback would the audience provide to improve
the design of ICE? How useful are the specific visual-
izations we designed? How well would they scale?

o Are there any other potential applications or uses cases
for ICE in particular or other interactive visual analytic
approaches in storage research?

Note: we plan to demo ICE interactively as part of any
(extended) discussion of this position paper, and let others
“play” with it as well.
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